

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

	Revised version: RA-ART-08-2014-009442R3				
	Aqueous CO_2 reduction on morphology controlled Cu_XO nanocatalysts at low				
	overpotential				
	Mengyang Fan", Zhengyu Bai", Qing Zhang", Chenyu Ma""				
	Xiaodong Zhou ^{d*} , Jinli Qiao ^{a,b*}				
	^a College of Environmental Science and Engineering, Donghua University, 2999				
	Ren'min North Road, Shanghai 201620, P. R. China				
	^b School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical				
Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang,					
	Henan 453007, P. R. China				
^c Department of Chemistry and Environmental Science, Kashigar Teachers College,					
	Kashgar, 844006, P. R. Chin				
	^d Department of Chemical Engineering, University of South Carolina, Columbia,				
	SC 29208				
	27				
	Corresponding author. Tel: +81-90-6008-9342, +86-21-67792379. Fax:				
	+86-21-67792159. E-mail: qiaojl@dhu.edu.cn, machengyu@dhu.edu.cn,				
	zhov@cec.sc.edu				

1 Aqueous CO2 reduction on morphology controlled CuXO nanocatalysts at low 2 overpotential

3

4

Mengyang Fan, Zhengyu Bai, Qing Zhang, Chenyu Ma, Xiaodong Zhou, Jinli Qiao

Abstract: Various Cu_xO catalysts with different special microstructures were 5 synthesized using a simple one-step hydrothermal method by controlling the reaction 6 7 time and temperature conditions. Scanning electron microscopy (SEM) and 8 high-resolution transmission electron microscopy (HR-TEM) was used to observe the 9 morphologies of received catalysts. The 3-dimension (3D) hierarchical nanospheres (500 nm) comprised of secondary structured nanorods (50 nm) are formed at 180°C 10 for 2 hours. However, when increasing the hydrothermal reaction temperature to 11 220° C, solid microspheres with large size of 2.5 µm begin to appear instead of flabby 12 hierarchical nanospheres. To further investigate the effect of morphologies on the 13 activity and production selectivity of Cu_XO catalysts, cyclic voltammetry (CV) was 14 used to evaluate the onset potential and current density of catalyzed CO₂ reduction 15 combing linear sweep voltammetry (LSV) in 0.5 M KHCO₃ solution. The effect of 16 17 catalyst loading was also tested by applying the gas diffusion layer (GDL) to make up a working electrode for CO_2 electroreduction. The results indicate that the synthesized 18 temperature at 180°C for 2h is the optimal condition for Cu_xO nanospheres and, the 19 optimal loading is about 3 mg cm⁻², under which the onset potential for CO₂ 20 21 electroreduction reaches -0.55 V vs. SHE. By ion chromatography measurement, the Faradaic efficiency and production rate of produced formate was found to be 59%, 22 which is much higher than most reported Cu-based catalysts at the same electrolysis 23 24 conditions, indicating the high selectivity of the Cu_xO nanospheres due to its controlled special surface morphology. 25

26 Keywords: CO₂ electroreduction, copper oxide nanoscatalysts, morphology control,

- 27 secondary structure, formate production, selectivity
- 28

1 1. Introduction

2 Extra emission of carbon dioxide (CO_2) into the atmosphere, induced by the depletion of non-renewable fossil fuels and excess human industrial activities, has 3 been considered one of the primary causes in possible global warming due to the 4 greenhouse effect, and also becoming an increasing concern in recent years. 5 Electrochemical reduction of CO_2 to form useful chemicals or fuels is a potentially 6 efficient method of CO₂ utilization and recycling.¹ However, in the process of CO₂ 7 electroreduction, there is a problem of the slow kinetic of CO₂ electroreduction, 8 leading to wastage of energy and the insufficient utilization of sources.^{2,3} Overcoming 9 the challenges of CO₂ reduction under mild conditions would enable development of a 10 broader portfolio of fuel-producing device. Therefore, the focal point is to develop 11 efficient catalysts which can increase the activity and selectivity, especially for 12 room-temperature CO₂ reduction in aqueous solutions.⁴⁻⁶ 13

14 In the past few decades, researchers found that many metal oxide nanopowders could be the perfect catalysts in supercapacitors and/or lithium ion batteries for their 15 controllable various morphologies.⁷⁻¹⁰ This is because that different morphologies of 16 17 the metal oxides might give different surface structures and surface areas, which then further influence the performance of electrochemical reaction. On the other hand, in 18 the research field of electrochemical reduction of CO₂, Prakash reported¹¹ that taking 19 Sn metal powder as the catalyst could give high current density and show high 20 faradaic efficiency for produced formate in 0.5 M NaHCO₃ solution. Li¹² and Tang¹³ 21 et al. find that the nanostructured surface of Cu metal plate could give more positive 22 23 onset potential and higher current efficiency for CO₂ reduction in 0.5 M NaHCO₃ and 24 0.1 M KClO₄ aqueous solution, respectively. It is believed that the special morphology on the surface could provide abundant undercoordinated sites, which are 25 more likely to be the active sites for CO₂ redcution.^{6,12,13} As yet, the large 26 overpotential was required for CO₂ reduction for many metal electrodes, resulting 27 from the barrier associated with the initial electron transfer to form a CO₂. 28 intermediate that is poorly stabilized by the metal electrode surfaces.¹⁴ Most recently, 29 it has been proposed that metastable metal oxides (e.g., SnOx) can participate in the 30

CO₂ reduction pathway on metal electrodes (e.g., Sn) by providing chemical 1 functionality that stabilizes the incipient negative charge on CO₂ or by mediating the 2 electron transfer directly, therefore the catalytic activity for CO₂ electroreduction was 3 greatly enhanced relative to a bare metal electrode.¹⁵ Although the potentials required 4 for CO₂ reduction are past the standard reduction potentials for these oxides, 5 metastable metal oxides are known to persist on electrode surfaces during cathodic 6 reactions.¹⁶ This suggests us a clue that metal oxides might be promising candidates 7 for CO₂ reduction. Unfortunately, less is concern on the directly synthesized metal 8 9 oxide nanocatalysts with different morphologies in CO_2 reduction, although the 10 control of different special morphologies is very important on both activity and production selectivity in CO₂ reduction. 11

In this work, we report the synthesis of Cu_xO nanocatalysts with controlled 12 different special morphologies by one-step hydrothermal method, which have the 13 14 merits of low-cost, large-scale production and facile manipulation. By controlling the hydrothermal reaction conditions, various Cu_xO nanocatalysts with novel 15 morphologies are received, such as hierarchical nanospheres with an average diameter 16 17 of about 500 nm and solid microspheres in a large size of about 2.5 µm. In order to further investigate the effects of hydrothermal reaction time and temperature on the 18 morphology and catalytic activity of as-prepared Cu_XO nanoparticles for CO_2 19 20 electroreduction, cyclic voltammetry (CV) study was utilized combining linear sweep voltammetry (LSV). For all electrochemical measurements, the Cu_xO nanoparticles 21 22 were coated on the gas diffusion carbon paper to form target electrodes, in this way, 23 easy diffusion path lengths can be achieved for substrates to access, leading to faster 24 kinetics. At the same time, H₂ as byproduct which could impede the reduction reaction between CO₂ and electrode, could also be inhibited effectively.¹¹ The effect of catalyst 25 loading was also tested by applying the gas diffusion layer (GDL) to make up a 26 27 working electrode for CO₂ Electroreduction. The morphology effect on selectivity of formate production was studied systematically through faradaic efficiency combining 28 29 production rate, which was examined by ion chromatography technique.

1 2. Experimental

2

3 2.1 Materials and catalyst synthesis

4 In this work, Copper(II) acetate monohydrate (Cu(Ac)₂) was used as precursor for Cu-oxide nanocatalyst preparation, which was provided by Sinopharm Chemical 5 Reagent Co. (SCR) with 99% purity and, 2,5-dimethoxyaniline purchased from 6 7 Ourchem Information Consulting Co. with 99% purity was used as the reducing agent in dilute aqueous solutions under hydrothermal conditions. In detail, 0.04 M Cu(Ac)₂ 8 9 solution (40 mL) was mixed with 0.02 M 2,5-dimethoxyaniline solution (10 mL) till 10 the mixture became dark green. During this process, a small amount of HAc (99%) 11 was always added into $Cu(Ac)_2$ solution for avoiding the hydrolysis of $Cu(Ac)_2$. Then such mixture was transferred to a 100 mL Teflon-lined stainless steel autoclave. The 12 13 autoclave was sealed and maintained at 180°C for 1-15 hours or at 160-220°C for 2 14 hours, respectively, in order to clarify the optimal reaction condition. The final powder was washed by ethanol and dried overnight. In this way, Cu_xO nanocatalysts 15 16 with different morphologies were synthesized as shown in Fig. 1. For a convenient discussion, the resulting catalysts were labeled as Cu_XO_{T-τ}, where T indicates the 17 18 temperature (°C) used for hydrothermal reaction and τ the time (h) of hydrothermal 19 reaction. As an example, the Cu_xO catalyst synthesized at 180°C for 2 hours was 20 expressed as Cu_XO₁₈₀₋₂ and so on.

21

22 *2.2 Electrode preparation and electrochemical test*

23 For all electrochemical measurements, the Cu_xO nanoparticles were coated on 24 the gas diffusion carbon paper to form target electrodes. For catalyst ink preparation, Cu_xO nanocatalyst (15 mg) was suspended in 200 μ L isopropyl alcohol (Sinopharm 25 Chemical Reagent Co.) and 5 wt% Nafion[®] solution (100 mg) was dropped in order to 26 improve adhesion of catalyst ink. For exploring the effect of catalyst loading on 27 catalytic activity, 10 mg, 15 mg and 20 mg catalysts were dispersed in 200 μ L 28 isopropyl alcohol to form different loadings of catalyst inks (2 mg cm⁻², 3 mg cm⁻² 29 and 4 mg cm⁻², about 80% of the catalyst powders were coated on the electrode), 30

respectively. A gas diffusion layer (GDL) (4 cm² Toray carbon paper, TGP-H-090) 1 with catalysts coated on was used as the working electrode and tested in a 2 conventional three-electrode electrochemical H-type cell, in which a piece of Nafion^(R) 3 117 cation exchange membrane (H^+ form) as a separator, a platinum foil electrode as 4 5 the counter electrode and a saturated calomel electrode (SCE) as the reference electrode. All measured potentials were referenced to a standard hydrogen electrode 6 7 (SHE). A CH Instruments 600E was used for all electrochemical experiments. An 8 aqueous electrolyte (0.5 M KHCO₃) was used as the measurement solution, which was bubbled with 1.0 atm CO₂ gas (99.99%) for 30 minutes for the CO₂ reduction 9 10 measurements. The electrocatalytic activity and kinetics of the working electrode was tested using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) at a scan 11 rate of 100 mV s⁻¹ and 5 mV s⁻¹, respectively, in the potentials ranging from 1.25 V to 12 -1.25 V. All these tests were carried out at ambient temperature and pressure. 13

14

15 *2.3 Physical characterization and reduction product measurement*

16 The scanning electron microscopy (SEM) images of samples were taken by Zeiss 17 ultra plus thermal field emission SEM instrument (Carl Zeiss SMTAG, Germany). High-resolution transmission electron microscopy (HR-TEM) analyses were 18 19 performed with a high-resolution Hitachi JEM-2100F operating at 200 kV to obtain 20 information of the average particle size and the morphology difference of catalysts. The crystal-phase X-ray diffraction (XRD) patterns of typical Cu_xO catalysts were 21 22 obtained using a Philips PW3830 X-ray diffractometer equipped with Cu-Ka radiation $(\lambda=0.15406 \text{ nm})$. The intensity data were collected at 25°C in the 20 range from 0° to 23 90° with a scan rate of 1.20° min⁻¹. Brunauer-Emmett-Teller (BET) specific surface 24 area was characterized by nitrogen adsorption in a Micromeritics ASAP 2020 nitrogen 25 26 adsorption apparatus (USA). The product solution was filtered with filter membrane $(0.22 \text{ }\mu\text{m})$ and the HCOO⁻ concentration was determined by ion chromatography 27 (ICS-90, Dionex, USA) using an AS14 4 mm \times 250 mm separation column at a flow 28 29 rate of 1 ml/min. The mobile phase was a mixed aqueous solution of Na_2CO_3 (4.5 mM) and NaHCO₃ (0.8 mM), and a H₂SO₄ (20 mM) aqueous solution was used as a 30

1 regenerator.

2

3 3. Results and discussion

4 5

6

3.1 Effect of hydrothermal reaction condition on the morphology of Cu_XO nanocatalysts

7 To observe the morphology changes under different hydrothermal conditions, Fig. 1 shows SEM images of the Cu_XO nanocatalysts synthesized at 180°C for 2, 5, 10 and 8 9 15 hours, respectively. It can be seen that Cu_xO₁₈₀₋₂ catalyst indicates a clear 10 3-dimensioned (3D) hierarchical nanosphere structure with an average diameter of about 500 nm (Fig. 1(a)). After a careful observation, it was found that such 11 nanospheres are comprised of secondary structures which are made up of laminated 12 13 small nanosheets with an average diameter of about 50 nm. With increasing the 14 synthesis time to 5 hours, however, a little deformation of the secondary structure was observed for Cu_XO₁₈₀₋₅ catalyst, where the slender nanorods with the diameter of 15 16 about 20 nm and 50 nm are formed. Although the morphology with hierarchical 17 nanosphere structure is still maintained, the diameter of the nanosphere increased to 18 about 800 nm (Fig. 1(b)). Further increasing the hydrothermal reaction time to 10 19 hours induces the formation of inner hollow nanosphere structure for Cu_XO_{180-10} , ie., 20 the 3D hierarchical nanosphere structure tends to break at this stage (Fig. 1(c)). Finally, when the reaction time was further increased to 15 hours, the 3D structure of 21 Cu_XO₁₈₀₋₁₅ catalyst completely collapsed. During this process, large amounts of 22 23 nanoparticles with a diameter of 50 nm clustered together and, most of the 24 nanoparticles were wrapped by amorphous substance which was inherited from the 25 precursors as shown in Fig. 1(d). Normally, the fabrication process of these 26 nanostructures in Fig. 1(a-c) can be explained by a self-transformation process of the metastable aggregated particles accompanied by the Ostwald ripening¹⁷⁻¹⁹, where the 27 28 time of hydrothermal reaction plays a key role in obtaining the special morphology of the catalyst. 29

It is interesting to find that when the temperature for hydrothermal reaction was

increased from 180°C to 220°C while still maintaining the reaction time for 2 hours, 1 2 dense microspheres are formed for Cu_xO₂₂₀₋₂ catalyst with a large size in diameter of 3 2.5 μ m (Fig. 1(e)), which is very different from the morphology of Cu_XO₁₈₀₋₂ catalyst (Fig. 1(a)). Further from the high-resolution SEM image of Cu_XO_{220-2} (Fig. 1(f)), it 4 was found that the surface of these large mircrospheres are comprised of small 5 nanorods with an average diameter of 25 nm, which are densely arrayed with sporadic 6 7 cavities in the intervals of these nanorods. These morphology changes may greatly influence the catalytic activity of the catalysts for CO_2 electroredcution, which will be 8 9 discussed thoroughly in the following section.

10 For further clarifying the morphology differences of Cu_XO catalysts, HR-TEM (Fig. 2) combining XRD patterns (Fig. 3) were used to investigate Cu_XO_{180-2} , 11 Cu_XO₁₈₀₋₁₅, Cu_XO₂₂₀₋₂, which are representatives in all Cu_XO catalysts. From Fig. 2(a), 12 it can be seen clearly that Cu_XO_{180-2} catalysts are flabby nanospheres which are made 13 up of small nanosheets. The corresponding fast Fourier transformation (FFT) pattern 14 15 (inset of Fig. 2(a)) exhibited rings with several obviously brighter dots, indicating their polycrystalline characteristics. The HR-TEM image shown in Fig. 2(b) combing 16 17 XRD patterns in Fig. 3(a) provides more detailed structural information of the Cu_XO_{180-2} catalyst. The lattice fringes showed a lattice spacing of 0.27 nm (Fig. 2(b)), 18 corresponding to the {-111} planes of CuO. Fig. 2(c) shows the TEM image of 19 20 Cu_XO_{180-15} , which correlates well with the SEM image (Fig. 1(d)), where the Cu_XO_{180-15} catalysts did not show any special morphology, ie., with the increase of 21 synthesis time high up to 15 hours, the nanosphere structure was destructed 22 23 completely, and the morphology of Cu_xO₁₈₀₋₁₅ turned to scattered 1-dimension 24 nanoparticles which were covered by amorphous substance. Therefore the FFT pattern 25 shown in the inset of Fig. 2(c) does not show obvious brighter dots. However, in Fig. 26 2(d), by HR-TEM and calculation of XRD pattern, the lattice fringes on scattered nanoparticles were related to $\{110\}$ planes of Cu₂O. The morphology of Cu_xO₂₂₀₋₂ 27 shown in Fig. 2(e) also has a well consistent result with the SEM image as shown in 28 29 Fig. 1(e) and (f). The FFT pattern (inset of Fig. 2(e)) combing HR-TEM (Fig. 2(f)) indicates that the Cu₂O₂₂₀₋₂ was also polycrystalline copper and the lattice spacing is 30

1	0.21 nm (Fig. 2(f)), indicating a relationship with $\{200\}$ planes of Cu ₂ O. All the clear
2	crystalline information of Cu_XO_{180-2} , Cu_XO_{180-15} and Cu_XO_{220-2} was shown in Fig. 3.

3 In Table 1, all the BET specific surface areas are summarized related to the different catalysts' morphology, their average particle size and electrochemically 4 active surface area. One can see that Cu_XO₁₈₀₋₂ catalyst has the largest specific surface 5 area of 63.50 m² g⁻¹, Cu_XO₁₈₀₋₁₅ has the specific surface area of 53.62 m² g⁻¹, while 6 Cu_XO_{220-2} has the smallest specific surface area of 22.16 m² g⁻¹, which are ascribed to 7 their structural difference. Based on the observations, it is reasonable to conclude that 8 9 the largest surface area of Cu_xO₁₈₀₋₂ results from the loose and hierarchical 10 nanosphere structure. For Cu_XO₁₈₀₋₁₅, the nanosphere structure was destroyed, and the catalyst was made up of clustered nanosheets, thus the BET surface area of Cu_XO₁₈₀₋₁₅ 11 decreased correspondingly. However, for Cu_XO₂₂₀₋₂, the small surface area comes 12 13 from the large size of microsphere structure which was densely arrayed by small nanorods. 14

The electrochemically active surface area was examined by the double layer 15 capacitance in N₂-saturated 0.1 M HClO₄. The CV was measured in a potential range 16 17 without Faradaic process occurred and, the capacitance, C (F), was calculated by the equation C = current density/scan rate. As shown in Table 1, the Cu_XO_{180-2} with the 18 special laminated nanosphere structure showed the best capacitance, and the 19 capacitance of Cu_XO₂₂₀₋₂ (microsphere structure) was just a little minor than that of 20 Cu_XO_{180-2} . Although the BET surface area of Cu_XO_{220-2} is the smallest in the tested 21 three catalyst samples, the 3D sphere morphology of Cu_XO₂₂₀₋₂ and the results of the 22 23 electrochemically active surface area indicate that the sphere nanostructure might be 24 competitive to give more active sites in CO_2 electroreduction, as will be demonstrated 25 below. These results could explain that why the catalytic activity of Cu_XO₁₈₀₋₂ and Cu_XO₂₂₀₋₂ is high for CO₂ electroreduction from one hand. However, for the 26 Cu_XO₁₈₀₋₁₅ catalyst without any special morphology, the capacitance is only 300, 27 which is about one-third smaller than that of Cu_XO₁₈₀₋₂. These results are in line with 28 29 the conclusions in Fig.1-3.

3.2 Electrochemical activities of catalyzed CO₂ reduction 1

2 For clarifying the effects of hydrothermal conditions including reaction time and 3 temperature on the catalysts' activities of catalyzed CO₂ eletroreduction, Fig. 4 shows CV responses of CO₂ saturated 0.5 M KHCO₃ solution on four catalysts coated on 4 5 GDL, ie., Cu_XO₁₈₀₋₁, Cu_XO₁₈₀₋₂, Cu_XO₁₈₀₋₅, Cu_XO₁₈₀₋₁₀ and Cu_XO₁₈₀₋₁₅, respectively. From Fig. 4 (a), it can be seen that the Cu_XO_{-180-2} catalyst resulted in the earliest onset 6 potential (about -0.55 V vs. SHE) in all tested catalyst samples and then the Cu_xO₁₈₀₋₅ 7 catalyst if the catalytic current obtained from Cu_XO to its reduction state (at the end of 8 9 reduction peak at the negative potential direction in Fig. 4 was ignored. However, for 10 either Cu_XO_{180-1} or Cu_XO_{180-10} and Cu_XO_{180-15} catalysts, their onset potentials appear at about -0.85 V vs. SHE, which are more 300 mV negative shift compared to that of 11 12 Cu_XO_{180-2} . Moreover, at the most negative potentials, the cathodic current density is much larger for Cu_XO_{180-2} catalyst than the catalysts synthesized at 180°C for longer 13 14 times. This suggests that hydrothermal reaction at 180°C for 2 hours is the optimal 15 condition for Cu_XO catalyst, under which the morphology of 3D hierarchical nanospheres with secondary structures for Cu_XO_{180-2} can be well formed. Such special 16 17 morphology may provide larger active surface area and more active sites for CO_2 electroreduction, thus the improved catalytic activity of Cu_xO₁₈₀₋₂ catalyst toward 18 CO_2 reduction. As described in Fig. 2(a-d), when the hydrothermal reaction time was 19 20 increased while maintain the synthesis temperature unchanged (at 180°C), such 21 hierarchical structure was destroyed and no more 3D structure left at last, instead, the 22 Cu_XO_{180-15} is only consisted of clustered nanosheets. Obviously, the decreased 23 catalytic activity of Cu_XO₁₈₀₋₁₀ and Cu_XO₁₈₀₋₁₅ might be partly resulted from the destroyed hierarchical nanoshpere structure.²⁰ It should be mentioned that the 24 Cu_XO₂₂₀₋₂ catalyst also shows a comparably better performance for CO₂ reduction 25 26 (Fig. 4(b)). The onset potential of Cu_XO_{220-2} catalyst is very similar to that of Cu_XO₁₈₀₋₂ catalyst under the same the measuring conditions. Additionally, the current 27 density at the most negative potential for Cu_XO_{220-2} catalyst is even larger than that for 28 29 Cu_XO_{160-2} and Cu_XO_{200-2} catalysts, while is only slightly less than that of Cu_XO_{180-2} . These results imply that the microsphere morphology of Cu_XO₂₀₀₋₂ could not be 30 10

RSC Advances Accepted Manuscript

perfect as the special hierarchical nanosphere of Cu_XO_{180-2} because of the large size 1 2 and dense structure of the former when compared to the fluffy structure of the latter, of which the dense microsphere morphology of Cu_xO₂₀₀₋₂ may not easily offer more 3 active sites for catalytic CO₂ reduction than Cu_XO₁₈₀₋₂, however, because of the 3D 4 5 nanosphere structure of Cu_xO₂₀₀₋₂, the activity of Cu_xO₂₀₀₋₂ is still higher than that of Cu_XO₁₈₀₋₁₅ (without special morphology). Note that the overpotential of CO₂ 6 electroreduction of the optimal Cu_XO₁₈₀₋₂ was found to be at -0.55 V vs. SHE, which 7 is much lower than those for metal Cu electrodes (about 450 mV positive shift) 8 reported elsewhere.²¹⁻²³ Even for those Cu_xO nanocatalysts (e.g., Cu_xO₁₈₀₋₁₀ and 9 Cu_xO₁₈₀₋₁₅) with comparably lower activities in this work, their overpotentials of 10 -0.85 V vs. SHE is still nearly 150 mV more positive shift than the reported ones.²¹⁻²³ 11

12

20

13 *3.3 Faradaic efficiency of the produced formate*

To further confirm that the morphology structures could have effect on the catalytic activity and production selectivity towards CO₂ reduction, the produced formate was determined and analyzed as a target by ion chromatography (IC), after applying a constant potential of -0.7 V vs. SHE in CO₂ saturated 0.5 M KHCO₃ electrolyte for 60 minutes. The faradaic efficiency was calculated using the following equation:²⁴

$$\eta_{formate} = \frac{n_{formate} 2F}{C} \tag{1}$$

Where $n_{formate}$ is the mole number of produced formate, F is the faradaic constant, 21 and C is total coulomb of electrons passed across the electrode during the electrolysis. 22 23 Fig. 5(a) and (b) show the total reduction current density as a function of operation time for all tested catalyst samples, which was measured at -0.7 V vs. SHE. As 24 expected, the Cu_XO₁₈₀₋₂ catalyst gives the highest reduction current density when 25 26 compared with other Cu_xO catalysts synthesized at different hydrothermal conditions. Further from Fig. 6, it can be clearly seen that the highest faradaic efficiency obtained 27 in this work reached high up to ~59% for the Cu_XO_{180-2} hierarchical nanospheres, 28

which is remarkably improved at low overpotential (-0.55 V vs. SHE) compared to 1 those reported elsewhere.^{12,21,25,26} However, the faradaic efficiency sharply decreased 2 along with the longer hydrothermal reaction time regardless of the synthesis 3 temperature applied. This demonstrates further that the catalytic activity for CO_2 4 electroreduction strongly depends on the surface morphology of the catalysts 5 as-prepared. For a good comparison, all the detailed results of faradaic efficiency are 6 7 presented in Table 2. It can be seen that only the two catalysts of Cu_XO_{180-2} and Cu_XO_{180-5} have the faradaic efficiencies exceeding 30%, which is in a well agreement 8 9 with CV results as shown in Fig. 4. As discussed above, these two catalysts, particular 10 to $Cu_{x}O_{180-2}$, process the novel morphologies which may offer large surface area and more active sites in catalyzed CO_2 reduction (Table 1), thus the large enhancement in 11 12 catalytic performance for CO₂ electroreduction. Further from Table 2, it was noted the Cu_XO_{180-2} has the best selectivity for formate among all the Cu_XO catalysts 13 14 synthesized. This result, along with the CV results as shown in Fig. 4 further suggests that catalyst's morphology is a major factor that cannot be ignored in CO_2 reduction, 15 16 and the special hierarchical nanosphere structure is more effective for electrochemical 17 reduction of CO_2 in this work.

Production rate combining the faradaic efficiency and current density could also 18 be used to contrast the performance of different Cu_XO catalysts. Fig. 7 combing Table 19 20 2 shows the detailed production rate for each Cu_XO catalyst. Evidently, the Cu_XO_{180-2} 21 has the best performance compared to Cu_xO catalysts made by other conditions. From Fig. 7, the production rate of Cu_XO_{180-2} is about one order higher than the other Cu_XO 22 23 catalysts and follows the order: $Cu_XO_{180-2} >> Cu_XO_{180-5} > Cu_XO_{180-10} > Cu_XO_{180-15}$, 24 and $Cu_XO_{180-2} >> Cu_XO_{220-2} > Cu_XO_{200-2} > Cu_XO_{160-2}$, which are synthesized for Cu_XO 25 both at a longer reaction time or at a higher temperature of 220°C and lower 26 temperature of 160°C (Table 2). All of these results of formate production rate are 27 consist well with the results of faradaic efficiency. Based on the above observations we could give a schematic of the structures of the typical Cu_XO_{180-2} , Cu_XO_{180-15} 28 29 Cu_XO_{220-2} and the morphology effect on the active surface area and formate faradaic efficiency. This could help us to have a more clearly mechanistic understanding on 30

why and how the structures are affecting the electrocatalytic activities. As seen in Fig. 1 2 8, both the Cu_XO₁₈₀₋₂ and Cu_XO₂₂₀₋₂ were consisted of secondary structures which provide them larger active surface area and higher faradaic efficiency than $Cu_{X}O_{180-15}$ 3 with only 1-dimensional structure. However, the diameter of Cu_xO₂₂₀₋₂ was fairly 4 large and catalyst sphere was 4 times bigger than that of Cu_XO_{180-2} . That is why the 5 faradaic efficiency of Cu_XO₂₂₀₋₂ was not that perfect as Cu_XO₁₈₀₋₂. Therefore, the 6 7 morphology is a key factor in determining the activity and selectivity of catalysts and, 8 the synthesis reaction time and temperature could effectively turning the catalysts' 9 morphology and thus their catalytic performance.

10

11 *3.4 Loading effect on the activity and selectivity for CO*₂ *catalytic reduction*

For low-cost Cu-based catalyst, increasing the catalyst loading obviously could 12 be a way to improve its catalytic performance. Loading effect has been widely 13 discussed in the field of fuel cell, ²⁷⁻²⁹ however, for CO₂ electroreduction, the effect of 14 catalyst loading has never been reported yet. Based on this consideration, the loading 15 16 effect on catalytic activity of CO₂ electroreduction is investigated by CV curves, with the most efficient Cu_XO_{180-2} catalyst as a typical candidate. As shown in Fig. 9 (a), 17 both the onset potential and the current density at the most negative potential are 18 greatly enhanced with increasing catalyst loading from 2 mg cm⁻² to 3 mg cm⁻² (with 19 300 mV positively shifted onset potential and 2.5 times increased current density). 20 When the loading is further increased to 4 mg cm⁻², both onset potential and current 21 density are retreated to the level of 2 mg cm⁻² loading. From what has been discussed 22 above, it could be concluded that 3 mg cm⁻² is the optimal catalyst loading for CO_2 23 24 electroreduction.

To further verify the loading effect on the performance of catalytic CO₂ reduction, Fig. 9(b-d) combing Table 2 exhibit the current density, faradaic efficiency and production rate for different catalyst loadings. It can be obviously seen that the current density for catalyst loading of 3 mg cm⁻² is much higher than for other two, and 2.2-fold of 4 mg cm⁻² loading and 3.7-fold of 2 mg cm⁻² loading, respectively (Fig. 9(b)). Furthermore, both the faradaic efficiency (Fig. 9(c)) and production rate (Fig.

Regarding the catalyst loading, there has not a clarified mechanism on its 4 prompting and/or probhibiting effect. However, it is reasonable to be viewed that this 5 loading effect could provide more active sites available for reducing initial electron 6 transfer to form a CO_2 - intermediate that is poorly stabilized by the metal electrode 7 surfaces, that is, increasing the catalyst loading may lead to an enhanced electron 8 9 pathway in CO_2 reduction process. Another explanation may be considered, that is, at low loading, the catalyst layer is so thin that the generated CO_2 •– intermediate have 10 no enough time to stay to find neighboring active site for next reduction process, 11 while at high catalyst loading, CO₂•- intermediate could have longer time to remain 12 in catalyst layer, thus more chance for the reduction of CO₂•– intermediate further to 13 14 formate. However, too high loading will cause the catalyst layer too thick, leading to the easy cracking and falling off of the catalyst from the electrode as well as larger 15 electric resistance, thus resulting in lower catalytic activity. And this has been well 16 demonstrated for cathodic catalyst for oxygen reduction reaction in fuel cells.²⁷⁻²⁹ 17

18

19 **4.** Conclusions

20

The effects of hydrothermal conditions on the morphology formation of Cu_xO 21 nanocatalysts and their influences for catalytic performance in CO₂ electroreduction 22 were investigated. It was found that hydrothermal reaction at 180°C for 1-15 or at 160 23 24 -220°C for 2 hours could induce the formation of sphere-like nanostructure. However, 25 the special 3D hierarchical nanospheres (~500 nm) comprised of secondary structures 26 could only be received at 180° C for 2 hours. This condition performs best for Cu_xO 27 catalysts in CO₂ catalytic reduction in terms of both catalytic activity and selectivity, under which the faradaic efficiency of formate could realize \sim 59%, and the production 28 29 rate is one order increased than Cu_xO synthesized under other conditions. However, the special hierarchical nanospheres were destroyed with increasing the hydrothermal 30

reaction time, and at the same time, the reduction activity and production faradaic 1 2 efficiency decreased greatly, suggesting that surface morphology control of the catalyst is a significant factor, which determines the active sites and surface area and 3 even pathway for CO₂ reduction reaction. The catalyst loading effects on CO₂ 4 electroreduction have also been investigated in this paper. It was concluded that under 5 the loading of 3 mg cm⁻², the Cu_XO_{180-2} performs the high catalytic activity and, the 6 overpotential of CO₂ reduction is -0.55 V vs. SHE, which is nearly 450 mV positive 7 8 shift than previous works.

9

10 Acknowledgement

This work was supported by the National Natural Science Foundation of China 11 12 (21173039); Specialized Research Fund for the Doctoral Program of Higher 13 Education, SRFD (20110075110001) of China; the Innovation Program of the 14 Shanghai Municipal Education Commission (14ZZ074), International Academic Cooperation and Exchange Program of Shanghai Science and Technology Committee 15 16 (14520721900), the Graduate degree thesis Innovation Foundation of Donghua 17 University (EG2014014) and College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and 18 19 Control in Textile Industry, Donghua University, All the financial supports are gratefully acknowledged. 20

21

22

- 23
- 24
- 25
- 26

27

- 28
- 29
- 30

1 **References**

- 2 1 J. L. Qiao, Y. Y. Liu, F. Hong, J. J. Zhang, Chem. Soc. Rev., 2014, 43, 631-675.
- 3 2 M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem., 2006, **594**, 1-19.
- 4 3 N. S. Spinner, J. A. Vega, W. E. Mustain, *Catal. Sci. Technol.*, 2012, **2**, 19-28.
- 5 4 P. Kang, T. J. Meyer, M. Brookhart, *Chem. Sci.*, 2013, 4, 3497–3502.
- 6 5 Y. Chen, C. W. Li, M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 19969–19972.
- 7 6 J. L. Qiao, P. Jiang, J. S. Liu, J. J. Zhang, *Electrochem. Commun.*, 2014, 38, 8–11.
- 8 7 Y. Tan, X. Xue, Q.Peng, H. Zhao, T. Wang, Y. Li, Nano Lett., 2007, 7, 3723-3728.
- 9 8 Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, Y. Qian, J. Phys. Chem. B, 2003,
- 10 **107**, 12658-12661
- 11 9 Y. Jiao, F. Wang, X. Ma, Q. Tang, K. Wang, Y. Guo, L. Yang, Microporous
- 12 Mesoporous Mater., 2013, **176**, 1-7.
- 13 10 C. D. Lokhande, D. P. Dubal, O. S. Joo, *Curr. Appl. Phys.*, 2011, **11**, 255-270.
- 14 11 G. K. S. Prakash, F. A. Viva, G. A. Olah, J. Power Sources, 2013, 223, 68-73.
- 15 12 C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 7231-7234
- 16 13 W. Tang, A. A. Peterson, A. S. Varela, Z. P. Jovanov, L. Bech, W. J. Durand, S.
- 17 Dahl, J. K. Norskov, I. Chorkendorff, Phys. Chem. Chem. Phys., 2012, 14, 76-81.
- 18 14. M. Gattrell, N.Gupta, A. Co, J. Electroanal. Chem., 2006, **594**, 1.
- 19 15. Y. Chen, M. W. Kanan, J. Am. Chem.Soc., 2012, 134, 1986–1989
- 20 16 D. Rochefort, P. Dabo, D. Guay, P. M. A. Sherwood, *Electrochim. Acta*, 2003, 48,
- 21 4245.
- 22 17 J. J. Teo, Y. Chang, H. C. Zeng, *Langmuir*, 2006, **22**, 7369-7377.
- 23 18 F. Behnoudnia, H. Dehghani, *Polyhedron*, 2013, **56**, 102-108.
- 24 19 J. Li, H. C. Zeng, J. Am. Chem. Soc., 2007, 129, 15839-15847.
- 25 20 H. Zhang, J. Feng, M. Zhang, *Mater. Res. Bull.*, 2008, **43**, 3221-3226.
- 26 21 J. Lee, Y. Tak, *Electrochim. Acta*, 2001, **46**, 3015-3022.
- 27 22 P. Jiang, J. L. Qiao, M. Y. Fan, C. Y. Ma, J. S. Liu, ECS Trans., 2013, 53, 71-77.
- 28 23 P. Jiang, J. L. Qiao, M. Y. Fan, C. Y. Ma, J. S. Liu, *ECS Trans.*, 2013, **58**, 91-97.
- 29 24 J. Wu, F. G. Risalvato, F. S. Ke, P. J. Pellechia, X. D. Zhou, J. Electrochem. Soc.,
- 30 2012, **159**, F353-F359.

1	25 Y. Hori, A. Murata, R. Takahashi, J. Chem. Soc., Faraday Trans. 1, 1989, 85,						
2	2309-2326.						
3	26 Y. Hori, K. Kikuchi, S. Suzuki. Chem.Lett., 1985, 53, 1695.						
4	27 G. Lalande, R. Côté, G. Tamizhmani, D. Guay, J. P. Dodelet, Electrochim. Acta,						
5	1995, 40 , 2635-2646.						
6	28 G. Lalande, G. Tamizhmani, R. Côté, L. Dignard-Bailey, M. L. Trudeau, R. Schulz,						
7	D. Guay, J. P. Dodelet, J. Electrochem. Soc., 1995, 142, 1162-1168.						
8	29 L. Ding, J. L. Qiao, X. F. Dai, J. Zhang, J. J. Zhang, B. L. Tian, Int. J. Hydrogen						
9	Energy, 2012, 37 , 14103-14113.						
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30	17						

1	Figure captions
2	Fig. 1 SEM images of (a) Cu_XO_{180-2} , (b) Cu_XO_{180-5} , (c) Cu_XO_{180-10} , (d) Cu_XO_{180-15} , (e)
3	Cu_XO_{220-2} . (f) High-resolution SEM image of Cu_XO_{220-2} .
4	
5	Fig. 2 TEM images and corresponding FFT pattern (inset) of typical (a) Cu_XO_{180-2} , (c)
6	Cu_XO_{180-15} , (e) Cu_XO_{220-2} . High-resolution TEM images of (b) Cu_XO_{180-2} , (d)
7	Cu_XO_{180-15} , (f) Cu_XO_{220-2} .
8	
9	Fig. 3 XRD patterns of typical (a) Cu_XO_{180-2} , (b) Cu_XO_{180-15} , (c) Cu_XO_{220-2} .
10	
11	Fig. 4 Current-potential curves of CO ₂ reduction measured in CO ₂ -saturated 0.5 M
12	KHCO ₃ solution on Cu_XO nanocatalysts synthesized at (a) 180°C for 1-15 hours and
13	(b) 160-220°C for 2 hours. Potential scan rate: 100 mV s ⁻¹ . Catalyst loading: 3 mg
14	cm ⁻² .
15	
16	Fig. 5 Current-time curves for Cu_XO nanocatalysts synthesized at (a) 180°C for 2-15
17	hours and (b) 160-220°C for 2 hours. Catalyst loading: 3 mg cm ⁻² .
18	
19	Fig. 6 Faradaic efficiency of produced on Cu_XO nanocatalysts synthesized at (a)
20	180°C for 2-15 hours and (b) 160-220°C for 2 hours. Catalyst loading: 3 mg cm ⁻² .
21	
22	Fig. 7 Production rate of Cu_XO nanocatalysts synthesized at (a) 180°C for 2-15 hours
23	and (b) 160-220°C for 2 hours. Catalyst loading: 3 mg cm ⁻² .
24	
25	Fig. 8 Schematic structures of typical Cu_XO_{180-2} , Cu_XO_{180-15} , Cu_XO_{220-2} and, the
26	structure effect on the active surface area and formate faradaic efficiencies.
27	
28	Fig. 9 (a) Current-potential curves of CO_2 electroreduction for different catalyst
29	loadings. Potential scan rate: 100 mV s ⁻¹ . (b) Current-time curves for various catalyst
30	loadings. (c) Faradaic efficiency and (d) Production rate of different catalyst loadings.

1	The Cu_XO catalyst is synthesized at 180°C for 2 hours (Cu_XO_{180-2}), and catalyst
2	loading: $2\sim4$ mg cm ⁻² .
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	

1				
2		Cu _x O ₁₈₀₋₂	Cu _x O ₁₈₀₋₁₅	
<u>з</u>			a dhallan a	
4 5	Active surface area:	a second second		Active surface area:
5	800 μF Formato faradaic officior			Formate faradaic efficiency:
7	59.36%	icy.	ag us	12.00%
, 8				
9				
10		$\frac{1}{2}$		
11		Cu _x O ₂₂₀₋₂		
12				
13				
14			Active surface area	1:
15			790 μF Formate faradaic e	fficiency:
16			27.13%	includy:
17		A C C C C C C C C C C C C C C C C C C C		
18				
19				
20				
21		Fię	g. 8	
22				
23				
24				
25				
26				
27				
28				
29				
30				
31 22				
32				
34				
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				

1 2

Catalysts	Morphology	Average size	BET surface area	Electrochemically active surface area	
	-	(nm)	$(m^2 g^{-1})$	C (μF)	
Cu _X O ₁₈₀₋₂	Hierarchicl nanosphere	500	63.50	800	
Cu _X O ₁₈₀₋₁₅	Non-sphere	-	53.62	300	
Cu _X O ₂₂₀₋₂	Dense microshpere	2500	22.16	790	

Table 1 Physical characterization parameters of Cu_XO catalysts.

Catalyst	Loading	Onset potential	Current density at potential = -1.25 V vs. SHE	Faradaic efficiency	Production rate
	$(mg cm^{-2})$	(V vs. SHE)	$(mA cm^{-2})$	(%)	$(\mu mol min^{-1} cm^{-2})$
Cu _X O ₁₈₀₋₂	3	-0.55	-20.5	59.36	2.7×10 ⁻¹
Cu _X O ₁₈₀₋₅	3	-0.80	-16.0	34.97	3.7×10 ⁻²
Cu _X O ₁₈₀₋₁₀	3	-0.85	-8.0	23.99	1.8×10 ⁻²
Cu _X O ₁₈₀₋₁₅	3	-0.85	-6.5	12.00	1.0×10 ⁻²
Cu _X O ₁₆₀₋₂	3	-0.85	-14.0	11.57	2.9×10 ⁻²
Cu _X O ₂₀₀₋₂	3	-0.90	-12.0	22.08	4.1×10 ⁻²
Cu _X O ₂₂₀₋₂	3	-0.60	-17.5	27.13	5.9×10 ⁻²
Cu _X O ₁₈₀₋₂	2	-0.85	-8.5	29.04	3.5×10 ⁻²
Cu _X O ₁₈₀₋₂	4	-0.85	-8.6	44.95	9.0×10 ⁻²

Table 2 Kinetic parameter, Faradaic efficiency and production rate of produced formate of CO_2 electroreduction.