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C1 chemical reactions have attracted extensive attention in recent decades due to their significant roles in
energy transfer and utilization and environmental protection. Among the various catalytic materials, rare
earth oxide-based nanocatalysts exhibit superior performances in C1 chemical reactions because of their
flexible electronic structures and abundant defect states. In this review, we summarize the nanostructural
engineering and applications of rare earth oxide-based nanomaterials with well-defined compositions,
crystal phases and shapes for efficiently catalyzing C1 chemical reactions. Initially, we introduce the struc-
tural features of rare earth oxides. Subsequently, we present common synthetic approaches and nanos-
tructural engineering strategies toward the preparation of rare earth oxide nanomaterials with well-
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oxide-based nanocatalysts in some important C1 chemical reactions including CO oxidation, water-gas
shift reaction, CO, hydrogenation, methane oxidation and methanol oxidation. Finally, we prospect the
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1. Introduction

As a type of important strategic resource, rare earth elements
include 15 lanthanide elements (La-Lu) and two other
elements, scandium and yttrium. They usually co-exist in min-
erals and have similar properties, which make their separation
challenging." Rare earth elements (except for Sc and Y) have
partially unfilled 4f orbitals and abundant electronic energy
level structures, thus they have flexible coordination numbers
and outstanding catalytic properties for many reactions.”*
Rare earth materials play a significant role in various appli-
cations such as agriculture, military, petrochemical industry,
metallurgy, glass, and ceramics.*”

Nanostructured rare earth oxides are the most common
rare earth nanomaterials, which are also the most widely
studied.® They are cheap and easily obtained, and they have
different oxidation states in various conditions. The earliest
report of the synthesis of rare earth oxide nanocrystals with a
well-defined architecture dates back to the work of Cao’ s
group,” which involved the preparation of square Gd,0O; nano-
plates via a colloidal approach. At almost the same time,
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challenges and future research trends in this promising field.

Zhang and Yan’s group successively developed various
methods for the synthesis of well-defined rare earth oxides
with zero-dimensional (0D), one-dimensional (1D), two-dimen-
sional (2D) and three-dimensional (3D) nanostructures.®™*
After development for more than 15 years, researchers have
developed various synthetic strategies, and successfully pre-
pared many rare earth oxide nanostructures with diverse well-
defined morphologies.

Rare earth oxide nanostructures are broadly applied in cata-
lysis, especially heterogeneous catalysis.'>™> On the one hand,
rare earth oxide nanostructures by themselves are active for
some catalytic reactions such as CO oxidation."> However,
their activity is usually limited due to the weak adsorption of
the reagent molecule. On the other hand, rare earth oxide
nanostructures can act as supports or promotors to be com-
bined with other metal or metal oxide catalysts.** The catalytic
properties of composite materials are significantly enhanced
due to the synergistic effect between the support materials and
loading elements. Further, they are used more widely in cataly-
sis than single rare earth oxide nanostructures.

Among the catalytic reactions, C1 chemical reactions are
crucial for addressing both energy and environmental pro-
blems faced by mankind in this century due to their important
roles in producing essential chemicals (e.g. methane and
methanol) and controlling pollution (e.g. CO and CO,)."*™°
Rare earth oxide-based catalysts are a vital class of catalytic
nanomaterials for C1 chemical reactions.?>?" Thus, the devel-
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opment of high-performance rare earth oxide-based catalysts
is urgent and significant. Engineering rare earth oxide-based
catalysts with well-defined nanostructures is not only ben-
eficial for enhancing their catalytic properties, but also facili-
tates the study of the relationship between catalytic properties
and structure, which can provide guidance for designing cata-
lysts with excellent performances since this is still unclear in
many catalytic systems.

Due to the importance of rare earth-based nanomaterials,
many groups have reviewed their synthesis and applications in
catalysis. For example, Hussein® published a thermal analysis
and applied pyrolysis review about the formation, characteriz-
ation and catalytic activity of rare earth oxides. In addition,
Zhan et al.® mainly discussed the catalytic applications of rare
earth materials in energy production and utilization, and
environmental protection. Guo et al® commented on the
research advances of rare earth-based catalysts in hetero-
geneous transformation reactions of small molecules. Richard
et al.” focused on the properties and applications of rare earth
elements for CO, hydrogenation to methanol. Besides, Huang
et al.* reviewed the synthetic routes and electrochemical appli-
cations of rare earth-based nanomaterials. Similarly, the
review by Gao et al* also discussed and summarized the
recent progress on rare earth-based nanocatalysts, but their
key point was the incorporation of rare earth elements with
transition metals. Although rare earth oxide-based nano-
structures were a significant part introduced in the abovemen-
tioned reviews, few of them focused on the shape-control of
well-defined rare earth nanostructures and their catalytic appli-
cations in C1 chemical reactions. Besides, most of the reported
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reviews about rare earth oxides mainly focused on the appli-
cations of CeO, nanomaterials,>**° and rarely discussed other
rare earth oxides. Therefore, a review that systematically sum-
marizes the morphological engineering of nanostructured rare
earth oxides (not only CeO,) and highlights their structure—
function relationships in some important catalytic reactions is
still necessary.

Thus, to meet this demand, in the present review, we focus
on the shape-controlled synthesis of well-defined rare earth
oxide nanostructures and their catalytic structure-activity cor-
relations. Herein, we introduce the structure features of rare
earth oxides and summarize the most common synthetic
routes for the preparation of well-defined rare earth oxide
nanostructures from the perspective of their morphologies.
Moreover, we choose some typical C1 chemical reactions to
summarize the relationship between the engineered nano-
structures of the rare earth oxide-based nanomaterials and
their catalytic properties.

2. Structural features of rare earth
oxides

Generally, rare earth oxides can be divided into two categories,
trivalent oxides and tetravalent oxides. Most of the stable rare
earth oxides are trivalent except for CeO,, PrO, and TbO,. The
trivalent RE,O; usually has three types of structures, which are
denoted as A, B, and C (Fig. la-c, respectively). The A-type
RE,O; is hexagonal, with the P3m1 space group. The RE*" is
seven-coordinated with O, in which six O*~ form an octa-
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Fig. 1 Schematic illustration of the crystal structure of rare earth
oxides: (a) A-type RE,;Os, (b) B-type RE;Os3, (c) C-type RE;Os, and (d)
fluorite REO,.

hedron and the last O~ is located at one of the facets of the
octahedron. The B-type RE,O; is monoclinic, with the C2/m
space group. Similarly, the RE*" is also seven-coordinated and
six O*>~ form an octahedron, but the last O*>~ is a little farther
from the RE*". The C-type RE,O; is cubic, with the a3 space
group. The RE*" is six-coordinated, and the cell structure of
C-type RE,O; is similar to the cubic fluorite structure, in
which only two O®~ are removed regularly.

REO, has a cubic fluorite structure, with the Fm3m space
group, in which the RE"" is cubic close packing and co-
ordinated with eight O°>~, and the O*” is located in a tetra-
hedral void and coordinated with four RE*" (Fig. 1d). The RE
in REO, also has a stable valence of +3, and it can transform
between +3 and +4 through the generation and elimination of
an oxygen vacancy.

As can be seen in the phase diagram in Fig. 2, RE,O; (RE =
La-Pr) has an A-type structure, RE,O; (RE =Y, Dy-Lu) has a
C-type structure, and the others are C-type at low temperature
and become B-type at high temperature.
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Fig. 2 Phase diagram of RE,Os.
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3. Synthesis of well-defined rare
earth oxide nanostructures

Thus far, researchers have developed numerous methods for
the synthesis of rare earth oxide nanomaterials with well-
defined  structures, including 0D
nanooctahedra,®*'™* 1D nanorods and nanowires,>*?” 2D
nanosheets and nanobelts,** !
like structures.'"**>™** Optimized strategies such as selective
adsorption on specific facets, pH adjustment, templating and
self-assembly are widely used in engineering well-defined rare

nanocubes and

and 3D dendritic and flower-

earth oxide nanostructures*>*® (Fig. 3). Rare earth oxide nano-
materials with different shapes usually have diverse physical
and chemical properties due to their distinguishable surface
structures and chemical states. Hence, controlling the shapes
of rare earth oxide nanostructures will support the realization
of different functions and applications. In this section, we
mainly summarize the synthesis of well-defined rare earth
nanostructures considering their morphologies, with the intro-
duction of some typical synthetic examples. Furthermore, it
should be noted that most of the rare earth oxides in the cases
we discuss below are cubic structure according to their phase
diagram. Actually, cubic fluorite CeO, is the most studied
nanomaterial based on the current research status of rare
earth oxides.

3.1 0D rare earth oxide nanostructures

0D nanomaterials are defined as nanocrystals with a nanoscale
size in three dimensions. They usually contain nanocubes,
nanooctahedra, nanotetrahedra, nanopolyhedra, etc. In
general, nanostructures with different morphologies will have
diverse exposed crystal planes. For instance, nanocubes have
exposed {100} facets, whereas nanooctahedra and nanotetrahe-
dra have exposed {111} facets. The key factor for the prepa-
ration of rare earth oxide nanocrystals with specific shapes is
controlling the relative crystal growth rate of specific facets
during either the anisotropic growth mode or isotropic growth

mode.®*?
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Fig. 3 Schematic illustration of the synthesis of rare earth oxide nano-
structures with different morphologies.
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Taking the synthesis of rare earth oxide nanocubes as an
example, Zhang and Yan’s group® prepared CeO, nanocubes
through pH adjustment using a hydrothermal method. The
precipitation reaction occurred between Ce(NOj;); and NaOH,
and the secret of gaining CeO, nanocubes enclosed with {100}
facets was applying a high pH and temperature to achieve a
fast dissolution-recrystallization process for the transform-
ation of Ce(OH); into CeO, particles. In contrast, a slow dis-
solution-recrystallization process with a low pH and tempera-
ture resulted in the formation of CeO, nanopolyhedra with
{111} and {100} planes. Besides, the same goal was completed
by Dang et al.*” using a liquid-liquid interface with the assist-
ance of oleic acid (OLA). As shown in Fig. 4a, {111}-dominated
CeO, nanooctahedra or truncated nanooctahedra were
obtained in the water phase initially owing to the lower surface
energy of the {111} planes, then the OLA selectively adsorbed
on the {100} planes, resulting in the transfer of the CeO, nano-
particles from the water phase to the toluene phase. Because
of the coating of OLA on the {100} planes, the growth rate of
the CeO, [100] direction was limited, and finally the CeO,
nanoparticles turned into nanocubes (Fig. 4b). This was a
typical case that using selective adsorption on a specific facet
controlled the morphologies of the rare earth oxide nano-
structures. Specially, Miao et al.*® prepared CeO, nanocubes
through the doping of F. They concluded that the generation
of CeO, nanocubes was a result of the etching effect by HF in
the crystal growth process.

For the preparation of rare earth oxide nanooctahedra, they
are easier to be obtained than nanocubes as a consequence of
the lower surface energy of the {111} facets than that of the
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Fig. 4 (a) Transmission electron microscopy (TEM) images of the evol-
ution from CeO, truncated nanooctahedra to nanocube. (b) Schematic
illustration of shape evolution of CeO, nanocrystals in the organic
phase. Adapted with permission from ref. 47 Copyright 2010, American
Chemical Society..

This journal is © the Partner Organisations 2020

View Article Online

Review

{100} facets. They can be facilely produced by tuning the pre-
cipitation step in the hydrothermal method.*** For example,
Feng et al.®® synthesized CeO, nanooctahedra with a size of
around 100 nm using the weak base Nas;PO, in the hydro-
thermal process. The slow growth rate guaranteed the gene-
ration of the more stable morphology of nanooctahedra rather
than nanocubes. The authors also demonstrated that replacing
NazPO, with the strong base NaOH would result in the for-
mation of CeO, nanospheres and nanocubes. Similarly, CeO,
nanooctahedra were successfully synthesized by Ren et al.*®
through the hydrothermal route using Ce(NO;); and a rela-
tively small amount of NaOH. Also, they also showed that a
high concentration of NaOH could yield nanocubes. Specially,
single crystalline CeO, nanooctahedra were obtained through
galvanostatic electrodeposition in a conventional three-elec-
trode cell.’® It was also the first time that CeO, nanooctahedra
were prepared via the electrochemical route.

In the case of other 0D rare earth oxide nanostructures,
nanopolyhedra with no specific shape (called nanoparticles)
are common nanomaterials. Their crystal facets usually consist
of {100} and {111} planes, and they are easy to obtain because
engineering of their morphology is not required. Furthermore,
they can be used as reference samples in the study of the
plane effect derived from diverse morphologies and are widely
used in applications such as catalysis because of their easy
accessibility. For their synthesis, Yang et al.>" used the sol-gel
method combined with a solvothermal process to obtain CeO,
nanoparticles with a high surface area. They carried out the
solvothermal treatment after they obtained the gel powder, fol-
lowed by calcination in air to obtain the final product.
Additionally, Shiri et al.®* synthesized Sm,0; nanoparticles
using a nitrate bath of Sm(NO;); via pulse electrochemical
deposition assisted by ultrasound. Different from the regular
precipitation method, precipitation in reverse microemulsions
based on different surfactants was applied to prepare CeO,
nanoparticles by Shlapa et al.”® A schematic of the synthetic
route is shown in Fig. 5. Compared with the traditional pre-
cipitation method, the precipitation reaction in reverse micro-
emulsions is limited by the surfactant molecules, and the size
can be easily controlled by tuning the length of the hydrophilic
part of the surfactant. The as-prepared CeO, nanoparticles had
a small and uniform size in the range of 6-10 nm and showed
good catalase-like activity.

3.2 1D rare earth oxide nanostructures

Compared with 0D nanostructures, one non-nanoscale dimen-
sion is allowed to exist in 1D nanostructures, while the other
two dimensions must be on the nanoscale. 1D rare earth oxide
nanostructures including nanorods, nanowires and nanotubes
are important nanomaterials for catalysis because of their
unique exposed crystal planes, abundant defect sites, and
good stability, and they can also provide good models for
theoretical simulation.*?* In the synthetic strategies for
engineering 1D rare earth oxide nanostructures, pH adjust-
ment in the hydrothermal procedure is the most common
means because the acid-base balance can influence many key

Inorg. Chem. Front., 2020, 7, 4256-4280 | 4259
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Fig. 5 Schematic illustration of the synthesis of CeO, nanoparticles via
precipitation in reverse microemulsions. Adapted with permission from
ref. 53. Copyright 2019, Springer Nature.

factors in shape-control such as the crystal growth rate and
stability of intermediates.** >’

Furthermore, it should be noted that the hydrothermal
method for the preparation of rare earth oxides can be divided
into two types, alkali and acid methods. The alkali hydro-
thermal route is very common, for example, CeO, nanorods
with a length in the range of 100-300 nm and width of
13-20 nm were firstly prepared by Zhou et al.** using Ce(NO3);
and NaOH. The predominantly exposed facets were the unu-
sually active {001} and {110} planes rather than the {111}
plane. The authors provided inspiration for designing and con-
trolling the synthesis of nanocrystals with different shapes.
Our group®” synthesized CeO, nanowires via the hydrothermal
method at 180 °C using CeCl; and NaOH without the addition
of any capping agent. In the synthetic process, NaCl was
specially used to obtain uniform wire-like nanostructures dom-
inantly enclosed by {110} facets. We also prepared Ln-doped
(Ln = La-Lu) CeO, nanowires using the same method, and the
distribution of dopant was very homogeneous. The key was the
co-precipitation of Ce*" and Ln*" to form Ce(OH);:Ln(OH);,
which transformed into CeO,:Ln through calcination. The
dopant content was about 10%, and the aspect ratio of most of
the CeO,:Ln nanowires were smaller than that of the pure
CeO, nanowires due to the difference in the ionic radius
between Ce and the dopant ion. As another example, Sohn®
successfully synthesized Yb,O; nanowires and nanorods via
the hydrothermal method at 210 °C using ammonia water as
the precipitant, and YbCl; and Yb(NOs); as the precursor,
respectively (Fig. 6). The abovementioned cases indicate that
besides the vital role of pH adjustment, the formation of 1D
rare earth oxide nanostructures also greatly relies on the trans-
formation of the intermediates. It may be difficult to obtain
rare earth oxide nanowires or nanorods directly, but it can be
easy to obtain their corresponding hydroxides and transform
them into oxides. Acid hydrothermal treatment is less used in
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Fig. 6 SEM images of as-synthesized Yb,0O5 (a) nanowires and (b) nano-
rods. Adapted with permission from ref. 36. Copyright 2018, Elsevier.

the synthesis of 1D rare earth oxide nanostructures. As an
example, Pr,0; nanowires were prepared by Sobahi®” using the
hydrothermal method by tuning the pH value of the precursor
solution of Pr(NO3); to 1.3 and adding glycine as the shaping
reagent.

Rare earth oxide nanotubes are another type of important
1D nanomaterials on account of their high surface area and
rich defects. Due to the hollow structure of the nanotubes,
templating is a very suitable strategy for their preparation. As
an example, Eu,O; nanotube arrays (Fig. 7a) could be obtained
using the sol-gel method assisted by porous anode alumina
templates.>® According to the synthetic mechanism shown in
Fig. 7b, the alumina templates were impregnated in the
mixture of Eu(NO;); solution and urea, and the solution filled
the pores of the templates. After heating the solution, the pH
value increased owing to the hydrolysis of urea, resulting in
the formation of Eu(OH); in both the template pores and solu-
tion. The sol particles of Eu(OH); were negatively charged,
while the templates were positively charged, and therefore the
sol particles gathered at the walls of the templates and gradu-

Solution Sintered Eu;0;3 nanotube

Sol particles

o 7 ; | | | |
A= Y ’ 1

A= a7 v -

v Y / 1

Y ~7 ’ 1

A= " i

4 777

Fig. 7 (a) TEM image of Eu,Oz nanotubes. (b) Schematic illustration of
the formation mechanism of Eu,Oz nanotubes. Adapted with permission
from ref. 54. Copyright 2004, American Chemical Society.
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ally extended to the center. Finally, the templates were
removed from the sol solution and sintered in a furnace,
generating Eu,O0; nanotubes. As another example, Tb,O;
nanotubes were synthesized by Tang et al>® through the
hydrothermal method using terbium chloride as the precur-
sor and sodium dodecyl benzenesulfonate as the template
reagent. Tb(OH); nanotubes were initially obtained via the
hydrothermal process after adjusting the solution pH to 12
with NaOH. Finally, they calcined the Tb(OH); nanotubes at
800 °C under a reducing atmosphere and obtained Tb,O;
nanotubes. Interestingly, Th,O3; nanotubes could also be syn-
thesized through a facile precipitation method using Tb
(NO;); and ammonia.’® The precipitation process involved
aging at room temperature for two days, which was necessary
for the formation of the tube-like structure under a slow
growth rate.

3.3 2D rare earth oxide nanostructures

Similar to the definition of 0D and 1D nanostructures, 2D
nanostructures allow the existence of two non-nanoscale
dimensions, and thus they usually contain nanosheets, nano-
plates, nanobelts, etc. 2D rare earth oxide nanocrystals have
many advantages for catalytic applications such as huge
surface area, a variety of defects, and high atomic utilization
owing to their thin structure.””>° However, it is challenging to
prepare 2D rare earth oxide nanomaterials due to the complex
requirement of anisotropic growth. In general, a relatively slow
growth rate of a specific crystal plane is preferred to realize an-
isotropic morphologies.

Nanoplates are well-known nanomaterials among the 2D
rare earth oxide nanostructures, which have been successfully
synthesized via several methods.>”*® The first reported syn-
thetic work on 2D rare earth oxide nanostructures was the
Gd,0; square nanoplates prepared by Cao’ using a solution-
phase decomposition method. Soon afterwards, Zhang and
Yan’s group”'® prepared a series of cubic rare earth (RE = La-
Lu, Y) oxide nanoplates or nanodisks via a non-hydrolytic
route using various rare earth complexes as precursors with
the assistance of oleylamine (OM), oleic acid (OA) and 1-octa-
decene (ODE). Our group carried out control experiments to
determine the specific effects of different experimental para-
meters. As shown in Fig. 8a, the whole shape evolution can be
divided into two parts. Firstly, the rare earth oleates are
formed through ion exchange with OA in solution. Secondly,
decomposition of the rare earth oleates occurs via the catalysis
of OM. Due to the selective adsorption of OA on the {100}
planes, the RE,Oj; crystals can realize anisotropic growth to
generate 2D structures. Also, they would result in diverse mor-
phologies because of the difference in growth rate, which is
affected by the rare earth precursors. As another illustration,
La,0; nanoplates were obtained by Wu et al.®® via a combi-
nation of precipitation and calcination using La(NOs); and for-
mamide. In the precipitation process, La(OH); nanoparticles
were formed through nucleation and aggregated (Fig. 8b).
Then they grew into 1D La(OH); nanorods because hexagonal
La(OH); has an anisotropic crystal structure. During the calci-
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Fig. 8 (a) Schematic of the formation mechanism of RE,Oz nanoplates
and nanodisks. Adapted with permission from ref. 10. Copyright 2007,
American Chemical Society. (b) Schematic illustration of the formation
mechanism of La,Oz nanoplates. Adapted with permission from ref. 60.
Copyright 2013, Elsevier. (c) Schematic formation evolution of leak-like
CeO, nanosheets and corresponding scanning electron microscopy
(SEM) images of the different stages. Adapted with permission from ref.
61. Copyright 2013, Springer Nature.

nation step, the -OH groups were removed and the nanocrys-
tals underwent reconstruction to achieve the lowest surface
energy. Consequently, the La(OH); nanorods transformed into
hexagonal La,O3; nanoplates under the driving force of calcina-
tion. The high-resolution TEM (HRTEM) results showed the
{002} exposed facet, suggesting that preferential growth
occurred along the [002] direction.

In the case of engineering of rare earth oxide nanosheets,
Hu et al®" synthesized leaf-like CeO, nanosheets mainly
enclosed with {111} and {200} facets via the hydrothermal
method using Ce(NO3); as the precursor, NH,HCOj; as the pre-
cipitant, and ethylenediamine as the complexant. As displayed
in Fig. 8c, the product evolution could be divided into three
stages. In the first stage, Ce*" reacted with NH,HCO; and gen-
erated a large amount of Ce(OH)CO; nanoparticles, which
aggregated to form fluffy particles through self-assembly.
Afterwards, nanorods and nanosheets emerged due to the dis-
solution-recrystallization and self-assembly of the fluffy par-
ticles. In the last stage, the nanorods continued to grow until
the formation of leaf-like nanosheets. In the whole process,
ethylenediamine was coordinated with Ce*" and controlled the
release of Ce®’, thus further controlling the crystal growth

Inorg. Chem. Front,, 2020, 7, 4256-4280 | 4261
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direction to form nanosheets. Similarly, Dai et al.®* obtained
CeO, nanosheets using Ce(NO3); and NH,HCO;, but they did
not add ethylenediamine or any other reagents. As an alterna-
tive, they selected a low temperature of 30 °C to carry out the
precipitation reaction in order to obtain an adequately slow
growth rate for the formation of sheet-like nanostructures. As a
supplement, the electrochemical method is also good for
synthesizing 2D rare earth oxides. For example, Huang et al.>®
obtained Eu-doped CeO, nanosheets through electrodeposi-
tion on a Ti substrate and subsequent calcination in N,.
However, the formation mechanism was unclear and needs
more exploration.

Rare earth oxide nanobelts is another type of 2D nano-
materials that are promising candidates for the fundamental
study of physical and chemical properties in many fields.®**
However, they are difficult to synthesize due to the preference
to form 1D nanostructures or other nanocrystals with lower an-
isotropy. Some groups successfully achieved their synthesis
through the solvothermal method, which is suitable for crystal
shape control.®**** For example, Eu-doped single-crystal Y,0;
nanobelts with an average thickness of ca. 10 nm and width of
40-100 nm were obtained by Li et al.®® using a simple solvo-
thermal method without the addition of any templates. The
key factors for controlling the belt-like shape and size were the
initial pH of the solution and reaction time of the solvo-
thermal process. As another example, Rao et al.®* obtained
mesoporous CeO, nanobelts via the hydrothermal method,
and subsequent calcination without any template or surfac-
tant. The authors researched the effect of the experimental
conditions in the hydrothermal process on morphologies of
the CeO, precursors, and they found that the temperature, cat-
ionic type of alkali and ratio of alkali/Ce contributed to the
final shape of the products (Fig. 9a-e). Fig. 9f further illus-
trates the possible formation mechanism of the mesoporous
CeO, nanobelts. Briefly, colloidal Ce(OH); nuclei were initially
formed, followed by dissolution-recrystallization in a mixture
of OH™ and HCHO. Formates and carbonates were generated
in the solution via the disproportionation reactions between
OH™ and HCHO, and they could coexist due to the high con-
centration and small radius of Na*, which was vital for the an-
isotropic growth to form belt-like nanostructures. During the
calcination of the nanobelt precursors, they transformed into
polycrystalline CeO, nanobelts and a mass of pores was gener-
ated via the decomposition of formates and carbonates,
leaving sodium oxide on the surface. After washing with water,
the final mesoporous CeO, nanobelts with a thickness of
10-30 nm and a width of 50-250 nm (Fig. 9g) were obtained.
Since rare earth oxide nanobelts are similar to 1D nano-
structures to a certain degree, the electrospinning method is
also suitable for the preparation of rare earth oxide nanobelts.
As an example, Eu,O; nanobelts with a uniform size were
obtained via the electrospinning process.*

3.4 3D rare earth oxide nanostructures

3D nanostructures can be regarded as composites of 0D, 1D,
and 2D nanomaterials. 3D rare earth oxide nanostructures play
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Fig. 9 (a) Schematic illustration of the synthesis of CeO, precursors
under various conditions. TEM images of CeO, precursors prepared
under various conditions: (b) 140 °C, NaOH:Ce = 3.3; (c) 140 °C,
NaOH : Ce = 10.8; (d) 120 °C, KOH: Ce = 16.3; and (e) 180 °C, NaOH : Ce
= 16.3. (f) Schematic illustration of the mechanism for the formation of
mesoporous CeO, nanobelts. (g) TEM image of mesoporous CeO,
nanobelts. Adapted with permission from ref. 64. Copyright 2013,
Elsevier.

a significant role in catalytic applications mainly because of
three advantages.'"®®"®® First, they usually have good robust-
ness in catalytic processes due to their anti-sintering ability,
which is attributed to their large size. Secondly, they possess a
large surface area since they consist of small units such as
nanoparticles and nanosheets. Thirdly, they are rich in defects
and high-index facets due to the oriented attachment of the
tiny building blocks. However, unlike 0D, 1D and 2D nano-
structures, the 3D rare earth oxide nanostructures hardly have
regular morphologies. They have well-known structures such
as dendrites and flowers, but most of them are original
nanomaterials.®® %’

As an instructive work, CeO, nanoflowers obtained via the
rapid thermolysis of (NH,4),Ce(NOs)s in a mixture of OA/OM
were reported by Zhang and Yan’s group.'' The ceria clusters
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capped with OA and OM were generated as a result of the
hydrolysis of (NH,),Ce(NO3)s at a low temperature (<220 °C).
When the temperature increased to above 220 °C, the capping
agents on the surface of the ceria particles disappeared
quickly through the redox reaction. Consequently, the small
particles spontaneously aggregated via 3D oriented attachment
and generated CeO, nanoflowers. Self-assembly is often
chosen for the construction of 3D rare earth oxide nano-
structures, whose driving force is the hydrophobic effect of the
surfactants adsorbed on the nanocrystals. For instance, ultra-
thin nanodisks of Sm,0; and hierarchical flower-like Gd,O;
and Dy,0; (Fig. 10a—c) with abundant high-index {400} facets
were prepared by Xiao et al.°® through a benzyl alcohol-based
nonaqueous sol-gel route using rare earth acetylacetonates as
precursors. The X-ray diffraction (XRD) results showed that all
of them were in the cubic phase (Fig. 10d). Also, Fig. 10e
shows the possible formation mechanism of these rare earth
oxide nanostructures, where nanodisks of the three oxides
were obtained in the first stage of the sol-gel process, then
Sm,0; stacks were formed through mesocrystal fusion, and
flower-like spheres of Gd,O; and Dy,O; were generated via
self-assembly. The different behaviors in the final stage were

(e)

BA. adnis . interaction ofBA"".

ith:ncl agbrebauon growth
it i&? ‘ﬂ with nuclei g‘ ﬁf

\0
mes
" oriented attachment .

\ Sm, 05 precursor stacks
“7«Yso
nanodisks ”lb{y

Gd,0O5 and Dy, 05 precursor
flower-like spheres

Fig. 10 SEM images of (a) Sm,03 nanodisks; (b) Gd,Os; and (c) Dy,Os
flower-like spheres. (d) XRD patterns and (e) schematic illustration of the
possible formation process of Sm,O3z nanodisks or Gd,O3z and Dy,0Os3
flower-like spheres. Adapted with permission from ref. 66. Copyright
2009, American Chemical Society.
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possibly due to their diverse inherent properties such as
crystal growth behavior.

With respect to rare earth oxide dendrites, Zhang et al.®’
developed a combination method of hydrothermal treatment
and thermal decomposition to prepare CeO, dendrites with a
three-fold shape. In the hydrothermal procedure, the authors
chose Ce(NO;); and urea as reactants to react in a water—tri-
ethanolamine (TEA) mixed solvent. It is established that TEA
can steadily coordinate with Ce®", which will notably lower the
concentration of free Ce** in solution. Thus, the rate of Ce(OH)
CO; formation would be extremely slow, which is beneficial for
the crystallization and separation of the nucleation and growth
stage. Consequently, the nuclei aggregated with each other
and formed three-fold branched units, then these building
units connected together through self-assembly and generated
the final dendrites. An identical function as TEA could be rea-
lized using ammonia water or hydrazine hydrate in the studies
by Zhang et al.**°® They obtained three-fold and four-fold
CeO, dendrites by intentionally using ammonia water and
hydrazine hydrate, respectively. Both reagents had an impor-
tant effect on engineering the shape of the CeO, dendrites
through decreasing the Ce®* concentration and lowering the
crystal growth rate, which are crucial for obtaining branched
architectures.

Besides 3D dendritic and flower-like rare earth oxides, Qu
et al.®® obtained La,0O; hollow spheres with multi shells via
a one-pot hydrothermal method combined with calcination.
They used a mixture of p-glucose and lanthanum nitrate as
the precursor solution, and the special evolution mechanism
could be ascribed to the template effect of the carbon in the
structure. With a continuous increase in the calcination
temperature, the carbon contained in the spheres was oxi-
dized to CO,, resulting in the formation of a multi-shell
structure. Besides, Dong et al.”® reported the preparation of
coral-shaped Dy,0O; through an environmentally friendly
solvothermal method combined with calcination. They used
dysprosium acetylacetonate and carbamide as reagents and
methanol as the solvent. The formation of the coral-like
Dy,03; was based on the spontaneous accumulation of small
particles with a size of about 12 nm. Moreover, 3D porous
CeO, with various shapes was obtained by Jiang et al.** via a
simple precipitation method using glycine as a soft bio-tem-
plate. The preparation procedure, which involved stirring at
room temperature, drying at 100 °C, and calcination at
500 °C, was very facile, as shown in Fig. 11a. By modulating
the reagent ratio of Ce®, urea and glycine, shuttle-like,
bowknot-like, prism-like, and dumbbell-like CeO, were
obtained (Fig. 11b-g). Furthermore, the authors investigated
the formation mechanism of the CeO, products, as shown in
Fig. 11h. As a bio-template, the glycine provided place for
the reaction of Ce®" and urea to produce nanospheres since
Ce*" was adsorbed on the surface of glycine. Then the final
product was formed through the self-assembly of the nano-
spheres. The morphologies could be tuned by the reagent
ratio because of its influence on the dispersion and hydro-
lysis rate of Ce**
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Fig. 11 (a) Procedure for the synthesis of 3D porous CeO,. SEM images
of CeO, prepared with different ratios of reagents (Ce** : urea: glycine)
of (b) 3:0:1; (c) 3:1:1; (d) 3:2:1; (e) 3:40:1; (f) 3:4:2; and (g)
6:2:1. (h) Schematic illustration of the formation of the 3D porous

CeO, with a bowknot shape. Adapted with permission from ref. 44.
Copyright 2018, Royal Society of Chemistry.

4. Catalytic applications of rare earth
oxide nanomaterials in C1 chemical
reactions

Rare earth oxide nanomaterials are very promising for catalytic
applications due to their abundant electronic structures and
flexible oxidation states and coordination numbers.>™ Also,
researchers have already studied and utilized rare earth oxide-
based nanocatalysts in many important reactions such as C1
chemical reactions.”*”** C1 chemical reactions are vital
because they are closely related with the generation, storage
and conversion of energy and environmental protection.'®™°
Therefore, the development of novel well-defined rare earth
oxide nanomaterials with high catalytic performances in C1
chemical reactions has important implications for alleviating
the increasing energy and environment crisis. In this section,
we employ several typical C1 chemical reactions including the
CO oxidation reaction, water gas-shift reaction (WGSR), CO,
hydrogenation reaction, methane oxidation reaction and
methanol oxidation reaction (MOR) to summarize the nanos-
tructural engineering of rare earth oxide nanomaterials in cata-
lytic applications and reveal the corresponding structure-per-
formance relationship, assisted by some representative works.

4.1 CO oxidation reaction

The CO oxidation reaction (CO + O, — CO,) is often used as a
probe reaction to study the structure-activity relationship of
catalysts owing to its simple reaction formula and mechanism.
Besides, it also has applied value in practical applications such
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as automobile tail gas purification, CO sensors, and indoor air
purification.”>”* For the mechanism of the CO oxidation reac-
tion, the Mars-van Krevelen mechanism is accepted by most
researchers, that is, a CO molecule reacts with the lattice
oxygen of the oxide and in situ generates an oxygen vacancy,
and then the oxygen molecule fills the vacancy and finishes
the cycle. Consequently, oxygen vacancies play a vital role in
the catalytic CO oxidation reaction, which are abundant in
many rare earth oxide nanomaterials.

Obviously, rare earth oxide nanomaterials can indepen-
dently catalyze the CO oxidation reaction without modulation
with other non-rare earth metals, and their performance is
closely correlated with their morphologies.""**”® As an
example, the CeO, nanorods synthesized by Zhou et al**
exhibited a Ts, (temperature of 50% CO conversion) of 186 °C
towards CO oxidation, which is much lower than that of CeO,
nanoparticles. The enhanced activity was ascribed to the well-
defined reactive {001} and {110} planes. Our group”
implemented the dimension-manipulated synthesis of CeO,
nanostructures and obtained 0D uniform crystals, 2D polycrys-
talline assembly, and 3D mesoporous framework. The 2D poly-
crystalline assembly sample showed the highest activity (750 =
310 °C) for CO oxidation, while the 3D mesoporous framework
had the lowest activity (75, = 390 °C), and all three nanocata-
lysts were much more active than bulk CeO,. In addition, Kang
et al.”* prepared hexagonal Pr(OH); and cubic PrsO,; nanorods
and tested their activity for CO oxidation. The Pr(OH); nano-
rods had a Ty, (temperature of 10% CO conversion) of 525 °C
in the first run and then transformed into PrgO;; nanorods
after the first run. Subsequently, in the second run, the Tj,
was 465 °C due to the transformation from Pr(OH); to PrgOy;.
Although their activity was lower than that of commercial cata-
lysts, they can be applied in catalysis and sensing. As another
example, Zhang et al.”® synthesized 3D ordered porous PrgOq;
and Tb,0; using a hard template method. The PrsO,; and
Tb,0, nanostructures showed a Ts, of 305 °C and 360 °C,
respectively, which were much more active than commercial
PrsO4; (550 °C). The enhanced activity may have originated
from their large surface area, abundant oxygen vacancies, and
higher low-temperature reducibility.

Doping is a common strategy for enhancing the catalytic
activity of rare earth oxide nanomaterials. For instance, the
CeO, nanowires prepared by our group® could catalyze the CO
oxidation reaction with a T, of 350 °C, which may be ascribed
to the facile formation of oxygen vacancies in the CeO, {110}
facet. We successfully doped lanthanide elements in the CeO,
nanowires (Fig. 12a) to enhance the activity of CeO,, and the
most active sample of Nd-doped CeO, nanowires showed an
order of magnitude higher activity (TOF at 200 °C = 5.4 x 10*
s7') than that of the pure CeO, nanowires (TOF at 200 °C = 4.1
x 107 s7, Fig. 12b). We also found that the big difference in
the activity of the doped catalysts was derived from two
aspects. On the one hand, the oxygen vacancy formation
energy of the light rare earth-doped samples was much lower
than that of the heavy rare earth-doped samples (Fig. 12c),
indicating that the former had more oxygen vacancies, which
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Fig. 12 (a) EDS mapping images of CeO,:Nd. (b) Catalytic activity for
the oxidation reaction of lanthanide-doped CeO, nanowires versus the
radius of the dopants. (c) Oxygen vacancy formation energy of CeO,:Ln.
(d) Variation of IR intensity at 1454 (unidentate carbonates), 1577 (biden-
tate carbonates), and 1644 cm™ (bicarbonates) with different dopants.
Adapted with permission from ref. 35. Copyright 2013, American
Chemical Society.

are beneficial for the catalytic activity. On the other hand, the
concentration of the active intermediates of unidentate car-
bonates was also crucial for governing the activity, and
Fig. 12d exhibits that CeO,:Nd had the largest amount of these
active species. These two factors together resulted in the
volcano-like relationship between the catalytic activity and the
ionic radius of the dopant elements. Similarly, Li et al.”® also
demonstrated that doping with La remarkably enhanced the
catalytic activity of CeO, for the CO oxidation reaction with a
Tso of 245 °C because the formation of non-stoichiometric
Ce;_,La,0O,_s increased the formation of oxygen vacancies, and
the optimal value of x is 0.5. Besides doping to boost the con-
centration of oxygen vacancies in rare earth oxides, reduction
treatment is also a suitable method for obtaining higher
activity for the CO oxidation reaction. As an example, Gao
et al.'> enhanced the activity of as-prepared CeO, nanorods via
chemical redox etching with ascorbic acid.

According to the above examples, it can be concluded that
single rare earth oxide nanocatalysts have limited activity for
the CO oxidation reaction, and thus the introduction of other
metals and engineering the local metal-support structure is a
valid and common strategy for boosting their activity, in which
rare earth oxide nanomaterials can act as a support.”””® For
example, our group’’ systematically investigated the effect of
the local coordination structure of Pt/CeO, nanocatalysts on
their activity for CO oxidation. We prepared Pt/CeO, catalysts
with different Pt-O coordination numbers by tuning the
reduction temperature of the samples. A decrease in the
activity of the catalysts was observed with an increase in the
Pt-O coordination number, and the most active sample had a
TOF at 50 °C of 2.0 x 107> s~". The Pt atoms were over-stabil-
ized at the catalyst surface, resulting in the inactivation of
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some of the Pt atoms when the Pt-O coordination number
kept increasing, and thus the activity of the catalyst decreased.
Specifically, it was the local structural effect that determined
the catalytic performance. As another example, Huang et al.”®
prepared PrsO;; nanorods with a diameter of 20-40 nm and
length of several microns using a hydrothermal method. They
found that the pure PrsO;; nanorods were not active for CO
oxidation until 220 °C. However, when they loaded gold nano-
particles with a size of 8-12 nm on the surface of the PrsOq,
nanorods, the composites could achieve 100% CO conversion
at 140 °C, and were also much more active than the Au/PrsO,,
bulk. Similarly, Zhang et al.”® synthesized and studied nano-
structured Ag/PrsO,; for CO oxidation. The authors prepared
Prs0;, nanorods and nanoparticles using different routes, and
utilized them as supports to couple with Ag species via the
conventional impregnation method (Fig. 13a). The XPS results
indicated that the Ag/PrsO;; nanorods possessed more oxygen
vacancies than that of the PrsO,; nanoparticles (Fig. 13b).
Besides, the H,-TPR profiles showed a stronger synergistic
effect between Ag and PrgO;; in the Ag/PrsO,; nanorods
(Fig. 13c), suggesting higher activity for this catalyst. As
expected, the Ag/PrsO;; nanorods showed a better perform-
ance than the Ag/PrsO,; nanoparticles for CO oxidation, where
the Ts, of the Ag/PrsO,; nanorods was around 125 °C (Fig. 13d
and e).

The well-known shape effect of rare earth oxide nano-
materials also has a vital influence on the catalytic activity for
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CO oxidation when they act as a support.®*>®! Taking the work
of Lykaki et al.®® as an example, they prepared CeO, nanorods
(NR), nanopolyhedra (NP), and nanocubes (NC) via the hydro-
thermal method, and explored the shape effect of Cu/CeO, on
their catalytic properties. The results of the catalytic test
showed that the activity (75,) of both the pure CeO, and Cu/
CeO, followed the same order of NR (320/72 °C) > NP (350/
83 °C) > NC (385/92 °C). The authors used multiple character-
izations to investigate the structure-function correlation, and
found that the activity had a direct correlation with the
amount of Cu" and oxygen defects. They proposed the reaction
mechanism based on the Mars-van Krevelen mechanism,
which highlighted the significant roles of oxygen vacancies
and Cu" in this benchmark reaction. Furthermore, it is known
that the shape effect is equal to the plane effect. Also, NR have
mainly exposed {110} and {100} facets, while NP are enclosed
with {111} and {100} facets, and NC have exposed {100} facets.
Therefore, the CeO, {110} planes were beneficial for CO oxi-
dation due to their easy generation of oxygen defects.

In general, the nanostructural engineering of rare earth
oxide-based catalysts for the CO oxidation reaction is mainly
focused on the tuning of oxygen vacancies, the effect of which
mainly embodied in stabilizing the metal loading on the
surface of the rare earth oxides and providing sites for the
adsorption and activation of O,. Also, the strategies for modu-
lating oxygen vacancies usually involve reduction treatment,
doping, controlling the size and morphology, etc. Besides,
other factors such as the surface area and metallic oxidation
state of the rare earth oxide-based catalysts also have a signifi-
cant effect on the catalytic performance. Thus, researchers
should consider all these factors in the design of catalysts with
excellent properties for CO oxidation.

4.2 WGSR

The WGSR (CO + H,0 — CO, + H,) is mainly used for convert-
ing CO to CO, and H, in syngas, which has important appli-
cation value in hydrogen production, fuel cells and ammonia
synthesis.®> Most of the catalysts for the WGSR are supported
nanomaterials since single materials hardly exhibit activity.
Rare earth oxide nanomaterials are widely used as a support
for the WGSR due to their good stability and abundant oxygen
vacancies, which are significant for stabilizing the metal
loading and activating H,O molecules.®>®* Also, a good way
for improving the catalytic performance is through tuning the
morphologies of rare earth oxides since the shape effect is also
important for the WGSR.

Among the various catalytic systems, noble metals such as
Au and Pt supported by well-defined rare earth oxide nano-
structures have been extensively applied for the WGSR because
of their high activity and good stability.®*"®® For example, Si
et al.¥’” investigated the catalytic performance of Au/CeO, with
nanorod, nanocube and nanopolyhedra structures. They found
that the WGSR performance strongly depended on the exposed
facets, and the sample of Au/CeO, nanorods showed the
highest activity among the three samples. This could be
explained by the lowest anion vacancy formation energy on the
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{110} planes, which meant more oxygen vacancies boosted the
catalytic activity. As another example, Fu et al.'® prepared two
types of Au/CeO, catalysts, including Au nanoclusters (<2 nm)
and Au nanoparticles (3-4 nm), for the WGSR (Fig. 14a and b,
respectively). Specially, the Au nanoclusters were in situ gener-
ated in the reaction process from Au single atoms. The Au
nanoclusters showed higher activity (rate at 200 °C = 5.0 x 10°
mol g, s7') compared with that of the Au particles (rate at
200 °C = 1.0 x 10> mol g4, "' s7") because of their more abun-
dant interfacial sites (Fig. 14c). The results of in situ Raman
spectroscopy demonstrated that the oxygen vacancies were
involved in the catalytic reaction, which were the most abun-
dant in the Au_cluster/CeO, sample (Fig. 14d). The authors
also performed in situ infrared spectroscopy (IR) to investigate
the reaction mechanism, and they found that the bridged
surface ~-OH groups were essential for the conversion of the
CO adsorbed on the Au®" species to CO,, which was verified by
the isotopic labelling experiment, where one of the O atoms in
CO, came from the bridged -OH group (Fig. 14e). Fig. 14f
shows the whole cycle of the catalytic process, where H,0 was
activated at the oxygen vacancy and generated a bridged -OH
group in the first stage, then the bridged ~OH group reacted
with the CO adsorbed on the Au®" species to produce CO, in
the second stage, and finally the CO, desorbed and left a new
oxygen vacancy. The moderate Au®" species, bridged -OH
group and oxygen vacancies were essential in the WGSR.

The use of non-Ce rare earth oxides for supporting noble
metals has been less applied in the WGSR compared with
CeO,. For instance, novel Au/La,O; and Au/La,0,SO, catalysts
for the low-temperature WGSR were synthesized by Lessard
et al.'® through an anion adsorption method. They found that
both Au/La,O; and Au/La,0,S0, had a good WGSR activity,
and Au/La,0,S0, showed higher activity compared with that of
Au/La,03; which may be because of its higher content of Au®”,
as confirmed by the X-ray photoelectron spectroscopy (XPS)
results. Besides, the authors carried out chemical leaching of
the catalysts using NaCN, and the leached samples exhibited
no difference in activity, indicating that the support of La,0;
and La,0,S0, could well stabilize the Au species. Besides, Pt
supported by a composite oxide of Cej Y, 40, for the WGSR
was obtained by Lee et al.®® via a sol-gel method. As can be
seen in Fig. 15a, the activity of Pt/Ce( Y40, (TOF at 250 °C =
5.5 x 107" s7') was much higher than that of both Pt/CeO,
(TOF at 250 °C = 1.6 x 10~* s7') and Pt/Y,0; (TOF at 250 °C =
1.3 x 107" s7"), and also higher than that of many reported Pt-
based WGSR catalysts. The H,-TPR results (Fig. 15b) showed
that the introduction of Y to CeO, obviously enhanced the
reducibility and the oxygen mobility of the support.
Furthermore, the CO-TPR profiles indicated that there were
much more OH species in the Pt/Cey Y40, sample than the
other two catalysts (Fig. 15¢ and d), which are beneficial for
the WGSR. The authors also performed diffuse reflectance
infrared Fourier transform spectroscopy (DRIFTS) to explore
the surface reactions on these catalysts (Fig. 15e). The results
clearly showed that the CO adsorption on Pt//Ce( Y40, was
weaker than that on Pt/CeO, and Pt/Y,03, indicating its more
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efficient activation of CO. In general, the enhanced reducibility
of the support and reduced CO adsorption contributed to the
higher activity.

Although supported noble catalysts have superior catalytic
properties for the WGSR, their high price limits their large-
scale application. Accordingly, nowadays, many researchers
aim to use a base metal in the nanostructural engineering of
catalysts to obtain high performances for the WGSR.**° For
instance, Ren et al.*® studied the plane effect on the activity of
Cu/CeO, catalysts for the WGSR. The results showed that the
Cu catalysts supported on CeO, nanooctahedra with {111}
facets were more active than that of supported on nanorods
and nanocubes, which could be attributed to the best dis-
persion of Cu, strongest Cu-CeO, interactions and the largest
amount of Cu species with a moderate valence. She et al.®®
studied the doping effect of RE,O; (RE =Y, La, Sm, Nd) on the
WGSR activity of CuO/CeO,, catalysts. The evaluation of their
catalytic performance showed that the introduction of La,O;
and Nd,0; was beneficial for enhancing the activity and stabi-
lity of CuO/CeO,, but the doping of Y,0; and Sm,0; exhibited
negative effects. The Raman spectra showed that the CuO/
Ce0,-La,0; and CuO/Ce0,-Nd,0; samples had more oxygen
vacancies than CuO/CeO,, while that of the Y and Sm-doped
samples were less. Besides, the authors measured the Cu dis-
persion using N,O and found out that the order of Cu dis-
persion was consistent with the order of activity. The H,-TPR
results showed three peaks for non-crystalline copper oxide,
moderate copper oxide (crystalline) and surface ceria.

This journal is © the Partner Organisations 2020

Interestingly, the order of the peak area for moderate copper
oxide was also consistent with that of activity. In summary, the
difference in activity mainly originated from the concentration
of oxygen vacancies, Cu dispersion, and moderate Cu valence.
Another Cu/CeO, catalyst for the WGSR was synthesized by
Chen et al® using a co-precipitation method. In order to
improve the activity, the authors attempted to calcine the cata-
lyst at 300 °C in air, vacuum and H,. They found that the cata-
lyst annealed in H, had the highest performance due to the
highest amount of oxygen vacancies and strongest synergistic
interaction between CuO and CeO,.

Based on the research thus far, it can be concluded that
rare earth oxide nanomaterials are rarely used alone for the
WGSR on account of their weak adsorption of CO. They are
always used as a support and additive to improve the catalytic
performance through the construction of well-defined struc-
tures and controlling the electronic and geometric structure of
the catalysts. The effects of rare earth oxide nanomaterials are
mainly reflected in dispersing metal catalysts, providing active
sites such as oxygen vacancies and enhancing the metal
support interaction and synergistic effect.

4.3 CO, hydrogenation reaction

The CO, hydrogenation reaction is not a specific reaction since
it has several possible products, such as CO, methane and
methanol. It is a significant reaction because it not only can
weaken the greenhouse effect, but also ease the energy crisis.”*
However, the high chemical stability of the CO, molecule and
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CO-TPR profiles of Pt/Y,Os, Pt/CeO, and Pt/Ceg 6Y0.405: (c) CO, profile
and (d) H, profile. (e) DRIFTS spectra of Pt/Y,Os, Pt/CeO, and Pt/
Cep6Y0.402: (f) N, adsorption at 100 °C; (g) N, adsorption at 150 °C; (h)
N, adsorption at 200 °C; (i) N, adsorption at 250 °C; (j) N, adsorption at
300 °C; and (k) N, adsorption at 350 °C. Adapted with permission from
ref. 86. Copyright 2018, American Chemical Society.

the complexity of its products are a big challenge for catalysts
for this reaction. The abundant electronic structures and flex-
ible oxidation states of rare earth oxide nanomaterials are ben-
eficial for the CO, hydrogenation reaction, which is ascribed to
their facile activation of CO, and selectivity control.””
Nevertheless, pure rare earth oxides are less used for catalyzing
this reaction due to their poor activity. Here, we summarize
the nanostructural engineering of rare earth oxide nano-
materials utilized in the CO, hydrogenation reaction according
to the different products.

The CO, hydrogenation reaction is also known as the
reverse water gas shift (RWGS) reaction (CO, + H, — CO +
H,0) when the product is CO and H,0. The morphologies of
rare earth oxides have a significant influence on their catalytic
performance.”®®" As an example, CeO, nanocatalysts with
different morphologies synthesized by Dai et al®® using
various methods showed extremely different activities for the
RWGS reaction. CeO, with a 3D porous structure was much
more active than the loosely aggregated CeO, nanoparticles
and bulk CeO, due to its largest surface area and oxygen
vacancy concentration. As another example, Lin et al®! pre-
pared Cu/CeO, nanorods and Cu/CeO, nanospheres and inves-
tigated their catalytic performance for the CO, hydrogenation
reaction. They found that both catalysts mainly produced CO
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nation reaction. Adapted with permission from ref. 96. Copyright 2018,
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through the RWGS reaction and the Cu/CeO, nanorods exhibi-
ted higher activity (rate at 250 °C = 1.8 pmol e, = s )
(Fig. 16a). The results of multiple in situ characterizations
showed that the active intermediates of formates and bidentate
carbonates were preferentially generated on the CeO, {110}
facet and CO, could also be activated and dissociated more
effectively on the CeO, {110} facets. Consequently, the Cu/
CeO, nanorods with more abundant {110} terminations were
more active, indicating that researchers can design high-per-
formance CeO,-based catalysts by engineering their structure.
Additionally, Liu et al.®® synthesized LaNiO; perovskite cata-
lysts and tested them for the RWGS reaction in a dielectric
barrier discharge plasma reactor. After reduction, the Ni
species were extracted from the perovskite structure, and the
Ni/La,O; catalysts were thus formed. The highest CO yield
among these catalysts was 39.1% at around 100 °C. The activity
was closely correlated with the Ni particle size, Ni dispersion
and metal-support interactions.

The CO, methanation reaction (CO, + H, — CH, + H,0) is
one of the CO, hydrogenation reactions and its product is
methane. Although this reaction is thermodynamically pre-
ferred, the 8-electron reduction process is a big hindrance for
obtaining high activity and selectivity. Thus, engineering the
morphologies of rare earth oxides to obtain well-defined struc-
tures is beneficial to solve this problem. For example, our
group’® synthesized three types of catalysts containing Ru
single atoms, nanoclusters and nanoparticles supported by
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CeO, nanowires for the CO, methanation reaction. We found
that the sample of Ru nanoclusters showed the highest activity
(TOF at 190 °C = 7.4 x 10~ s™'), which was also much higher
than that of other reported Ru/CeO, catalysts. Unexpectedly,
the order of activity was not consistent with that of the concen-
tration of oxygen vacancies. According to our investigation, the
strong metal support interaction (SMSI) decreased with an
increase in the Ru size and benefited the activation of
adsorbed CO species, while the H-spillover effect weakened
with a decrease in the Ru size and facilitated the removal of
H,0. Accordingly, the competition between the SMSI and
H-spillover effect together determined the activity of the Ru/
CeO, catalysts (Fig. 16b). In the case of other rare earth oxides
used in CO, methanation, Ilsemann et al.®’ obtained novel
Sm,0;-Ni xerogel catalysts through the sol-gel method for the
CO, methanation reaction. The optimal loading of Ni was
39 wt%, which showed the highest activity. Also, the catalysts
had a good score in the stability test, and their activity could
easily recover by a reduction treatment. Diez-Ramirez et al.”®
studied the effect of different supports (CeO,, ZrO,, Gd,Os,
and ZnO) on the activity of Co catalysts for the CO, methana-
tion reaction. The methane yield of Co/CeO, was much higher
than that of the other catalysts due to the enhanced reducibil-
ity related with Co-CeO, interactions.

The selective hydrogenation of CO, to methanol has
attracted increasing attention in recent years because metha-
nol is an important basic chemical in many chemical
industries.”* % Chen et al.'® synthesized rod-like La,0,CO;
through a facile hydrothermal method (Fig. 17a) and used it as
a support for Cu catalysts (denoted as Cu/La,0,CO3-R) in the
CO, hydrogenation to methanol. They also prepared Cu sup-
ported by amorphous La,0,CO; (denoted as Cu/La,0,CO3-A),
Cu supported by rod-like CeO, (denoted as Cu/CeO,) and a co-
precipitation catalyst of CuLa,O, (denoted as CuLa,O,-CP) for
comparison. The Cu/La,0,CO;-R catalyst had a much better
catalytic performance (TOF at 240 °C = 7.0 x 107> s™*, selecti-
vity = 92.5%) compared with the control samples and commer-
cial CuZnAl catalyst (TOF at 240 °C = 4.0 x 10> s™", selectivity
= 68%) (Fig. 17b). The CO, temperature-programmed desorp-
tion (TPD) results (Fig. 17c) showed that Cu/La,0,CO3-R had a
stronger and larger amount of CO, adsorption, indicating that
it could activate CO, more efficiently. Besides, the order of the
Cu’" ratio was consistent with that of the activity, as can be
seen in Fig. 17d, which suggested that Cu®" species were the
active sites. The authors also performed in situ DRIFTS to
reveal the reaction mechanism, and they found that the HCOO
and CH3;O species were the main active intermediates
(Fig. 17e), which were stable on the catalyst surface and not
easy transformed into CO. In brief, it was the synergistic basic
sites of the Cu®" species tuned by the structure of the metal-
support interface that contributed to the high activity. Some
groups used rare earth oxide as promotors to adjust the cata-
lyst structure for CO, hydrogenation to methanol and obtained
positive results.'®"'% For instance, Ban et al.'®* verified that
the using of La and Ce as promoters boosted the methanol
production of CuZnZr catalyst, especially Ce. However, the
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Fig. 17 (a) Schematic illustration of the synthetic route for Cu/
La,0,CO3-R. (b) CH3OH yield of the catalysts for CO, hydrogenation to
methanol. (c) CO,-TPD profiles of Cu/La,0,COz-R, Cu/La,0,CO3-A,
and Cula,O,-CP. (d) Cu LMM Auger spectra of Cu/La;0,CO3-R, Cu/
La;0,CO3-A, CulLa,O,-CP, and Cu/CeO.. (e) In situ DRIFTS spectra of
Cu/La,0,CO3-R under different conditions. Adapted with permission
from ref. 103. Copyright 2018, Royal Society of Chemistry.

introduction of Pr and Nd as additives decreased the
activity. The opposite effect of the different rare earth promo-
tors on activity was mainly due to the enhanced synergistic
effect and H, adsorption caused by the addition of La and Ce,
which were not found in the catalysts with Pr and Nd as addi-
tives. Similarly, Kourtelesis et al.'® found that La,O; could
promote 30% of the methanol yield for the CuO/ZnO/Al,0;
catalyst. La,O; could be facilely introduced by a co-precipi-
tation method, and the enhanced methanol yield could be
attributed to enhanced adsorption of CO, and active
intermediates.

Considering the complexity of the product of the CO,
hydrogenation reaction, the choice and design of catalysts
must be based on selectivity and avoiding side reactions. Thus,
reasonably engineering catalysts with well-defined structures is
vital. Based on the reported works, using rare earth oxide
nanomaterials in the CO, hydrogenation reaction as support
or promotor can usually enhance the adsorption of CO, and
metal support interactions, which will result in improved
activity and selectivity.
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4.4 Methane oxidation reaction

Methane is an important resource due to its applications such
as fuel and chemical synthesis. The methane oxidation reac-
tion can be divided into two types, total oxidation and partial
oxidation. The total oxidation of methane can be used for
energy and heat production or solving the global warming
caused by methane.'°®'%” The partial oxidation of methane
can produce the syngas for further utilization.'*®"'® Rare
earth oxide nanomaterials are widely applied in both
reactions'''™'® as supports or promotors.

In the total oxidation of methane, CeO, is often used as a
catalyst support on account of its high concentration of oxygen
1L112 Also, the well-defined structures of CeO,-
based catalysts are conducive for catalytic activity. For instance,
Co;0, nanoparticles supported by CeO, nanorods (Fig. 18a
and b) for methane combustion were synthesized by Dou
et al. '™ using a deposition precipitation method. The catalyst
of C030,/Ce0, (Ts, = 475 °C) was found to be much more
active than pure Co;0, and CeO, due to the synergistic effect
between Co3;0, and CeO,, and also the activation energy,
which was also much lower in the case of Co;0,/CeO, (Fig. 18c
and d). Pd-based nanomaterials are some of the most effective
catalysts for the total oxidation of methane, and using rare
earth oxides as a support can be further beneficial due to their
unique redox properties. As an example, Ozawa et al."*? tested
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Fig. 18 (a) TEM image of CeO, nanorods. (b) HRTEM image of Cos0,4/
CeO, nanocomposite. (c) Catalytic activity of CeO,, Coz0,4 and Coz0,4/
CeO, for methane combustion. (d) Arrhenius plots and corresponding
activation energy of CeO,, Coz0,4 and Co3z0,4/CeO,. Adapted with per-
mission from ref. 111. Copyright 2018, Elsevier. (e) Schematic illustration
of the preparation method, catalyst morphology and catalytic activity for
the methane combustion reaction using Pd/CeO, catalysts. Adapted
with permission from ref. 115. Copyright 2018, Wiley-VCH.

4270 | Inorg. Chem. Front,, 2020, 7, 4256-4280

View Article Online

Inorganic Chemistry Frontiers

the influence of the addition of La,03; and Nd,O; to PdO/Al,O4
for the combustion of methane. They found that adding La,0;
or Nd,O; alone had an effect of stabilizing Al,O; and enhan-
cing the activity. However, when the authors introduced both
La,0; and Nd,O; to PdO/Al,O3, they observed reduced activity
and an extended lifetime. Besides, this group also investigated
the stabilizing effect of La,0;, Nd,O;, and ZrO, on PtPdO/
Al,O; for methane combustion.'** Similarly, the introduction
of both La,0O; and Nd,0; prevented the deactivation of the
catalyst, but the addition of ZrO, caused deactivation. Also, the
addition of all three oxides resulted in the longest lifetime
among the catalysts. As another example, Danielis et al."*® pre-
pared Pd-embedded CeO, catalysts via a dry ball-milling
method. The Pd-CeO, catalysts showed a core-shell structure,
in which the shell consisted of Pd and CeO,. The as-prepared
catalyst could activate methane at a much lower temperature
(T1o = 291 °C) compared with that with the conventional Pd/
CeO, catalyst (T3, = 346 °C) synthesized by impregnation
(Fig. 18e). The superior performance was ascribed to the cre-
ation of highly active and stable sites due to the robust contact
between Pd and CeO,.

In the partial oxidation of methane reaction, 1D rare earth
oxide nanostructures are often used. For instance, Zhu et al.**®
prepared a core-shell Ni/nanorod-CeO,@SiO, catalyst using a
microemulsion method. The as-prepared catalyst showed
better activity and stability than that of Ni/nanorod-CeO, and
Ni@SiO,, benefitting from the greater amount of oxygen
vacancies and stronger anti-sintering of Ni particles derived
from the enhanced metal-support interactions. Even after
testing at 750 °C for 140 h, the catalyst maintained a CH,
conversion of 86% and CO selectivity of 94%. Besides, Ru
nanoparticles supported over Ce, sZr, 50, nanorods obtained
by Das et al."*° were proven to be more active than Ru/CeO,
and Ru/ZrO,. Specifically, the stronger metal-support inter-
actions and higher oxygen storage capacity of the CeO,-ZrO,
solid solution contributed to the increased catalytic perform-
ance. Innovatively, Singha et al."'® reported 3D Pt-CeO, nano-
porous spheres with a bimodal pore structure for the partial
oxidation of methane. The unique bimodal pore structure
was confirmed by an N,-adsorption study, which resulted in
a high surface area. The as-prepared Pt-CeO, catalysts were
highly active and selective for the production of syngas (TOF
at 400 °C = 1.3 x 10* s7', CO selectivity = 50.0%). Briefly, the
unique bimodal pore structure resulted in a high surface
area and metal-support interactions as well as abundant
oxygen vacancies, contributing to the superior catalytic per-
formance for the partial oxidation of methane to produce
syngas.

In the case of other rare earth oxides used in the partial oxi-
dation of methane besides CeO,, Ferreira et al.''® tested the
catalytic performance of LnNi (Ln = Pr, Gd, Lu) binary oxides.
They found that NiO-Gd,O3; and NiO-Lu,O; exhibited much
higher activity than that of NiO-Pr,0;, which was even com-
parable with that of the commercial 5% Pt/Al,O; catalyst. The
authors believed that there was an unusual synergistic effect
between the two oxides, resulting in high activity and selecti-
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Catalytic performance of the Ni/Y,Oz samples in the partial oxidation of
methane: (d) CH4 conversion; (e) CO selectivity; and (f) H, selectivity.
Adapted with permission from ref. 117. Copyright 2014, Elsevier.

vity for H, and CO. Similarly, Liu et al.'"” developed another
Ni-based catalyst, Ni/Y,03, for methane oxidation conversion
to syngas. They controlled the structural effect by tuning the
calcination temperature of the catalysts (Fig. 19a-c), and
showed that Ni/Y,0; calcined at 500 °C had the highest activity
and high anti-carbon deposition ability (Fig. 19d-f). All the Ni/
Y,0; catalysts showed an extremely low signal in the NH;-TPD
profiles (Fig. 19a) because Y,O; was a basic oxide. Also, the
amount of basic sites and reducible oxygen decreased with an
increase in the calcination temperature (Fig. 19b and c). The
reason for the highest activity of Ni/Y,05-500 was its appropri-
ate amount of reducible oxygen and moderate interaction
between Ni and Y,03, and both factors were controlled by the
calcination temperature. Importantly, Choudhary et al'*'
studied the catalytic properties of Pt- and Pd-based alkaline
and rare earth oxide catalysts for the partial oxidation of
methane. Among the Pt (Pd)/MgO (CaO, La,03, PrsO;4, Nd,Os3,
Sm,03, Gd,03, Dy,03, and Er,03) catalysts, Pt/Gd,O3; and Pd/
Sm,0; showed the best performance with a CO productivity of
9.5 and 7.9 mol g~' h™', respectively. Besides, both catalysts
had high CO selectivity but low H, selectivity due to the RWGS
reaction. These results also indicated that the rare earth oxides
not only acted as supports, but also played an essential role in
deciding the activity and selectivity.

In many cases, the total and partial oxidation of methane
occurs simultaneously; therefore, it is a challenge to control
the product selectivity. Different rare earth oxide nano-
materials may have different preferences towards the two reac-
tions. Thus, researchers can realize diverse goals by choosing
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suitable rare earth oxides with designed well-defined struc-
tures as a support or promotor.

4.5 MOR

The MOR discussed below refers to the anode reaction of
direct methanol fuel cells (DMFCs), which is very important
for alleviating the energy crisis since it can directly transform
chemical energy to electrical energy.'**'*> Besides, methanol
has a high energy density and is easier to store and transport
compared with hydrogen. The catalytic application of rare
earth oxide nanomaterials in the MOR is not as extensive as in
other C1 chemical reactions such as the CO oxidation and CO,
hydrogenation reactions because of their weak conductivity.
Although it is difficult for rare earth oxide nanomaterials to be
used as a single catalyst in MOR, there are many cases that
combine rare earth oxide nanomaterials with other well-con-
ducting catalysts for the MOR.'?*™'** This not only can
enhance the electronic metal support interactions, but also
tune the chemical adsorption of the reactants and intermedi-
ates. As an example, Li et al.'*® studied the introduction of
Y,0; on the MOR activity of the Pd/C catalyst. A 1.5 times
higher specific activity (SA = 145 mA cm ™) was observed with
the assistance of Y,0; due to the relatively well-dispersed Pd
nanoparticles, enhanced electrochemically active surface area
and the synergistic interaction between Pd and Y,O;.

In the case that the role of rare earth oxides is a promotor
in the MOR, a well-defined structure can also have a positive
influence on the catalytic performance. As a good example,
Feng et al®® synthesized three types of well-defined CeO,
nanostructures containing nanooctahedra, nanospheres and
nanocubes as promotors for Pt catalysts. Consequently, the Pt
catalyst decorated with CeO, nanospheres exhibited the best
performance in both activity and stability. The explanation for
the enhanced activity could be divided into two parts. One was
that the loosened structure of nanospheres was beneficial for
the dispersion of Pt particles, thus generating a strong physical
interaction between Pt and CeO,. The other was the oxygen
vacancies, which were the most abundant in the nanospheres.
The rich oxygen vacancies led to the transfer of surplus elec-
trons from CeO, to Pt, and thereby increased the intrinsic
activity of Pt. Besides, Wang et al.'*® investigated the effect of
the introduction of La,0; in the Pd/C catalyst for the MOR. As
can be seen in Fig. 20a, the Pd nanoparticles (ca. 2.6 nm) were
uniform and well dispersed. Compared with the Pd/C catalyst,
Pd-La,03/C exhibited a lower onset potential and higher
current density (Fig. 20b). The XPS results indicated that the
introduction of La,Oj; resulted in the formation of more metal-
lic Pd species (Fig. 20c and d), resulting in enhanced activity.
Furthermore, the authors loaded Pd-La,O5; on chitosan-func-
tionalized carbon nanotubes and obtained a better perform-
ance than that with Pd-La,0O;/C. In addition, a 3D core-shell
nanocatalyst of Au@CeO,@Pt/C for the MOR was obtained by
Dao et al."*° through a facile hydrothermal route. The as-pre-
pared catalyst showed much higher activity (MA = 1360 mA
mgp. ') and durability than that of commercial Pt/C (MA =
670 mA mgp, ') and CeO,@Pt/C (MA = 920 mA mgp, ') owing
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Fig. 20 (a) TEM image of Pd—La,O3/C. (b) Cyclic voltammograms of
Pd/C and Pd-La,O3/C in 1 M KOH + 1 M CH3OH. XPS spectra of Pd 3d
for (c) Pd/C and (d) Pd-La,Os/C. Adapted with permission from ref. 129
Copyright 2019, Elsevier. (e) Schematic illustration of the possible
mechanism of Au@CeO,@Pt/C for the MOR. Adapted with permission
from ref. 130. Copyright 2019, Royal Society of Chemistry.

to the electronic and synergistic effects among Au, CeO, and
Pt, which could easily remove the poisoner of CO intermedi-
ates (Fig. 20e).

When rare earth oxides are used as a support in the MOR,
efforts must be made to improve their conductivity. For
example, CeO, nanorod-supported Pt catalysts were prepared
by Tao et al.'*' and used for the MOR. They used plasma
etching of the CeO, nanorods to modify the surface structure
of the CeO, support (denoted as CeO,-P), and used the
untreated CeO, as a comparison sample (Fig. 21a). The
authors found that the abundant oxygen vacancies in Pt/CeO,-
P played a significant role in the enhanced activity (MA =
714 mA mgp ') and stability compared with the sample
without plasma etching (MA = 164 mA mgp, ) (Fig. 21b and
¢), which influenced the interactions between Pt and CeO, and
enriched the electronic density of Pt, resulting in the enhanced
conductivity of CeO, and MOR activity. As another example,
Tang et al.'** combined the rare earth oxides of Pr and Ce with
carbon black to support Pt species for the MOR. They found
that the introduction of Pr,0; and CeO, significantly improved
the catalytic performance (Fig. 21d and e), and the ratio of Pr/
Ce had a crucial effect on the activity. According to their obser-
vations, Pt/Pr;Ce;0,-C exhibited the highest activity (SA =
118.3 mA cm™?) and best stability among the samples. The
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Fig. 21 (a) Schematic illustration of the mechanism of the Pt/CeO,
catalyst for the MOR. (b) Mass activity and specific activity for the MOR.
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Copyright 2018, Elsevier. (d) Cyclic voltammograms and (e) chronoam-
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Pr;CezO,-C; Sample 4, Ptz/PrO,-C; Sample 5, Pts/CeO,-C; and Sample
6, Pt/C. Adapted with permission from ref. 133. Copyright 2008, Elsevier.

abundant surface oxygen-containing species as well as the
high oxygen mobility derived from Pr,0; and CeO, contributed
to the enhanced CO-tolerance and catalytic performance.

In summary, although rare earth oxide nanomaterials have
poor conductivity, which limits their activity for the MOR, they
are widely used as a promotor or support for the rational
engineering of their structures in the MOR since they can
enrich the electronic density and improve the CO tolerance
through electronic and synergistic effects.

5. Summary and perspective

In this review, we introduced the structural features of the rare
earth oxides and summarized the engineering of rare earth
oxide nanomaterials with well-defined structures mainly con-
sidering their morphology. Then we chose some representative
C1 chemical reactions including CO oxidation, water gas-shift
reaction, CO, hydrogenation reaction, methane oxidation reac-
tion and methanol oxidation reaction to summarize the struc-
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ture-function correlation of rare earth oxide-based nano-
materials applied in catalytic applications. We also presented
the reported works in Table 1, including their preparation
methods and catalytic properties. In summary, the role of well-
defined rare earth oxide-based catalysts in C1 chemical reac-
tions mainly involves three aspects: (1) providing stable sites
for the loading and dispersion of other metal catalysts, (2) pro-
viding strong metal support interaction and enhancing the
electron density of the metal loading, and (3) providing sites
for the adsorption and activation of small molecules such as
H,O, O, and CO,. There is no doubt that rare earth oxide-
based catalysts play a significant role in C1 chemical reactions,
but there are also many problems that need to be solved.
Firstly, optimized synthesis strategies still need to be devel-
oped for the large-scale and low-cost production of rare earth
oxide materials with high performances. Based on the current
developed synthetic routes, on the one hand, methods such as
thermal decomposition and precipitation are low-cost and
efficient, but they are not suitable for designing and obtaining
nanostructures with a specific morphology, which may result
in desirable properties. On the other hand, routes such as the
hydrothermal and sol-gel methods are suitable for the prepa-
ration of functional nanomaterials, but they cannot guarantee
their large production and low cost. Besides, the role of rare
earth oxides themselves in the catalytic reaction needs a
deeper and clearer understanding. Many reported works have
demonstrated that rare earth oxides exhibit catalytic activity
for C1 chemical reactions. However, when the rare earth
oxides are used as a support to form composite materials with
other metal or metal oxides, it is not clear if they only work as
support or they also provide active sites. In addition, the
defects in rare-earth oxides also play a crucial role in C1 chemi-
cal reactions, such as stabilizing the active metal loading, pro-
viding sites for the adsorption of reactant molecules such as
H,0 and CO,, and promoting the electron transfer between
the support and active metals, especially oxygen defects.
However, other defects such as dislocation and grain bound-
aries in rare earth oxides are rarely discussed in C1 chemical
reactions, and thus more research is needed to fill this blank.
Furthermore, most of the characterizations of rare earth oxide-
based catalysts are restricted to the ex situ level. Nevertheless,
the surface structure of the catalyst always changes in the reac-
tion process, and there are many intermediate species gener-
ated that disappear and cannot be observed by ex situ tech-
niques. Consequently, in situ/operando characterizations com-
bined with theoretical simulation need to be performed to
uncover the real reaction mechanism behind the catalytic reac-
tion. Finally, to date, most of the research on rare earth oxide-
based catalysts for C1 chemical reactions has focused on CeO,,
but the catalytic properties of other rare earth oxides need to
be explored to obtain more novel catalysts with high perform-
ances. Also, the powerful function of computational simu-
lation in explaining and predicting the catalytic properties of
rare earth oxides should be noted. There is also a problem that
most computational works on rare earth oxides are based on
CeO, nanomaterials. However, using theoretical computation
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to predict properties may result in the development of more
non-ceria rare earth oxides nanostructures with high catalytic
performances. We believe that all of these problems will be
addressed in the future, and rare earth oxide-based nano-
materials will shine brightly at the stage of catalytic appli-
cations in C1 chemical reactions.
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