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freezing and cold storage for the
analysis of peatland dissolved organic carbon
(DOC) and absorbance properties

Mike Peacock,*a Chris Freeman,b Vincent Gauci,a Inma Lebronc and Chris D. Evansc

Although measured rates of biological degradation of DOC are typically low under dark conditions, it is

assumed that water samples must be analysed soon after collection to provide an accurate measure of

DOC concentration and UV-visible absorbance. To examine the impact of storage on DOC quality and

quantity, we took water samples from an ombrotrophic peatland, and stored them in the dark at 4 �C for

138–1082 days. A median of 29% of DOC was lost during storage, but losses of absorbance at 254 nm

were less. DOC loss followed a first-order exponential decay function, and was dependent on storage

time. DOC half-life was calculated as 1253 days. Specific absorbance at 254 nm suggested that samples

containing more aromatic DOC were more resistant to degradation, although time functioned as the

primary control. Samples from two fens showed that loss of absorbance was greater at 400 nm rather

than 254 nm, after 192 days storage, suggesting that non-aromatic DOC is preferentially degraded.

These results suggest that samples can be stored for several months before losses of DOC become

detectable, and that it is possible to back-calculate initial DOC concentrations in long-term stored

samples based on known decay rates. Freeze/thaw experiments using samples from a range of peatlands

suggested that DOC concentration was mostly unaffected by the process, but DOC increased 37% in

one sample. Freezing had unpredictable and sometimes strong effects on absorbance, SUVA and E

ratios, therefore freezing is not recommended as a method of preservation for these analyses.
Environmental impact

Dissolved organic carbon (DOC) concentrations are routinely monitored in the waters of organic soils, particularly peatlands. This is because DOC affects the
functioning of aquatic ecosystems and water treatment costs, as well as being a component of the carbon cycle. If there is to be a delay between collecting a water
sample and analysing, it is typical to preserve the sample by acidication or freezing. Here, we demonstrate that that loss of DOC in untreated ltered samples is
dependent primarily on storage time, with �5% being lost in 3 months. Freezing samples had little effect on DOC concentration, but appeared to strongly
inuence the composition of DOC. We therefore do not recommend freezing as a preservation technique.
1. Introduction

Dissolved organic carbon (DOC) is an important uvial
component of the global carbon cycle. DOC is converted to
carbon dioxide (CO2) during transport through rivers, lakes
and the ocean, thereby providing a source of atmospheric
carbon.1 Additionally, DOC forms complexes with toxic
metals2 and can affect autotrophic and heterotrophic
processes in aquatic ecosystems.3,4 High DOC concentrations
also result in increased water treatment costs5,6 and human
stems, The Open University, Walton Hall,
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l of Biological Sciences, Bangor University,
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, 2015, 17, 1290–1301
health risks from potable water due to the formation of
harmful trihalomethanes when chlorinated.7 Wetlands, and
particularly peatlands, are a major source of DOC,8 and there
is a strong relationship between peat cover and DOC concen-
tration for both lowland and upland catchments.9 Peatland
DOC dynamics are therefore well-studied in relation to various
environmental factors and disturbances.

Considering the large volume of research concerning
peatland DOC, it is notable that there is only partial guidance
concerning sampling and analysis protocols, which limits the
production of standardised results. One consensus is that
DOC in a water sample is dened as the organic carbon that
passes through a 0.45 mm lter,10 although it should be noted
that other lter sizes are sometimes used.11,12 The Disinfec-
tant/Disinfection By-products Rule (D/DBPR) of the US Envi-
ronmental Protection Agency requires that water samples for
DOC analysis must be analysed within 48 hours; if not, then
This journal is © The Royal Society of Chemistry 2015
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active steps (e.g. sample acidication) must be taken to
preserve the sample11 in an attempt to limit biological,
chemical, or physical degradation. It is common for peatland
research projects to analyse DOC concentrations as soon as
possible; e.g. within one day,13 two days,14 or one week,15 even
though it is oen asserted that biological degradation is
minimal.16 Despite this, the stability of peatland DOC under
long-term storage is not well quantied. In contrast, the
stability of marine DOC during storage has been studied:
Norrman17 noted no change in DOC following cold storage for
eight weeks, whilst Yoshimura18 found that DOC stability in
samples stored for up to four hundred days at room temper-
ature depended somewhat upon the bottle type that the
sample was stored in. Preservation techniques such as acidi-
cation have also been examined for marine DOC samples.19 It
should be noted that marine DOC concentrations are typically
in the range 30–80 mM (ref. 20) and are therefore small
compared to peatland DOC concentrations. There are also
compositional differences in DOC from marine and terrestrial
environments.21

UV-visible (UV-vis) absorbance is oen used as a surrogate
for direct DOCmeasurement.22 Like DOC concentrations, the D/
DBPR states that UV-vis absorbance must be measured within
48 hours,11 and it is oen measured as soon as possible aer
sampling in peatland experiments; e.g. within one day.23 It has
been shown that absorbance in water samples from an
ombrotrophic peatland stored for twelve weeks in the dark at 4
�C showed no change across the UV-vis spectrum,24 suggesting
that DOC concentrations might also have remained unchanged
aer storage. Others have examined the stability of water
samples following storage to check that delayed analysis will
not affect the accuracy of results. For example, Ekström et al.25

noted no signicant change in DOC concentration in pore
waters from a podzol following storage in the dark at 4 �C for
two weeks. Similarly, Carter et al.26 recorded only a 5% change
in DOC concentration in samples from a variety of surface water
sources (including peatland catchments) aer 50–120 days
storage at 5 �C. Proctor27 states that surface water samples from
an ombrotrophic bog showed a slight decrease in absorbance at
320 nm aer two months of storage, but provides no raw data to
consider.

Taken together, these observations suggest that DOC
concentrations in samples stored in the dark at 4 �C are stable
over extended periods. If true, this could have implications for
sampling programmes and analysis techniques. For instance, it
would negate the need for freezing or acidifying water samples
that sometimes takes place,28–32 and which risk affecting DOC
concentrations in marine and freshwater samples,19,33–35 as well
as absorbance and uorescence properties.36,37 Changes in pH
can cause the occulation and coagulation of DOC,38 whilst
freezing can result in DOC loss through abiotic particle
precipitation.35 Preservatives such as sodium azide are also
sometimes used, although DOC losses can still occur when such
biocides are used.34 To address this issue we used samples from
UK peatlands to investigate how DOC concentrations change
during storage at 4 �C and when frozen.
This journal is © The Royal Society of Chemistry 2015
2. Materials and methods
2.1. Bog peat cold storage experiment

Samples of surface and pore water were taken from the Afon
Ddu catchment on the Migneint blanket bog in Snowdonia
National Park, Wales, UK (latitude 52.97�N, longitude 3.84�W).
The site is approximately 490 m above sea level with a mean
peat depth of 1.3 m (M. Peacock, unpublished data). Vegeta-
tion consists of Calluna vulgaris with Eriophorum and
Sphagnum species. The site has been extensively drained by a
series of ditches that run downslope. These ditches were
blocked in February 2011, with four being le unblocked as
controls. The samples for this experiment were collected
between 16th December 2010 and 17th July 2013 as part of a
project investigating the effect of ditch blocking on water
chemistry. Samples were collected in 60 ml Nalgene® bottles
from: (i) blocked and open ditches (20 samples), (ii) piezom-
eters at 10 cm depth, adjacent to ditches (18 samples), and (iii)
crest-stage tubes adjacent to ditches that collect overland ow
(12 samples). For this experiment, samples were selected to
include a range of DOC concentrations (minimum ¼ 8.9 mg
l�1, maximum ¼ 64 mg l�1, mean ¼ 33.9 mg l�1) and sampling
months (Dec–Feb ¼ 10 samples, March–May ¼ 12 samples,
June–Aug ¼ 13 samples, Sept–Nov ¼ 15 samples). The long-
term nature of the project therefore ensured that samples used
in this experiment were collected across a range of environ-
mental conditions (i.e. aer storms or droughts, across a range
of temperatures).

Electrical conductivity (EC) and pH were measured on
unltered samples. Samples were then ltered through 0.45
mm lters and analysed for DOC (as non-purgeable organic
carbon NPOC) using a Thermalox Total Carbon analyser
(Analytical Sciences, Cambridge, UK). In NPOC analysis, the
sample is acidied and sparged with oxygen to remove any
inorganic carbon. To ensure that the 0.45 mm lters were not
leaching DOC into samples, unltered and ltered standards
and blanks were analysed; no difference was found, showing
that lters were not contaminating samples. UV-vis absor-
bance was measured using an M2e Spectramax (Molecular
Devices, Sunnyvale, USA) at wavelengths of 250 nm, 254 nm,
365 nm, 400 nm, 465 nm and 665 nm. These allowed DOC
quality data to be calculated as E2 : E3 ratio (250 : 365 nm),
E2 : E4 ratio (250 : 400 nm), E4 : E6 ratio (465 : 665 nm), and
specic UV absorbance (SUVA, at 254 nm). The concentration
of phenolic compounds was measured in some samples using
a method modied from Box;39 0.25 ml of sample was added to
a microplate well, followed by 12.5 ml of Folin-Ciocalteau
reagent and 37.5 ml of 200 g l�1 Na2CO3. Aer 1.5 hours
absorbance was measured at 750 nm and phenolic concen-
trations calculated from a standard curve. Aer all analyses
had been completed, samples were stored in the dark at 4 �C.
Following long-term storage (range 138–1082 days, mean ¼
719 days) the y samples were reanalysed on 2nd December
2013. The range of storage times is due to the fact that samples
were originally collected as part of a long-term environmental
monitoring project, and thus on a range of dates prior to the
Environ. Sci.: Processes Impacts, 2015, 17, 1290–1301 | 1291
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reanalysis. For this study, a selection of samples was chosen
for reanalysis. For the reanalysis, DOC was measured as NPOC
using a TOC analyser (Shimadzu) and absorbance at 254 nm
was measured using a Helios Gamma (Thermo Spectronic).
2.2. Fen peat cold storage experiment

Surface water samples were taken on 18th March 2014 from two
fen peatlands: Holme Fen (52.49�N, 0.23�W) and Woodwalton
Fen (52.45�N, 0.19�W), both in East Anglia, UK. Holme Fen
consists of deciduous woodland (dominated by Betula pendula),
fen, and remnant raised bog. The area surrounding the fen has
been historically drained for agricultural purposes, leading to
peat subsidence. As such, Holme Fen is now 2.7 m below sea
level, and maintained by active drainage of the surrounding
agricultural land. Woodwalton Fen contains a mix of deciduous
woodland, open water, and Phragmites reedbeds. It is 0 m ASL.
At each site, ve samples were collected from open water
(ditches or lakes) in 60 ml Nalgene® bottles. Electrical
conductivity (EC) and pH were measured on unltered samples.
Samples were then ltered through 0.45 mm lters and analysed
for DOC (as NPOC) using a TOC analyser (Shimadzu), and
absorbance at 254 nm and 400 nm was measured using a Helios
Gamma (Thermo Spectronic). Aer analysis, samples were
stored in the dark at 4 �C for 192 days, before being reanalysed
for DOC and absorbance.
2.3. Freeze/thaw experiment

Surface water samples were taken from six different locations.
These were:

(1) Bog pools (both natural and those created during resto-
ration), an upland stream, and overland ow in the Afon Ddu
catchment (see Section 2.1) (n ¼ 11).

(2) Ditches and lake at Holme Fen (see Section 2.2) (n ¼ 5).
(3) Ditches on Woodwalton Fen (see Section 2.2) (n ¼ 5).
(4) Walton Lake (52.03�N, 0.72�W), a small, shallow lake

dominated by Phragmites australis reedbed, situated near to the
Open University in Milton Keynes (n ¼ 4).

(5) Ditches on Sedge Fen (52.31�N, 0.28�E), a relatively intact,
deep peat lowland fen, and part of the wider Wicken Fen area.
The fen contains Phragmites australis and Cladium mariscus
reedbeds (n ¼ 8).

(6) Ditches on Baker's Fen (52.30�N, 0.29�E), also a part of the
Wicken Fen area. Baker's Fen was historically drained and
converted to agricultural use. For the past two decades the fen
has been undergoing restoration through hydrological
management and grazing with cattle and horses (n ¼ 8).

EC and pH were analysed on unltered samples, then
samples were ltered at 0.45 mm. Samples were analysed for
DOC and absorbance at 250, 254, 365, 400, 465 and 665 nm
using the same methods as Section 2.2. This allowed E2 : E3,
E2 : E4, E4 : E6 and SUVA to be calculated as in Section 2.1.
Samples were then frozen in the dark for a minimum of 48
hours. Following this, samples were transferred to a refrigerator
and allowed to thaw, and DOC and UV-vis analyses were
repeated.
1292 | Environ. Sci.: Processes Impacts, 2015, 17, 1290–1301
2.4. Statistical analysis

Statistical analysis was carried out using SPSS v16.0.1 (IBM
Corporation). The Shapiro–Wilk test was used to check whether
data were normally distributed. For the bog peat experiment,
neither DOC concentration, absorbance at 254 nm, nor SUVA
were normally distributed. Although it was possible to
normalise DOC concentration and absorbance at 254 nm using
square root transformation, SUVA data could not be normal-
ised. For the fen peat experiment, DOC and absorbance were
not normally distributed, and transformations failed to
normalise the data. Because of this, the non-parametric Wil-
coxon signed rank test was used to test for differences in
samples before and aer storage for all determinands, and for
both bog, fen and freeze/thaw samples, thus providing statis-
tical consistency throughout.

Linear regression was used to search for relationships
between determinands, and a model developed to predict
changes in DOC during cold storage based solely on original
DOC concentration and storage time. To create the model for
bog samples, a random selection of 23 data points were
selected. DOC concentration was predicted as:

DOCstorage(modelled) ¼ DOCoriginal(measured) � 0.5(storage time/t1/2)

where ‘DOCstorage(modelled)’ is the predicted concentration of
DOC aer storage, ‘DOCoriginal(measured)’ is the measured
concentration of DOC before storage, ‘storage time’ is the
number of days a sample is stored for, and ‘t1/2’ is the number of
days it takes for DOC concentration to reduce by half (half-life).
t1/2 was calculated in Microso Excel using the Goal Seek
function to minimise the root mean square error (RMSE) of the
model, followed by manual calibration to lower RMSE and
obtain a slope equation closest to a 1 : 1 line between measured
and modelled DOC.

This model was then tested on the remaining 24 samples by
rearranging the above equation so that the original DOC could
be predicted from DOC measured aer storage. Three samples
where DOC apparently increased during storage were excluded.
This may have been analytical error, or it may be that not all
particulate organic carbon (POC) was removed during ltration;
this POC could then have been converted to DOC through biotic
processes.40 Rearranging the equation gives:

DOCoriginal(modelled) ¼ DOCstorage(measured) � 2(storage time/t1/2)

where ‘DOCoriginal(modelled)’ is the predicted concentration of
DOC before storage, ‘DOCstorage(measured)’ is the measured
concentration of DOC aer storage, ‘storage time’ is the number
of days a sample is stored for, and ‘t1/2’ is the number of days it
takes for DOC concentration to reduce by half. The results of
this equation were tested using the Nash–Sutcliffe efficiency,41

calculated as:

NS ¼ 1�
X

ðDOCmeasured �DOCmodelledÞ2X
ðDOCmeasured �DOCmeanÞ2
This journal is © The Royal Society of Chemistry 2015
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where ‘DOCmeasured’ is the measured concentration of DOC
before storage, ‘DOCmodelled’ is the concentration of DOC before
storage predicted by the model, and ‘DOCmean’ is the mean of
the DOCmeasurements before storage. A NS value of 1 indicates
a perfect model t, and as the NS value decreases this indicates
a poorer model t, with a value of 0 implying that the model
performs no better than a simple mean of the data.
Fig. 2 Linear regression between percentage DOC loss per day during
long term storage, and storage time transformed by log 10. n ¼ 47 as
three samples where DOC increased during storage were removed
from the analysis. The relationship is significant (p < 0.001).
3. Results
3.1. Bog peat experiment

The median loss of DOC during storage for all 50 samples was
9.0 mg l�1, equating to 28.9%. The change in DOC concentra-
tion was signicant (p < 0.001) (Fig. 1). Three samples showed
increases in DOC concentration during storage. There was little
obvious difference in pore water and surface water; median loss
rates of DOC were 0.039% per day for surface water and 0.042%
per day for pore water (with respective median storage times of
749 and 807 days).

There was no linear relationship between the percentage loss
of DOC during storage and the length of time a sample had
been stored (linear regression R2 ¼ 0.0004, n ¼ 50). However, a
signicant relationship was found by normalising DOC loss by
storage time (Fig. 2). This relationship suggests that DOC loss is
relatively rapid to begin with, but then slows over time. A second
signicant relationship was determined between normalised
DOC loss and SUVA (Fig. 3), if three samples that had been
stored for a much shorter time compared to the other samples
(138 days versus >350 days for the remainder of the dataset, see
4.1 for Discussion) were removed. If both storage time (log 10
transformed) and SUVA were used in a multiple regression
against DOC loss there was some improvement. This regression
used 34 data points (UV-vis analysis was not conducted for all
samples), and involved the exclusion of the three aforemen-
tioned samples. For this reduced data set, R2 between time and
normalised DOC loss was 0.55 (p < 0.001) (DOC loss ¼
(�0.11x log time) + 0.36). With the inclusion of SUVA R2
Fig. 1 Median DOC concentrations for bog samples measured before
(“orig”) and after storage (“stor”), and grouped according to storage
time: 138 days (n ¼ 3), 399–480 days (n ¼ 9), 553–616 days (n ¼ 8),
721–839 days (n ¼ 14), 895–1082 days (n ¼ 16). Limits of boxes
represent first and third quartile, whilst the line within the box is the
median. Whiskers represent minimum and maximum concentrations.

This journal is © The Royal Society of Chemistry 2015
increased to 0.62 (time p < 0.001, SUVA p ¼ 0.01) (DOC loss ¼
(�0.078x log time) + (�0.013 � SUVA) + 0.32). No signicant
relationships were found between normalised DOC loss and the
E4 : E6 ratio, E2 : E3 ratio, or E2 : E4 ratio (n¼ 37). A signicant
negative relationship was observed between the phenolic : DOC
ratio and normalised loss of DOC (n ¼ 23, R2 ¼ 0.4, p ¼ 0.001)
(DOC loss ¼ (�0.025x phenolic : DOC) + 0.0078).

The calculated value of t1/2 was 1253 days, which was used to
develop a model of DOC concentrations following storage
(Fig. 4). This t1/2 value was then used to calculate DOC
concentrations before storage, simply using storage time and
DOC concentration aer storage. This produced a strong model
t between measured and modelled DOC concentrations, as
indicated by a high Nash–Sutcliffe efficiency, although there
was some slight overestimation (Fig. 4).

The mean loss of absorbance at 254 nm during storage was
5.6% (Fig. 5), and this was signicant (p < 0.001). Only one
sample showed a substantial increase in absorbance aer
storage. For absorbance, a simple linear relationship between
the change in absorbance and the length of time a sample had
Fig. 3 Relationship between SUVA and normalised loss of DOC
concentration. n ¼ 37 (UV-vis analysis was not conducted on all
samples). p < 0.001. Solid data points indicate three samples stored for
138 days that were not used to fit the regression line.

Environ. Sci.: Processes Impacts, 2015, 17, 1290–1301 | 1293
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Fig. 4 Linear regressions betweenmodelled andmeasured DOC concentrations following long-term storage. Formodel development n¼ 23, p
< 0.001, RMSE ¼ 3.43. For model testing n ¼ 24, p < 0.001, RMSE 6.47, NS ¼ 0.76. For both figures, dashed line is the 1 : 1 relationship.

Fig. 5 Median absorbance at 254 nm values for bog samples
measured before (“orig”) and after storage (“stor”), and grouped
according to storage time: 138 days (n ¼ 3), 399–480 days (n ¼ 6),
553–616 days (n ¼ 3), 721–839 days (n ¼ 10), 895–1082 days (n ¼ 16).
Limits of boxes represent first and third quartile, whilst the line within
the box is the median. Whiskers represent minimum and maximum
concentrations.

Fig. 6 Relationship between percentage absorbance loss at 254 nm
and the amount of time samples had been stored for. n ¼ 34 (four
samples where absorbance increased were removed), R2 ¼ 0.31, p <
0.001, y ¼ 0.01x + 0.69.
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been stored for was found (Fig. 6). There was also a signicant
difference in SUVA following long-term storage; median value
before storage was 4.36, increasing to 5.61 aer storage (p <
0.001) (Fig. 7).

3.2. Fen peat experiment

The ten samples collected for this experiment were mainly
alkaline, although two from Holme Fen were slightly acidic.
Following 192 days of storage all samples showed a loss of DOC,
with a median loss of 7% being observed, (Fig. 8) and a loss of
absorbance at 400 nm, where a median loss of 16.8% was
observed (Fig. 8). Nine samples displayed decreases in absor-
bance at 254 nm, and one sample showed a slight increase, with
a median loss of 3.5% (Fig. 8). Wilcoxon signed rank tests
showed that these losses were signicant (p < 0.01 for DOC, 254
nm and 400 nm). When expressed as percentages, loss of
absorbance at 400 nm was signicantly greater (p < 0.05) than
loss of absorbance at 254 nm. Following storage, six samples
displayed increases in SUVA and four displayed decreases
(Fig. 8).
1294 | Environ. Sci.: Processes Impacts, 2015, 17, 1290–1301
3.3. Freeze/thaw experiment

Aer the freeze/thaw procedure, 13 samples showed a decrease
in DOC concentration, whilst 28 showed an increase. Typically
these changes were small (Fig. 9), with the median and
maximum loss of DOC being 2.4% and 7.2%. The median gain
of DOC was 4.4%, but one sample from the Afon Ddu increased
from 3.46 mg l�1 to 4.75 mg l�1; an increase of 37%. Never-
theless, the change was signicant (p < 0.05).

Changes in UV-vis absorbance were evident aer freeze/
thaw. For 250 nm and 254 nm there was an even split, with
approximately half of the samples showing increases in absor-
bance, and half showing decreases. From 365 nm upwards more
samples displayed increases in absorbance, and this became
much more pronounced in the higher wavelengths; at 465 nm
and 665 nm, only 4 and 5 samples respectively showed
decreases. Wilcoxon signed rank tests conrmed that these
differences were signicant for 465 nm and 665 nm only (p <
0.001). The magnitude of relative changes in absorbance also
increased with increasing wavelength, so that the median
increase in absorbance at 665 nm was 100% (Table 1).
This journal is © The Royal Society of Chemistry 2015
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Fig. 7 Median SUVA values for bog samples (n¼ 38), measured before
and after storage. Limits of boxes represent first and third quartile,
whilst the line within the box is the median. Whiskers represent
minimum and maximum concentrations.
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Despite the absence of a signicant effect in the lower
wavelengths across all samples, some drastic changes were
observed. The same sample from the Afon Ddu bog that showed
Fig. 8 Median values of DOC, absorbance at 254 nm, absorbance at 40
storage. Limits of boxes represent first and third quartile, whilst the line wi
concentrations.

This journal is © The Royal Society of Chemistry 2015
a 37% increase in DOC also showed large increases in absor-
bance at all wavelengths: 99% at 250 nm, 102% at 254 nm, 233%
at 365 nm, 283% at 400 nm, 550% at 465 nm, and 300% at 665
nm. Absorbance increased considerably across all wavelengths
in three samples fromWalton Lake: this was 40–57% at 254 nm.
The same three samples had no absorbance at 665 nm upon
collection, but aer freeze/thaw had absorbance values of 0.018,
0.006 and 0.012. The various changes in absorbance caused
signicant (p < 0.05) changes in SUVA, E2 : E3, E2 : E4 and
E4 : E6 (Fig. 10). Taken together, these ndings suggest that the
processes of freezing and thawing drastically alters the
composition of DOC.
4. Discussion
4.1. Changes in DOC and absorbance during cold storage

Our results clearly show that DOC concentrations in both
surface water and pore water samples taken from peatlands
declined during short-term and long-term storage (138–1082
days). This storage was in the dark at 4 �C, following ltration at
0.45 mm. Kothawala et al.42 (2012) stored water samples from
Boreal lakes in the dark at 20 �C for three and a half years and
recorded losses of DOC as 32–45%. Samples in our study that
had been stored for approximately three years showed a mean
0 nm and SUVA for fen samples (n ¼ 10), measured before and after
thin the box is the median. Whiskers represent minimum andmaximum
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Fig. 9 Differences in DOC concentration in individual samples ana-
lysed immediately after collection (black bars) and after samples have
been frozen and thawed (white bars). For clarity the samples have been
sorted into low DOC (<25 mg l�1, top graph) and high DOC (>25 mg
l�1, lower graph). Sites are: WL ¼ Walton Lake, AD ¼ Afon Ddu, WW ¼
Woodwalton Fen, BF ¼ Baker's Fen, HF ¼ Holme Fen, SF ¼ Sedge Fen.

Table 1 Median percentage change in absorbance following sample
freeze/thaw, and number of individual samples where absorbance
decreased, increased, or didn't change for all wavelengths measured

Wavelength (nm) 250 254 365 400 465 665
Median decrease (%) 4.8 4.4 6.4 7.3 6.0 33.3
n 21 22 16 14 4 5
Median increase (%) 1.8 2.4 4.2 4.8 9.8 100.0
n 20 17 25 27 33 29
No change n 0 2 0 0 4 7

Fig. 10 Percentage changes in SUVA and E ratios for all samples
following sample freeze/thaw. A positive number indicates an
increase, negative indicates a decrease. Note that four samples are
missing for the E4 : E6 ratio – the ratio could not be calculated for
these as absorbance at 665 nm was 0.
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loss of 20%, and so it seems likely that cold storage does reduce
degradation rates.

We found that DOC loss was strongly related to storage time
as an exponential function; it appears that a relatively high
percentage (approximately 20–30%) of DOC is lost <138 days,
and that as time increases the rate of DOC loss decreases. This
rst-order exponential decay is dependent solely on the original
concentration of DOC, and such a relationship has been noted
elsewhere (e.g. in brackish UK water samples ltered at 0.7 mm
(ref. 43)). This nding suggests that some DOC will be lost,
regardless of the molecular properties of the DOC, in any
sample stored for several months. There was no difference in
loss rates between pore and surface water. It may simply be that
a larger sample size would have enabled differences to be
1296 | Environ. Sci.: Processes Impacts, 2015, 17, 1290–1301
observed. For the bog samples, the strong relationship (R2 ¼
0.78) between storage time and DOC loss allowed the half-life of
DOC to be calculated as approximately 1250 days. It should be
noted that the minimum storage time of any sample was 138
days, and the lack of any samples stored for less time could
introduce some error into the half-life calculation.

Despite this apparently simple relationship between DOC
concentration and time, there was also evidence that DOC
composition inuenced stability. For instance, DOC loss was
reduced as values of SUVA and phenolic : DOC increased. The
exceptions to this relationship were three samples that had
been stored for the minimum amount of time (138 days);
presumably degradation in these samples was still being
primarily being controlled by time (i.e. they were still losing the
most labile DOC). It can be hypothesised that if these samples
were returned to storage for more time, then once the most
labile DOC was depleted then the composition of the DOC
This journal is © The Royal Society of Chemistry 2015
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would start to have a small but important role in regulating the
rate of decomposition. As such, a multiple regression using
SUVA as well as storage time produced a slightly higher R2.
Higher values of SUVA indicate that a larger percentage of the
DOC is aromatic in nature,44 as higher SUVA values signify the
presence of humic and fulvic acids.45 Phenolics are also
aromatic so this result implies that samples with more aromatic
DOC possess a greater degree of recalcitrance, as has been
experimentally observed for arable soils.46 It is known that
phenolic compounds can inhibit biological processes,3 and
accordingly the less aromatic and more hydrophilic DOC
compounds will be susceptible to biological decomposition.47

Adding further weight to this explanation is the observation
that absorbance at 254 nm was considerably more stable than
DOC concentration during sample storage in the long-term
experiment. Absorbance at 254 nm is due to the presence of
compounds with aromatic moieties and conjugated double
bonds.48 There was a positive relationship between storage time
and loss of absorbance at 254 nm. This implies that the
degradation of the aromatic components of DOC is, to some
extent, a steady process. As DOC declined considerably during
storage but absorbance at 254 nm showed less of a decrease,
this suggests that it must have been non-aromatic compounds
that were preferentially biologically degraded. It may have been
that absorbance at 400 nm would have displayed a similar
decrease as DOC concentration, but this metric was not re-
measured aer storage in the bog peat experiment. However,
both 254 nm and 400 nm were remeasured in the fen peat
experiment, and it was observed that loss of absorbance was
signicantly greater at 400 nm. Köhler et al.16 also found that
absorbance at 420 nm decreased more than absorbance at 254
nm in a dark incubation (15–20 �C) over 12 days, whilst Baldwin
and Valo49 posited that bioavailable DOCmay not always absorb
light in the UV region.

Measurements of SUVA before and aer storage also support
this explanation in the bog peat experiment; on average there
was a signicant increase in SUVA aer storage (Kothawala
et al.42 also noted an increase in SUVA aer dark storage at 20
�C), suggesting that the composition of the DOC changed,
becoming more aromatic and possessing a higher molecular
weight.44,50 However, for the fen samples there was no consis-
tent change in SUVA, with some samples showing increases
aer storage, and others showing decreases. Such results
should be interpreted with caution however, as Weishaar et al.
show that SUVA is a poor predictor of DOC reactivity.

It is noteworthy that neither E2 : E3, E2 : E4, nor E4 : E6
ratios were related to DOC loss. E2 : E3 has been shown to
correlate well with the aromaticity and molecular weight of
humics,51 whilst E4 : E6 has been correlated with molecular
weight,52 although it has been suggested that E4 : E6 is not a
useful metric to characterise freshwaters.51,53 It has been
proposed that E2 : E4 is a measure of humication.54 Despite
the widespread use of E ratios to characterise DOC, it remains
the case that the exact compounds responsible for absorbance
at different wavelengths are unknown.55 Weishaar et al.44 stress
the fact that, although two water samples may return similar
results when analysed for UV-vis, the chemical composition of
This journal is © The Royal Society of Chemistry 2015
their DOCmay be quite different. Baldwin and Valo49 also found
no relationship between the E2 : E3 and E2 : E4 ratios, and
degradation of DOC, in samples stored at 20 �C for 28 days. As
such, it may be that E2 : E3, E2 : E4, and E4 : E6 are too unre-
ned as metrics to predict the stability or degradation of DOC in
stored samples.

It has been shown that peat-derived DOC is highly suscep-
tible to photodegradation,16 with upper estimates showing that
50% of DOC can be degraded within 2–3 summer (UK) days.56

Our data, however, show that biological degradation is also
signicant, albeit over much longer time periods, and therefore
might be important in lakes or reservoirs with large residence
times, as well as in marine systems. As interest grows in the fate
of peatland uvial carbon dynamics and in situ processes40 such
knowledge is needed.
4.2. Modelling DOC loss and other practical applications

Considering the above controls on DOC degradation, we con-
structed a simple model using storage time and DOC
concentration aer storage, to predict DOC concentrations
before storage. The discussion in Section 4.1 suggests that a
more complex model (i.e. including variables such as SUVA)
might perform better, and two-pool models have been used
before (featuring a slowly degradable pool of DOC, and a
rapidly degradable pool57). However, a simple model may offer
the greatest practical value. For instance, our model would
require no analysis before a sample be placed into storage,
whereas a more advanced model would require UV-vis or
phenolic analysis to be performed before storage. Such
requirements may be difficult to full in the circumstances
where such a model may be applied (i.e. for calculating DOC
concentrations from samples stored during remote eldwork
campaigns). As such, a simple model proved very accurate at
predicting DOC concentrations from before storage, as
demonstrated by high Nash–Sutcliffe efficiencies. It is impor-
tant to note that samples used in the analysis were collected
through all seasons over several years, and may therefore
contain DOC that varies compositionally (as suggested by a
wide range of SUVA values, minimum ¼ 3.15, maximum ¼
9.47). This variability in samples did not appear to compro-
mise the effectiveness of the simple model.

Data from the same site used for the long-term bog peat
experiment concluded that the UV-vis spectrum was stable in
water samples stored for 84 days.24 However, it seems likely
that losses of DOC are actually continuous, but small. Using
the half-life equation for the bog samples suggests that 1% of
DOC would be lost aer 18 days of storage, and 5% would be
lost aer 92. Considering that studies have shown that DOC
analysis typically has a precision of 2–5% (ref. 58–60) it seems
that losses of DOC will not become detectable for several
months. Furthermore, the level of accuracy required will
depend on the nature of the study in question. If the aim of an
experiment is to detect differences in DOC concentrations
between sites then, although concentrations will decrease
during storage, the relative differences between samples
should remain similar. If the aim is to quantify uxes or long-
Environ. Sci.: Processes Impacts, 2015, 17, 1290–1301 | 1297
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term DOC trends, then degradation will become considerably
more important.

Filters of 0.45 mm pore size are generally used when
preparing water samples for DOC analysis.11 However, if it is
known that samples will be stored for long periods of time
before analysis, a smaller pore size may prove benecial in
reducing losses of DOC by excluding bacteria, thus limiting
DOC degradation. The use of a smaller pore size does mean that
approximately 10% of DOC will be lost during ltration,61 and
there is evidence to suggest that some bacteria may pass
through such lters anyway.62 For samples that have been
ltered at 0.45 mm and stored for long time periods, additional
estimates of DOC concentrationmay be made using absorbance
at 254 nm as a proxy, as our data show this to be more stable.
Additionally, a phenolic proxy may provide a useful estimate of
DOC concentration.63 These methods could be preferable to
freezing or acidifying water samples, which have been shown to
affect both DOC quantity and quality.19,33–36
4.3. Changes in DOC and absorbance following freeze/thaw

For most samples, only small (<5%) changes in DOC concen-
tration were observed aer samples had been frozen and
thawed. Such changes are in the range of typical precision for
DOC analysis.58–60 The exception was one sample of overland
ow from the Afon Ddu catchment, for which DOC concen-
tration increased by 37%, along with large increases in
absorbance. A second sample taken nearby which had almost
identical EC and pH showed a loss of 6.8%. It is therefore
unknown what caused the substantial increase in one sample.
Fellman et al.35 noted a strong correlation between percentage
loss of DOC during freeze/thaw and original DOC concentra-
tion, but no such trend was evident in our data. Our data are
similar to that presented by Spencer et al.,36 who found no
consistent change in post-freeze/thaw DOC concentration,
with increases and decreases (up to �10%) for different
samples.

Freeze/thaw had a strong and inconsistent effect on the
absorbance properties of the samples. At 250 and 254 nm there
was an even split with half of the samples showing absorbance
increases, and half decreases. It has been observed before that
freeze/thaw can have contrasting results on the direction of
absorbance changes.36 As for DOC, the median change at 250
and 254 nmwas small (<5%), although several samples changed
by �50%. As wavelength increased, fewer samples displayed
absorbance decreases, and percentage change increased. At
665 nm, the median increase in absorbance was 100%. These
changes had strong signicant effects on SUVA and E ratios. For
most samples, SUVA decreased aer freeze/thaw and this has
been noted before.35 However, SUVA increased in seven
samples, sometimes by as much as 50%. The E ratios for some
samples changed very little, but increases and decreases of 30–
60 % were observed for others. Taken together, these results
suggest that freezing might be a useful preservation method for
peatland samples when only a measurement of bulk DOC is
required, but that it will lead to erroneous results if UV-vis
measurements are also needed.
1298 | Environ. Sci.: Processes Impacts, 2015, 17, 1290–1301
5. Conclusions

Our data show that there is a signicant loss of DOC concen-
tration and absorbance in peatland water samples stored in the
dark at 4 �C, over periods from 138 to 1082 days, and this loss
appears to be predictable as a function of storage time. DOC
quality had some effect on losses, but this effect was small when
compared to the inuence of storage time. It is known that
photodegradation of peatland DOC can occur extremely rapidly,
but our results additionally show that biological processes
operate slowly and steadily in dark conditions. These results
have important practical implications; water samples can be
stored in dark and cold conditions for considerable time and
still be used for DOC analysis, by correcting for storage-related
losses. Consider an example where samples have to be stored
for six months before analysis: the samples would be analysed
aer storage (six months) and then again on a monthly basis
(e.g. for six more months) storage. This would allow a half-life to
be calculated, and the original DOC concentration before
storage could be estimated.

Results from the freeze/thaw experiment suggest that, for
some samples, freezing will not lead to losses of DOC. However,
there remains the caveat that DOC concentrationmay be heavily
changed in a minority of samples, and such a change will be
difficult to predict using water chemistry determinands such as
pH or EC. Freezing is not recommended as a method of
preserving samples for UV-vis analysis, as changes in absor-
bance will be inconsistent (increases and decreases in absor-
bance) and potentially large.
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