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Cellulose ionics: switching ionic diode responses
by surface charge in reconstituted cellulose films

Barak D. B. Aaronson,a David Wigmore,a Marcus A. Johns, a,b Janet L. Scott, a

Igor Polikarpovc and Frank Marken *a

Cellulose films as well as chitosan-modified cellulose films of approximately 5 µm thickness, reconstituted

from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or

40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl.

Reconstituted α-cellulose films provide “cationic diodes” (due to predominant cation conductivity)

whereas chitosan-doped cellulose shows “anionic diode” effects (due to predominant anion conductivity).

The current rectification, or “ionic diode” behaviour, is investigated as a function of NaCl concentration,

pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged

exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

1. Introduction

Ionic current rectification phenomena across membranes, also
known as “ionic diodes”,1–4 are emerging as a technical tool to
realise functional membranes with possible applications in
water desalination,5 sensing,6 single chemical entity detec-
tion,7 and energy storage and conversion.8 Due to the asymme-
try of charge distribution and transport on both sides of the
walls of a semi-permeable membrane,9,10 at liquid–liquid
interfaces,11 at alumina membranes,12 or in a nano-cone,13,14

cations and anions may move across the membrane selectively,
or at different rates, which leads to current rectification
phenomena or switching between “open” and “closed” states
under forward and backward polarisation conditions.
Additional asymmetry across the membrane can be introduced
by employing different electrolyte media,15 gel–gel inter-
faces,16,17 nano-cone structures (from track etched mem-
branes18), and asymmetrically coated microholes.19 Methods
based on microholes offer relative ease of fabrication and good
rectification ratios. It is interesting to consider biomaterials in
the fabrication of ionic diodes.

Recently, novel materials such as polymers with intrinsic
microporosity (PIMs20), which are based on highly rigid mole-
cular materials with good processibility and high internal
surface area, have been introduced to nanofluidic processes.

With tuneable surface charge, PIMs can be used in ionic
diode21 and in ionic flip-flop22 mechanisms. Also, both com-
mercial Nafion®23 and reconstituted α-cellulose,24 deposited
asymmetrically onto a microhole (of typically 20 µm diameter)
in a poly(ethylene-terephthalate) film (PET) as a support, result
in rectification effects and in ionic diode processes. In particu-
lar, the use of reconstituted cellulose as a current rectification
material is appealing due to the possibility of controlling pore
size and structure via anti-solvent precipitation.25 The reconsti-
tution of cellulose from ionic liquid media26 provides flexi-
bility and has been explored to produce well characterized
films.27 Briefly, the cellulose films are produced by regenerat-
ing cellulose from a mixture of dimethyl sulfoxide (DMSO) and
an ionic liquid (weight ratio 70 : 30), which is cast onto the
desired surface. Coagulation by phase inversion and removal
of the DMSO/ionic liquid solvent is achieved by means of an
anti-solvent such as ethanol, or water, leaving behind a thin
layer of reconstituted cellulose. The sizes of the pores in the
cellulose film can be controlled by varying the anti-solvent
medium and by the extent of drying. We have reported on sig-
nificant ionic current rectification ratios for asymmetrically de-
posited α-cellulose films reconstituted from ionic liquids.24

It is interesting to broaden the application of biomaterials
in ionic processes. The structural and surface characteristics of
the reconstituted cellulose films can be altered by chemical
modification, or by the insertion of materials into the film. In
particular insertion or “doping” with positively charged
materials such as chitosan is interesting. Cellulose–chitosan
composite materials have been studied in metal absorbent
and water purification technologies28 and the interaction of
chitosan with cellulose has been demonstrated to be strong
and linked to surface charges.29 For the application of ionic
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diodes in water desalination, both the cationic and anionic
current rectifiers (to “pump” cations and anions, respectively5)
are needed to work in tandem, so that both cations and anions
can be removed from the saline solution.

Cellulose offers a negatively charged surface that allows pri-
marily cations to accumulate at the surface and conduct
through the film. Chitosan (see the structure in Fig. 1) offers
an alternative biomaterial with amine functionalities that
provide positive charges when protonated. Chitosan has
recently been “doped” into reconstituted cellulose films in a
homogeneous manner, with a maximum penetration depth of
nearly 20 µm, when low molecular weight chitosan was used.30

Moreover, the interaction between the inserted chitosan
dopant chains and the reconstituted cellulose (with
pKA(chitosan)

31 ≈ 6.5 and pKA(cellulose)
32 ≈ 4.8, although

both are strongly electrolyte dependent) may lead to further
changes in pore size and charge distribution within the mem-
brane, and thus may further assist in fine tuning the ionic
diode behaviour. In this contribution, we explore the effects of
chitosan doping into the reconstituted cellulose films showing
that indeed the inversion of diode polarity occurs. A cationic
current rectifier (cellulose) is converted into an anionic current
rectifier (chitosan-modified cellulose). In combination the two
materials could help in the development of new types of desa-
lination or analytical devices. The effects of pH and aqueous
NaCl concentration as well as diode switching times are
reported.

2. Experimental
2.1. Chemical reagents

All reagents such as NaCl (≥98% purity), acetic acid (≥99.8%
purity), 1-ethyl-3-methyl-imidazolium acetate ([EMIm][OAc]),
dimethyl sulfoxide (DMSO), ethanol (absolute), α-cellulose
(C8002, powder), chitosan (75–85% deacetylated) with low
molecular weight (26 kDa), medium molecular weight
(109 kDa), agarose, and high molecular weight (310–375 kDa)

were purchased from Sigma-Aldrich and used without any
further purification. All solutions used in the electrochemical
studies were prepared in high purity demineralised and fil-
tered water (18.2 MΩ cm resistivity).

2.2. Instrumentation

All electrochemical measurements were recorded using an
Autolab potentiostat (GPSTAT, Eco Chemie, NL) in a conven-
tional four-electrode configuration (see Fig. 1) and by employ-
ing a cell similar to that described in previous ionic diode
studies.24 Saturated calomel electrodes (SCE) were used as
reference/sense electrodes and platinum wires as counter and
working electrodes. FTIR spectra were recorded on a
PerkinElmer Frontier FTIR spectrometer in the attenuated
total reflection mode between 600 and 4000 cm−1 using 10
scans with a resolution of 1 cm−1. Confocal fluorescence
microscopy (ZEISS LSM880) was performed utilising a 405 nm
diode laser with a Plan-Apochromat 20×/0.28 M27 objective.
An MBS-405 filter was used for the invisible light detector. The
maximum distance between slices was 0.5 µm, with a
minimum of 46 slices recorded. The cellulose–chitosan film
on PET was imaged without modification, placed between a
glass slide and a cover-slip to ensure a flat surface.

2.3. Procedures for cellulose film and chitosan-doped
cellulose film reconstitution

α-Cellulose and [EMIm][AcO] were dried at 80 °C in vacuo over-
night, and DMSO was dried over activated 4 Å molecular sieves
before use. α-Cellulose (4 wt%) was dissolved in a 30 : 70 wt
ratio [EMIm][OAc] : DMSO solution at 25 °C overnight on a
roller table in order to ensure complete dissolution. The con-
centration of 4 wt% and wt ratio of [EMIm][OAc] : DMSO of
30 : 70 were selected to provide optimal viscosity for casting.
A 5–10 µL droplet of the cellulose solution was then drop cast
onto a 6 µm thick sheet of PET (placed on a 1% agarose gel
covered glass slide) with a central laser drilled hole and then
distributed with a glass rod to form a thin uniform deposit.
PET films with laser-drilled holes were obtained with a range

Fig. 1 (A) Schematic drawing of the 4-electrode measurement cell. (B) Molecular structure of α-cellulose. (C) Molecular structure of chitosan.
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of different diameters: 5 µm, 10 µm, 20 µm, and 40 µm (from
Laser-Micro-Machining Ltd, Birmingham, UK). The resulting
wet film was rinsed with an anti-solvent to remove the ionic
liquid/DMSO. The anti-solvents used were acetic acid 2 wt%
solution (in the case of the reconstitution of α-cellulose only)
and 2 wt% chitosan in a 2 wt% acetic acid solution (in the
case of chitosan-doped cellulose films). Upon contact of the
initial film with the anti-solvent a precipitation reaction occurs
to give the final cellulose films. The anti-solvent and water
rinsed films were dried gently with a flow of warm air and
stored under ambient conditions. Typical scanning electron
micrographs (SEMs) of films with and without chitosan are
shown in Fig. 2. Finally, the PET sheet with the cellulose film
was clamped between two flanged J-shaped glass tubes to form
a U-shaped cell (see Fig. 1) with the PET sheet and the chito-
san doped cellulose membrane partitioning the two chambers
as shown. The cellulose film deposit was always oriented
facing the working electrode.

3. Results and discussion
3.1. Membrane structure based on fluorescence confocal
microscopy

Films of cellulose or chitosan-doped cellulose were deposited
asymmetrically onto one side of poly-ethylene-terephthalate
(PET) to give ionic diode effects. Fig. 2 shows SEM images of
surfaces as viewed from the PET side. Films based on cellulose
(A, B) and those based on chitosan-doped cellulose (C, D)
exhibit slightly different morphologies, but appear to be well-
defined. Chitosan is expected to bind strongly to the cell-
ulose33 and is likely to penetrate throughout the film deposit.

Evidence for the presence of a composite material can be
obtained from the FTIR data (Fig. 3). Distinct bands (see
Fig. 3B) indicative of cellulose and chitosan are detected in the
co-deposited material.

In order to better assess the composition of the chitosan-
doped cellulose films and the material distribution in the
vicinity of the PET microhole, fluorescence confocal
microscopy was performed (Fig. 4). Both cellulose and chito-
san auto-fluoresce, exhibiting local emission maxima at
478 nm and 443 nm, respectively,30,34 and are therefore domi-
nant at higher and lower wavelengths, respectively. The separ-
ation in emission wavelengths can be utilised to distinguish
between the chitosan-rich and the cellulose-rich regions.
Hence, fluorescence confocal images were acquired using a UV
excitation laser (at 405 nm) and the emission was recorded at

Fig. 3 (A, B) FTIR spectra of chitosan (black line); cellulose (red line);
and cellulose–chitosan blend (blue line) bulk films cast for analysis.
Signals unique to both cellulose (2400–2300 cm−1 and
2160–2040 cm−1) and chitosan (1600–1550 cm−1, attributable to N–H
bonds) are present in the co-deposited films, confirming the presence
of both polymers.

Fig. 2 Scanning electron micrograph (SEM) images for (A, B) a cellulose
film deposit and (C, D) a chitosan-doped cellulose film deposit on a
20 μm diameter microhole in a PET film.

Fig. 4 Fluorescence images in top view and side view for the cellulose
fluorescence (left, blue), the chitosan fluorescence (right, green), and
the combined cellulose and chitosan fluorescence (middle, blue and
green). A schematic drawing is shown to allow the features to be
identified.
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32 channels ranging from 417 to 668 nm. In Fig. 4 the result-
ing z-stacked images are shown with channels for wavelengths
433 to 477 nm for the chitosan-rich material (blue), channels
for wavelengths 513 to 548 for the cellulose-rich material
(green), and for all 32 channels overlaid for the combined cell-
ulose and chitosan image (blue and green).

Both blue and green confocal images show a good match in
distribution, which suggests that the chitosan-doping process
has progressed throughout the entire film (consistent with
literature reports30). There was no apparent variation in the
distribution of cellulose and chitosan fluorescence when indi-
vidual channels (corresponding to chitosan and cellulose
emission maxima) were overlaid, although there may be
slightly less chitosan on the exposed surface of the cellulose
(possibly due to washing). It is thus concluded that the chito-
san has penetrated relatively uniformly through the entire
film. Moreover, it is confirmed that asymmetric film depo-
sition occurs (with a chitosan-doped cellulose film thickness
of approximately 5 μm) with the PET microhole only partially
filled with the material.

3.2. Chitosan-doping effects on ionic diode characteristics

Cyclic voltammograms, performed with a membrane of recon-
stituted α-cellulose films on a PET film with a 20 µm diameter
microhole, exhibit anionic diode behaviour, as shown in Fig. 5
(dotted line) in a 50 mM NaCl solution. The rectification ratios
(calculated as the current at +1 V divided by the current at
−1 V) are approximately 3–4 (defined here as positive for a
“cationic diode” and as negative for an “anionic diode”). Upon
the insertion of chitosan into the cellulose film, a switch in
diode polarization occurs (see the black line in Fig. 5), leading
to the appearance of an anionic diode. The rectification ratio
is significantly higher in magnitude compared with that of the
diode based on the α-cellulose films only. This improvement
in rectification can be attributed to a combination of smaller
pore sizes in the film and enhanced overall surface charge,
arising from the abundance of amine groups in the chitosan
polymer chains.

In Fig. 5 a schematic drawing is shown to delineate the
cases of a cationic diode (for negatively charged materials
resulting in an open state in the positive potential range) and
an anionic diode (for positively charged materials resulting in
a closed state in the positive potential range). Further mecha-
nisms such as water protolysis under a high potential bias
cannot be ruled out, but are assumed here to remain second-
ary when compared to the ion transfer through the membrane.
A bar graph with rectification ratio data comparing α-cellulose
and chitosan-doped cellulose is shown in Fig. 6A. The error
bars represent an estimated 30% between the prepared
batches of cellulose/chitosan films, due to slight variations in
film thickness associated with the simple nature of prepa-
ration. It can be seen that the chitosan-doped cellulose film
allows anion conduction and, as a result, causes an anionic
diode effect. The magnitude of rectification is improved when
compared with that of the pure reconstituted cellulose film.

3.3. Chitosan-doping effects on diode characteristics:
concentration

The effect of chitosan molecular weight on the rectification
ratios of the anionic diode was studied with three different
molecular weights (low, medium, and high molecular weight
chitosan; see Experimental). It was anticipated that the lower
molecular weights will show the highest rectification ratios
due to the improved penetration into the cellulose films, thus
allowing more surface charge to be modified. However, as seen
in Fig. 6B, both low and high molecular weights of chitosan
yield similar rectification ratios with the medium molecular
weight apparently providing the poorest ionic rectifier (tested
for 50 mM NaCl). Although, the reasons for the changes
in rectification ratio are currently not known in detail, it
could be that the self-folding (coiling) of medium and high

Fig. 5 Cyclic voltammetry (scan rate: 20 mV s−1) of α-cellulose only
films (dotted line) and chitosan-doped cellulose films (black solid line)
on a 20 µm diameter microhole in a PET sheet in 50 mM NaCl on both
sides of the membrane. The schematic drawing shows the four mechan-
istic cases of a cationic diode and an anionic diode under positive
potential and negative potential polarisation, respectively.
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molecular weight chitosan contributes to a more uneven
charge distribution and also affects pore size and charge distri-
bution. The low molecular weight films appear most promis-
ing, and therefore all further experiments are performed with
low molecular weight chitosan.

The influence of NaCl concentration (or ionic strength) on
the rectification ratio of the cationic diode was then studied
and a summary is shown in Fig. 6C. The rectification ratio
increases with ionic strength due to the current in the open
state of the membrane being dominated by a decrease in the
ionic resistance. However, at even higher ionic strengths (>0.1
M NaCl) a clear decrease in the rectification ratio is observed,
which can be attributed to the closed state of the ionic diode
becoming ‘leaky’. At high levels of salt the chitosan-doped
cellulose film loses the semi-permeability required for the
ionic diode effect. In order for the ionic diodes to be used in
real applications for desalination of sea water (ca. 0.5 M NaCl),

further improvements in rectification ratio and therefore in
pore design need to be introduced.

3.4. Chitosan-doping effects on diode characteristics: pH

Next, experiments were performed as a function of solution
pH (with aqueous 50 mM NaCl). The aqueous solution pH was
adjusted with HCl, or NaOH. Significant effects are seen in
Fig. 6D. The solution pH influences the extent of surface proto-
nation of the amine groups along the chitosan backbone.35 An
investigation was carried out to study the effects of pH on the
rectification ratios of the ionic diode with low molecular
weight chitosan-doped cellulose films. The optimal pH value
for the ionic diode is approximately 7 (with a positive surface
charge from chitosan and with some underlying carboxylate
groups providing negative charges to stabilise the composite).
Increasing the pH value decreases the amount of protonated
amine groups (as well as further increasing negative surface
functionalities), which results in films with decreased positive
surface charge and hence lower rectification ratios. However,
at acidic pH levels, below the pKA of the cellulose carboxylate
functional groups, it is evident that the diode reverses its recti-
fication direction and then resembles in characteristics those
seen for a simple reconstituted cellulose only diode. This is a
permanent change and it also affects the behaviour at other
pH values in the following experiments. Therefore, at acidic
pH levels chitosan is suggested to be dislodged from the cell-
ulose surface and dissolved into the aqueous solution leaving
the cellulose film with a net negative charge. In future, chemi-
cal modification (or fixation) and crosslinking between chito-
san and cellulose chains may allow the ionic diode to operate
over a larger pH range and improve the rectification ratio.
However, for realistic applications the neutral pH range is the
most relevant.

3.5. Chitosan-doping effects on diode characteristics: time
constants

The switching time of the ionic diode is of interest, in order to
both understand the possible mechanisms and assess the
possibility of utilizing the process for energy conversion and
storage. The shorter the switching time, the faster the diode
can operate and the smaller the energy losses. Fig. 7 shows
chronoamperometry data for switching of a set of chitosan-
doped cellulose diodes between the applied potentials of +1 V
and −1 V. Data are superimposed for ionic diodes based on
PET microholes with: 5, 10, 20, and 40 µm diameters and a
clear link between microhole diameter and switching time is
observed. The 5 µm diameter microhole appears to have the
most rapid response times (slightly over 1 s based on the
current decay after the peak signal), whereas larger diodes
are somewhat slower. However, for all four types of diodes,
a very rapid switching is observed, with most of the transient
occurring within the first second. This is consistent with
the recently (for Nafion23) proposed model of a diffusion-
migration layer responsible for closing the ionic diode.

The switching characteristics seem relatively complex (with
at least two time constants) and the main current switch is

Fig. 6 (A) Bar graph showing the rectification ratio (= current at +1 V
divided by current at −1 V) for α-cellulose compared to chitosan-doped
cellulose deposited onto a 20 μm microhole immersed in aqueous
50 mM NaCl. (B) Bar graph of the rectification ratios for chitosan-doped
cellulose for three types of chitosan. (C) Bar graph of the rectification
ratios for chitosan-doped cellulose immersed in 0.001, 0.005, 0.01,
0.05, and 0.1 M NaCl. (D) Bar graph of the rectification ratios for chito-
san-doped cellulose as a function of pH. All data obtained by cyclic
voltammetry (scan rate 20 mV s−1) with a 20 µm diameter microhole in
PET. Errors are estimated as ±30%.
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relatively fast (below 1 s) for all ionic diodes. For the potential
step to −1 V (diode on transient), a peak feature is seen, fol-
lowed by a decay. This decay appears fast only for the smallest
microhole and is substantially slower for larger microholes. In
the open state the diffusion–migration processes result in a re-
distribution of charges (ions) within the chitosan-doped cell-
ulose. The fact that differences in the time constant are
observed suggests processes involving lateral transport (non-
planar; reaching radially into the chitosan-doped cellulose
film, or spherically into the aqueous solution phase). More
work will be needed to further unravel the mechanism of
these processes. A wider range of ionic species (including Ca2+

and Mg2+) as well as other biomaterials need to be tested and
the performance of these ionic diodes needs to be improved.
However, it has been shown that, similar to α-cellulose provid-
ing a cationic diode, chitosan-doped cellulose can be
employed as an anionic diode for uni-directional/rectified
transport of anions.

4. Conclusion

The versatility in using reconstituted cellulose as a membrane
biomaterial for the ionic diode application has been demon-
strated by simple modification by means of chitosan-doping.

The doping effect appears to occur throughout the cellulose
film. The ionic diode is shown to be switchable between cat-
ionic and anionic states by “chitosan-doping” and by introdu-
cing appropriate surface charges. The application of cellulosic
materials in ionic devices could be of considerable interest in
particular with further work on nanopore design and micro-
hole geometry.

In future, chemical cross-linking between chitosan and cell-
ulose will be required in order to keep the membrane stable
over a wider range of pH values (in particular in the more
acidic range). Further optimisation of rectification ratio, con-
ductivity, and time response between closed and open states is
required for advancing these ionic diode materials into appli-
cations, for example in sensing/biosensing. A change in the
surface charge could be induced by the binding of a charged
analyte (e.g. heavy metals or DNA) and the resulting change in
the open/closed diode state would provide a strongly amplified
current response.
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