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Analysis of disordered trusses using
network Laplacians

Sean Fancher,†‡ab Niranjan Sarpangala, †a Prashant K. Purohit c and
Eleni Katifori *ad

Truss structures, with distributed mass elements, at macro-scale are common in a number of

engineering applications and are now being increasingly used at the micro-scale to construct

metamaterials. In analyzing the properties of a given truss structure, it is often necessary to understand

how stress waves propagate through the system and or its dynamic modes under time dependent

loading so as to allow for maximally efficient use of space and material. This can be a computationally

challenging task for particularly large or complex structures, with current methods requiring fine spatial

discretization or evaluations of sizable matrices. Here we present a spectral method to compute the

dynamics of trusses inspired by results from fluid flow networks. Our model accounts for the full

dynamics of linearly elastic truss elements via a network Laplacian; a matrix object which couples the

motions of the structure joints. We show that this method is equivalent to the continuum limit of linear

finite element methods as well as capable of reproducing natural frequencies and modes determined by

more complex and computationally costlier methods. Our results show that balls-and-springs models

inadequately describe dynamics, especially at short times relative to wave propagation time through

rods. Furthermore, we illustrate the method’s utility in optimizing target joint displacements using

impedance matching and resonance-based schemes, offering a computationally efficient approach for

analyzing large, complex truss structures.

1 Introduction

Trusses have been a mainstay of structural engineering for a
substantial amount of human history, with applications includ-
ing bridges, buildings, airplanes, and spacecraft. While these
applications at the scale of several tens of meters are well
established, truss metamaterials with microstructures in the
range of a few millimeters are of intense research interest
currently due to their easy manufacturability by 3D printing
and other techniques.1 They are also relevant in understanding
the properties and adaptation of biological systems ranging
from cytoskeleton to bone tissues2,3 in animal skeletons.4

However, efficiently analyzing the dynamic behavior of complex
truss structures, especially in disordered or hierarchical

configurations, remains a significant challenge in the field of
soft matter physics.

Analysing wave propagation through truss metamaterials,5,6 is
particularly interesting since they can be designed to allow only
certain wavelengths/frequencies to propagate, thus enabling appli-
cations in acoustic absorbers and transmitters.7,8 Similar techni-
ques have also been applied to structures comprised of polymer
networks for the purpose of understanding response to propagat-
ing loads and defect particles.9,10 These applications involve precise
determination of the dynamic behavior of the structure. Further-
more, current imaging techniques for the measurement of local
strains have become so sophisticated that it is possible to observe
wavefronts propagating through individual elements at the
microscale.11 These experimental developments enable the valida-
tion of detailed computational models which was not possible
before.

The dynamic behavior of truss structures is most commonly
studied using the finite element method. Each member of the
structure is discretized into appropriate truss elements, then
stiffness and mass matrices are assembled, then the equations
of motion (including external forces) are written in matrix form
starting from Newton’s laws. The natural frequencies and mode
shapes (which are critical in structural design and in under-
standing the dispersion relations of metamaterials) are computed by

a Department of Physics and Astronomy, University of Pennsylvania, Philadelphia,

PA, USA. E-mail: katifori@sas.upenn.edu
b Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
c Department of Mechanical Engineering and Applied Mechanics,

University of Pennsylvania, Philadelphia, PA, USA
d Center for Computational Biology, Flatiron Institute, New York, NY, USA

† These authors contributed equally to the work.
‡ Present Address: Department of Physics, University of Michigan, Ann Arbor, MI,
USA.

Received 18th June 2025,
Accepted 15th October 2025

DOI: 10.1039/d5sm00619h

rsc.li/soft-matter-journal

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
ur

ri
ak

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
02

6/
01

/0
5 

23
:5

0:
25

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-0947-1488
https://orcid.org/0000-0002-1939-907X
https://orcid.org/0000-0002-7332-4749
http://crossmark.crossref.org/dialog/?doi=10.1039/d5sm00619h&domain=pdf&date_stamp=2025-11-04
https://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm00619h
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM021047


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 8986–8998 |  8987

solving an eigenvalue problem using the stiffness and mass
matrices.12 The frequencies obtained depend on the mass and
stiffness matrices; they vary depending on how fine the discretiza-
tion is, whether the consistent or lumped mass matrix (or a
combination) is used, and on the shape functions used to assemble
the stiffness and mass matrices. Often, very fine discretization is
required to get an accurate estimate of the natural frequencies and
the computational costs can be prohibitive if the structure has a
large number of degrees of freedom. Methods that retain the full
element dynamics have also been developed via solutions in Fourier
space (reverberation matrix method)13,14 or integral operators.15

These produce accurate solutions for large structures but require
more sophisticated mathematics and analysis algorithms. While it is
possible to directly simulate the temporal response of a truss
structure by monitoring the propagation of reactive wave-
fronts,13,16,17 this can become computationally costly as more wave-
fronts are produced via scattering.

In this article, we present a new method for determining the
dynamic behavior of a given truss structure based on our work on
fluid flow networks.18 We retain a full description of the element
dynamics much like the methodology of,13,14 but we maintain a
focus on the motions of the structure joints rather than stress within
the elements. By assuming linear stress and displacement dynamics,
we can express the propagation of stress waves in terms of the joint
motions in Fourier space and develop a linear relation between the
displacements of and forces acting on the joints. This allows our
resulting matrix objects to be smaller in size and thus more
computationally efficient to analyze in comparison to those pro-
duced via element stress calculations. This method is different from
the spectral element methods19–23 which are similar to finite element
methods except that the shape functions are chosen to be orthogo-
nal functions as in a Fourier basis. Thus, if the bars are discretized
using spectral elements then the size of the problem scales with the
number of bars. In the technique presented here the size of the
problem scales with the number of joints.

We demonstrate the method’s accuracy and efficiency through
analysis of a simple structure (square frame with crossbar) and
extend its application to disordered networks, revealing the inade-
quacy of ball-and-spring models at high frequencies. In contrast to
the balls and spring method, our spectral method gives consistent
results across frequency ranges. Finally, we show that our method
can be used to optimize target joint motion in response to input
joint oscillations, illustrating its usefulness in designing dynamics of
complex, disordered systems.

2 Methods
2.1 Single rod dynamics

We begin by considering a solid, cylindrical rod of length L and
cross sectional area A. As the rod undergoes tension and
compression in response to externally applied forces, each
infinitesimally thin segment is displaced from its rest position
by an amount u(z,t), where z is the distance from the z = 0 end of
the rod in its unperturbed configuration and t is time. Speci-
fically, u(z,t) 4 0 implies the segment has shifted in the

direction of increasing z and u(z,t) o 0 implies a shift in the
direction of decreasing z, as depicted in Fig. 1(A).

From this displacement field we can derive two other
critically important fields; the velocity field, v(z,t), and strain
field, e(z,t). Defining the sign of v and e to denote movement in
the direction of z and tensile expansion of the material respec-
tively allows for the relations

v z; tð Þ ¼ @u
@t
; e z; tð Þ ¼ @u

@z
: (1)

Under the assumption that the material is linearly elastic,
the stress field, s(z,t), can be expressed simply as s(z,t) = Ee(z,t),
where E is the Young’s modulus. This forces the sign of s to be
such that s4 0 represents tensile stress while so 0 represents
compressive stress. These definitions of v, e, and s immediately
allow for the identity

@v

@z
� 1

E

@s
@t
¼ @

@z

@u

@t

� �
� @

@t

@u

@z

� �
¼ 0: (2)

We now consider the forces acting on an infinitesimally thin
segment of the rod, such as that of width dz shown in Fig. 1(A).

Fig. 1 (A) Single rods undergo position dependent displacement, u(z,t),
which causes strain, e(z,t), within the material. This results in a buildup of
stress, s(z,t), which resists the strain. (B) Multiple rods can be connected
into a network via joints. Each joint can move with velocity w

-
m(t) and induce

similar velocity within the individual elements (blue arrows). Similarly, a
force, P

-
m(t), can be applied to the joint but will be resisted by the elements

(red arrows).
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Following our sign convention for the stress field, Newton’s
second law takes the form

@s
@z
� r

@v

@t
¼ 0: (3)

where r is the material density and the dz - 0 has been taken.
Together, eqn (2) and (3) represent the dynamic coupling
between the stress and velocity fields of the rod.13,14 Addition-
ally, we can express these in terms of the displacement field to
transform eqn (3) into

E
@2u

@z2
� r

@2u

@t2
¼ 0; (4)

thus producing the simple wave equation wherein waves can

propagate through the displacement field at speed c ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
.

One important implication of eqn (4) is that u(z,t) can be
expanded into its Fourier modes via

u z; tð Þ ¼
ð
do F oð Þeio t�z

cð Þ þ B oð Þeio tþz
cð Þ

� �
; (5)

where F(o) and B(o) are the forward and backward wave
amplitudes respectively and the integral being over all real o
is implied. This in turn allows for the velocity and stress fields
to be expressed as

v z; tð Þ ¼ @u
@t
¼
ð
doio F oð Þeio t�z

cð Þ þ B oð Þeio tþz
cð Þ

� �
; (6a)

s z; tð Þ ¼ E
@u

@z

¼ G
ð
doio �F oð Þeio t�z

cð Þ þ B oð Þeio tþz
cð Þ

� �
; (6b)

where G ¼ E=c ¼
ffiffiffiffiffiffiffi
Er
p

is the material impedance.

2.2 Rod and joint network construction

We now consider a network comprised of rods obeying the
dynamic equations outlined thus far connected via a series of
joints such as the one depicted in Fig. 1(B). Here we will use the
index m to denote a particular joint and the index n to denote a
joint connected to m through one of the network rods. In this
way, nANm, where Nm is the set of all joints connected to joint
m through a single rod. The rods themselves and their various
fields will be labelled with a two component index, mn, com-
prised of the two joints the rod connects. Specifically, umn(z,t) is
the displacement field of rod mn with the z = 0 end of the rod
being at joint m. Similar notation also applies to other fields as
well as rod specific parameters such as the length, Lmn, and
cross sectional area, Amn. Exchanging the index order thus also
reverses the directionality of the rod, leading to the relations

umn(z,t) = �unm(Lmn � z,t), (7a)

vmn(z,t) = �vnm(Lmn � z,t), (7b)

smn(z,t) = snm(Lmn � z,t). (7c)

We can also apply the Fourier expansion used in eqn (5)
alongside this notation to obtain the index exchange laws for

Fmn(o) and Bmn(o). Letting tmn = Lmn/cmn allows for these to be
expressed as

Fmn(o) = �Bnm(o)eiotmn, Bmn(o) = �Fnm(o)e�iotmn. (8)

Finally, we can Fourier transform eqn (6) in time and
combine the result with eqn (8) to produce the relations

ṽmn(0,o) = io(Fmn(o) + Bmn(o)), (9a)

~smn(0,o) = ioGmn(�Fmn(o) + Bmn(o)), (9b)

ṽmn(0,o) = �ṽnm(0,o)cos(otmn) � iGmn
�1~snm(0,o)sin(otmn),

(10a)

~smn(0,o) = ~snm(0,o)cos(otmn) + iGmnṽnm(0,o)sin(otmn). (10b)

From here we assign a Dm-dimensional coordinate system,
denoted as RD

m , to the mth joint such that the origin is located at
the rest location of the joint and the set of rods connected to
that joint span RD

m . For example, if two rods are connected at
1801 (antiparallel), the dimension of the joint is 1. On the other
hand, if they are not parallel or antiparallel, say the rods are
connected at an angle 601, then the dimension of the joint is 2.
We can then define a unit vector, êmn A RD

m , to rod mn with
equivalent directionality, thus implying that êmn points from
joint m to joint n. Of note is that since the opposing vector ênm
exists in RD

n , there is no implicit index exchange relation
between êmn and ênm without first defining the relation between
RD
m and RD

n . However, if êmn and ênm are expressed in the global
coordinate system, denoted RD

g , then they must of course point
in opposing directions. This is particularly easy to achieve if
dim(RD

m) = dim(RD
g ) for all m. In this case, we can define an

‘‘aligned coordinate set’’ in which -
xm = -

xg �
-
rm; where -

xm is a
position vector in RD

m , -
xg is the same position in RD

g , and -
rm is the

position of the mth joint in RD
g .

With the coordinate systems defined, we next investigate the
dynamics of the joints by assuming that each joint is massless
and incapable of carrying force. Newton’s second law applied to
joint m then takes the form

~Pm tð Þ þ
X
n2Nm

êmnAmnsmn 0; tð Þ ¼~0; (11)

where
-

Pm(t) is the force being applied to the joint by some entity
external to the system, again expressed within RD

m . Finally, the
joint itself moves within this coordinate system with a velocity
given by the vector -

wm(t). Enforcing that the z = 0 end of rod mn
must have a velocity equivalent to the projection of -

wm in the
direction of êmn yields the condition

-
wm�êmn = vmn(0,t) 8 n A Nm. (12)

Eqn (11) and (12) provide the connectivity laws of the net-
work and define how the stress and velocity fields of different
rods interact.13,14 Their form can be somewhat simplified by

introducing the matrix e
,
m, defined to be a Dm � |Nm| matrix in

which each column is a distinct êmn. The joint stress and
velocity vectors, ~sm(t) and -

vm(t), can then be defined as column
vectors of length |Nm| such that their respective jth
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components give smn(0,t) and vmn(0,t) for the same n as was used

to generate the jth column of e
,
m. Similarly, we construct A

,
m as a

diagonal matrix of size |Nm|� |Nm| whose jth diagonal entry is

Amn. Finally, treating
-

Pm(t) and -
wm as column vectors allows

eqn (11) and (12) to be expressed as

e
,
mA
,

m~sm ¼ �~Pm; (13a)

~wm
� �T

e
,
m¼ ~vm
� �T

: (13b)

Of note is that due to our construction of RD
m we have Dm r

|Nm|. In the specific case of equality, e
,
m must be an invertible

square matrix due to the set of vectors {êmn|n A Nm} spanning
the local coordinate system. This causes eqn (13a) and (13b) to
become a bijective linear relation between the rod dynamics, ~sm
and -

vm, and the joint dynamics,
-

Pm and -
wm. Thus, the rods are all

effectively uncoupled from each other when Dm = |Nm|. This is
because for any given stress and velocity field within a single
rod there must exist an applied force and joint velocity such
that eqn (13a) and (13b) are satisfied without inducing any
additional dynamics in any other rod.

2.3 The Laplacian block matrix

We now seek to construct a global relation between the motions
of every joint in the network. We achieve this by first noting the
similarities between the element velocity and stress fields with
the flow velocity and pressure of a fluid in a compliant vessel,
then following a methodology previously developed for calcu-
lating the pressure distribution in such a fluid flow network.18

To begin, we combine eqn (7b) and (9a) to produce

ṽnm(0,o) = �ṽmn(Lmn,o) = �io(Fmn(o)e�iotmn + Bmn(o)eiotmn)
(14a)

Solving Fmn and Bmn yields

Fmn oð Þ ¼ ~vmn 0;oð Þ þ ~vnm 0;oð Þe�iotmn
io 1� e�2iotmnð Þ

¼
~~wT
m oð Þêmn þ ~~wT

n oð Þênme�iotmn
io 1� e�2iotmnð Þ

(15a)

Bmn oð Þ ¼ ~vmn 0;oð Þ þ ~vnm 0;oð Þeiotmn
io 1� e2iotmnð Þ

¼
~~wT
m oð Þêmn þ ~~wT

n oð Þênmeiotmn
io 1� e2iotmnð Þ

(15b)

where we have replaced ṽmn and ṽnm with the Fourier trans-
formed velocities of joints m and n respectively as per eqn (12).

From here we use eqn (9b) to express the Fourier transformed
stress as

~smnð0;oÞ ¼ ioGmn �FmnðoÞ þ BmnðoÞ
� �

¼ Gmn �
~~wT
m oð Þêmn þ ~~wT

n oð Þênme�iotmn
1� e�2iotmn

 
(16)

þ
~~wT
m oð Þêmn þ ~~wT

n oð Þênmeiotmn
1� e2iotmn

!

¼ iGmn

sin otmn
� � êTmn

~~wm oð Þ cos otmn
� �

þ êTnm
~~wn oð Þ

� � (17)

Inserting eqn (17) into the Fourier transform of eqn (11) and
introducing the parameter Lmn = AmnGmn then yields

� ~~Pm oð Þ ¼
X
n2Nm

êmnAmn~smn 0;oð Þ

¼
X
n2Nm

êmn
iLmn

sin otmn
� � êTmn

~~wm oð Þ cos otmn
� �

þ êTnm
~~wn oð Þ

� �

(18)

Based on eqn (18) we can construct the block vectors W̃ and

P̃ as well as the block matrix D
,

. These are objects whose
individual components are themselves vectors and matrices.
Specifically, W̃ and P̃ have J components each, where J is the
number of joints in the network, with the mth components

being the vectors ~~wm and ~~Pm respectively, each expressed in

terms of RD
m . Similarly, D

,
, denoted here as the network Lapla-

cian, has a J � J structure with components defined as

D
,
mn¼

P
g2Nm

Lmgo cot otmg
� �

êmgê
T
mg m ¼ n

Lmno csc otmn
� �

êmn ê
T
nm n 2Nm

0
,

otherwise

;

8>><
>>: (19)

thus making the mn component of D
,

a Dm � Dn matrix that
transforms a vector in RD

n into one in RD
m . Given these defini-

tions, eqn (18) clearly dictates

� 1

io
D
,

~W ¼ �~P ) D
,

~U ¼ ~P: (20)

Eqn (20) provides a direct relation between the force applied
to the system and its dynamics. The first equality generates a
linear transformation between the joint velocities and forces.
The second equality generates a similar relation in terms of Ũ,
the block vector of Fourier transformed joint displacements,
and is obtained from the first by noting that W̃ = ioŨ since
velocity is the time derivative of displacement. Of note is that
the network Laplacian derived here is similar in function to the
global scattering matrix of the system,14 but importantly repre-
sents a relation over the joints rather than elements. Thus, the
network Laplacian is typically smaller in size and more com-
putationally manageable.
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We nondimensionalize the eqn (20) by using a characteristic

time scale, t0 ¼ L=c ¼ L
ffiffiffiffiffiffiffiffiffi
r=E

p
and a characteristic length

scale, u0 = p0t0/L0. L0 ¼ A
ffiffiffiffiffiffiffi
Er
p

and p0 is a characteristic force
chosen as 1 N throughout this work. In Fig. 2, we use this
method to compute the dynamic response of a simple truss
network. In this example (Fig. 2), we consider a periodic delta-
like pulse signal and decompose it into its Fourier modes. The
response of the network is computed in the frequency domain
for each mode, and the full time-domain displacement field is
reconstructed as a weighted superposition of these responses.
Additional computational details for this example are provided
in the SI (Section S5), together with further examples for
different boundary conditions and network sizes (Fig. S6–S9).

Note that our Laplacian matrix has structural similarity to the
dynamical matrices used in previous studies on spring networks.24,25

In the limit o- 0, our method reduces to a form equivalent to their
dynamic matrices. While those works focused on static properties
and demonstrated how connectivity and geometry give rise to
phenomena such as topologically protected boundary modes, the
present method can be used to explore the dynamic behavior of
continuum rod networks. Additionally, it is interesting to note that
graph Laplacian-based formulations have been used to study stress
balance in granular systems26 which again used differences between
field variables much like spring networks.

3 Results
3.1 Stiffness and mass matrix method is just a second order
approximation of our truss network method

Our theory, in particular eqn (20) can be interpreted as a
dynamic extension of the static stiffness matrix method. In

this method, K
,

is the static stiffness matrix, Ũ is the displace-
ment vector whose elements give the static displacement from
equilibrium of each joint, and Q̃ is the vector of externally
applied forces that maintain this out of equilibrium position-
ing. The stiffness matrix can be defined by treating each rod as
a Hookean spring of stiffness kmn = AmnEmn/Lmn = Lmn/tmn so that
the force it exerts at joint m is given by �kmnêmn(ê

T
mn

-
um � êT

nm
-
un),

where -
um A RD

m is the displacement of the mth joint in its own
local coordinate system. Summing this effect over all rods and

using our construction of D
,

given by eqn (19) automatically
provides the relation

K
,
¼ lim

o!0
D
,

oð Þ: (21)

From here, we can use the fact that Ũ and Q̃ represent static
quantities to express their Fourier transforms as simply the
vectors themselves multiplied by a d-function. This allows the
second form of eqn (20) to be expressed as

~Qd oð Þ ¼ ~P ¼ D
,

~Ud oð Þ ¼ K
,

~U

� �
d oð Þ: (22)

Equating the prefactors of the d-functions on either side of

eqn (22) yields the condition ~Q ¼ K
,

~U, which is precisely a
statement of static equilibrium written in matrix form.

We can further explore the limiting behavior of eqn (20) by
defining the consistent mass matrix of the system as

M
,

mn¼

P
g2Nm

ðLmg

0

dzAmgrmg N
z

Lmg

� �� �2

êmgê
T
mg m¼ n

�
ðLmn

0

dzAmnrmnN
z

Lmn

� �
1�N

z

Lmn

� �� �
êmn ê

T
nm n 2Nm

0
,

otherwise

;

8>>>>>><
>>>>>>:

(23)

where N(x): [0,1] - [0,1] is the shape function of the rod. Note
the sign negation in the off-diagonal terms which takes into
account the opposing directionalities of êmn and ênm when
expressed in terms of RD

g . Using the standard linear shape
function (N(x) = 1 � x) allows the integrals to be easily
performed while also yielding the relation

M
,
¼�1

2
lim
o!0

@2

@o2
D
,
� �� �

)D
,
¼K
,
�o2M

,
þO o4
� �

(24)

where D
,

has been approximated by its Taylor expansion to
second order. This expansion shows that the practice12 of
finding the natural frequencies of the system by observing

where det K
,
�o2M

,
� �

¼ 0 is merely a second order approxi-

mation of defining the natural frequencies by where

det D
,
� �

¼ 0.

Fig. 2 (A) Time-dependent displacement, us applied as input at the source
(lower left joint) (B) response of a square network with a crossbar to the applied
input, shown at four different times. Stress values are color-coded on each rod:
positive values correspond to compression and negative values to extension.
Input displacement is applied at the lower left joint. Fixed boundary conditions
are applied at the top-left joint (only the y coordinate is fixed) and the top-right
joint (both x and y coordinates fixed). Parameters: L = 1 for all rods; t = 1 for
rods in the square frame, t ¼

ffiffiffi
2
p

for the crossbar.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
ur

ri
ak

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
02

6/
01

/0
5 

23
:5

0:
25

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm00619h


This journal is © The Royal Society of Chemistry 2025 Soft Matter, 2025, 21, 8986–8998 |  8991

3.2 Truss network method gives accurate results at a lower
computational cost

To show that our approach produces results that are equivalent
to previously established methods, we first consider a two
dimensional structure comprised of four joints arranged in a
square, a total of 5 rods (square frame with a crossbar) as
shown in Fig. 3(A). We choose a global coordinate and label
system such that the joint 1 is located at (0,0), joint 2 at (L,0),
joint 3 at (0,L), and joint 4 at (L,L). Rods that form the square
frame can be denoted by the connectivity labels 12, 13, 24, and

34. The fifth rod, labeled 23, creates a cross bar of length
ffiffiffi
2
p

L.
How this system responds to external forces can be deter-

mined from the use of scattering wavefronts (see Section 3.3).
Here we focus on the natural frequencies given by our method
and compare with finite element methods. We compare with
two different finite element approaches. In finite element

methods, one would define a mass matrix, M
,

, then determine

the natural frequencies by observing where det K
,
�o2 M

,
� �

¼ 0.

Eqn (23) gives one possible definition of M
,

, denoted as the
consistent mass matrix, where we divide mass between rods in
a way that is consistent with the network Laplacian approach.
Another even simpler definition is known as the lumped mass
matrix in which N(x) = Y(1/2� x), with Y(x) being the Heaviside

step function, thus causing M
,

to become diagonal with

M
,
mm¼ ð1=2Þmm I

,
m. Here mm is the total mass of all rods con-

nected to joint m. This lumped mass matrix simply compresses
the entire system into the joints by splitting the mass of each
element on the rod evenly between its connected joints. (Note
that if the rods in the original network are not subdivided, the
lumped mass matrix method is the same as the simple balls
and springs method.) The size of these matrices are determined
by the number of subdivisions in the rods.

Either of these mass matrices can be used to calculate a set
of natural frequencies, though these will generally not be
equivalent due to the distinct way each handles the mass of
the various system elements. The theory presented here is also

Fig. 3 (A) Schematic of a square truss structure with a crossbar. (B) Comparison of natural frequencies computed using the truss network method and
standard finite element methods for the square structure with a crossbar. The natural frequencies are plotted as a function of the number of subdivisions
of the rods in the finite element methods. No subdivisions are necessary with the network Laplacian method to achieve the theoretical limit. (C)

Computational time required for different methods. (D) Amplitude of oscillation at the target joint (T) ~uT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~uTx
� �2þ ~uTy

� �2r
, in response to a periodic force

applied at the source joint (S) along the (1,1) direction. Parameters: t = 1 for rods in the square frame, t ¼
ffiffiffi
2
p

for the crossbar, and L = 1 for all rods.
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distinct from this approach as the network Laplacian was
developed without any approximation of the distribution of
mass within the rods. We thus expect the natural frequencies

calculated from the condition det D
,
� �

¼ 0 to represent a con-

tinuum limit of those derived from either mass matrix. To test
this, we considered the effects of dividing each bar of the
square structure shown in Fig. 3(B) into a number of elements.
Specifically, for n divisions we introduce n � 1 evenly spaced
new joints in each rod to transform it into n smaller identical
rods. We then calculate the five lowest nonzero natural fre-
quencies using all four methods (the lumped mass matrix,
consistent mass matrix, network Laplacian, and reverberation
matrix by steadily increasing o and observing where the
determinant of each matrix vanishes. The spectrum of the
network Laplacian and reverberation matrix are completely
equivalent, but the reverberation method ultimately requires
more computational time.

Fig. 3(B) shows the results of this process. The network Laplacian
(and, equivalently, the reverberation matrix) has a unique represen-
tation for a given network and does not involve rod subdivisions.
Hence the results from these methods are represented as horizontal
lines. Note that the natural frequencies of both lumped mass matrix
and consistent mass matrix methods steadily converge to those of
the network Laplacian as the structure becomes more finely divided.
The reason that the mass matrix-based methods converge to the
frequencies computed by our truss network Laplacian can be under-
stood as follows: the truss network Laplacian method retains the full
continuum dynamics (uniaxial) of each rod segment. In contrast, the
lumped and consistent mass matrix methods approximate the same
uniaxial continuum dynamics by discretizing each rod into smaller
segments, assigning mass to the nodes. As the number of subdivi-
sions increases, these discrete models more accurately capture
distributed mass along rods, and therefore it is consistent that their
computed spectra approach the values obtained from our method.
In other words, our method can be viewed as the exact continuum
limit of the mass matrix methods.

In the particular case considered here in which all rods are
made of identical material and have identical cross sections,
the network Laplacian and reverberation matrix also find a
natural mode at o = pc/L that the mass matrices do not. This is
due to this particular value of o being a resonant frequency of
each rod except for the cross bar, thus requiring the more
careful handling explored in the SI Section S1.

We also compare the overall computation times required to
obtain the spectra plotted in Fig. 3(C) as performed on an AMD
Ryzen 5 1500� processor with Numpy’s linear algebra package used
to calculate the determinants. Fig. 3(C) shows how these computa-
tion times increase for the mass matrix methods as the system
becomes more finely divided. As mentioned previously, the natural
frequencies and modes determined by the network Laplacian and
reverberation matrix are invariant to such divisions. We see from
this data that the network Laplacian is indeed more computationally
efficient than the reverberation matrix method that involves larger
matrices and that both are substantially more efficient than either

mass matrix method when the system rods are subdivided into more
than 3 divisions.

In many earlier studies on such network structures, a simple
balls and springs method was used.27–30 This method assumes
that masses of rods are concentrated at the joints and the edges
are replaced by a massless hookean spring. Note that this is
same as the lumped mass matrix method with no sub-division
of the edges. We computed the responses of the network with
the truss method and balls and springs for a simple square with
a crossbar network and also larger disordered networks that are
of interest to soft matter research.

For balls and springs we assume the mass of the rods is
equally shared between the two joints connecting them and is
concentrated at the joints. The stiffness of the rod connecting
joints m and n is given by kmn = Lmn/tmn while its mass is given by
mmn = Lmntmn. This for balls and springs matrix representation
equivalent to a given truss network is:

K
,
�o2 M

,
¼

P
g2Nm

kmgêmgê
T
mg �

mmgo2

2
I
,

m
m ¼ n

kmn êmn ê
T
nm n 2Nm

0
,

otherwise

:

8>>>><
>>>>:

(25)

We first examined how our truss network-based method
compares with balls and springs by examining computations
for square with a crossbar (Fig. 3D). We applied an input force
vector (1,1) to the source joint S and measured the response at
the diagonally opposite joint, T. The response is defined
as the amplitude of oscillation at the target joint

~uT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~uTx
� �2þ ~uTy

� �2r !
. At low frequencies, the truss and

spring methods exhibited similar behaviors, consistent with
our expectation that balls and springs are a good approxi-
mation for static and low-frequency cases. The peaks in the
response correspond to resonant frequencies. Note that the
resonant frequencies differ between the two methods (which is
in agreement with Fig. 3(B)). More importantly, beyond a
frequency of approximately 2, the spring network’s response
dropped rapidly, while the truss network continued to oscillate.
This arises because a balls and spring network is a discrete
representation and has only a finite number of normal modes.
A spring network cannot respond accurately to excitations
beyond the highest natural frequency (the Debye frequency).
Truss networks treat rods as continuous objects, allowing each
rod to support an infinite number of normal modes, unlike a
single spring that supports only one mode.

So far we illustrated our method using small regular net-
works. These are much simpler to compute, even allow for
analytical calculations. Disordered networks are more relevant
for metamaterial synthesis due to their high tunability and
capacity to incorporate multiple functionalities.29,31 To evaluate
our method in such contexts, we compared it with the lumped
mass matrix (balls and springs) approach on a disordered
network derived from jammed packing of spheres (Fig. 4).
Disordered network with 400 joints obtained as contact
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network from 2D disk packing32 (see inset of Fig. 4). We
compute the network response and report it as ũT

x , where ũ is
the amplitude of oscillation at the target joint, for a force (1,1)
at the source joint. We found that beyond a certain frequency,
the spring method fails to generate any response at the target
joint. In contrast, the truss network method continues to yield
consistent results (consistent with results discussed on a small
network previously). Thus truss network method can also be
used to compute the response of networks for pulse excitation
or impact loads, which involves high frequency components.

3.3 Wave dispersion and analysis of network responses to
impact loads

One direct result that can be obtained from the theory pre-
sented here is the well-known phenomenon of wave dispersion
at a network joint. By constructing the forward and backward

wave amplitude vectors at joint m as
-

Fm(o) and
-

Bm(o) such that
their respective jth components are Fmn(o) and Bmn(o) with n

being the same index used to construct the jth column of e
,
m,

exactly the same indexing scheme as was used for ~sm(t) and
-
vm(t), we can utilize the Fourier transform of eqn (13) to express
-

Fm(o), the set of outgoing wave amplitudes, as a function of
-

Bm(o), the set of incoming wave amplitudes. This can be

compactly expressed by first defining the matrix L
,
m in exactly

the same manner as A
,

m but with the diagonal terms being the
respective Lmn. The Fourier transform of eqn (13) can then be
written as

� ~~Pm oð Þ ¼ e
,
mA
,
m

~~sm oð Þ (26)

¼ e
,
mL
,

m�io ~Bm oð Þ � ~Fm oð ÞÞ
�

(27)

¼ e
,
mL
,

m 2io~Bm oð Þ � ~~vm oð ÞÞ
�

¼ e
,
mL
,

m 2io~Bm oð Þ � e
,T
m

~~wm oð ÞÞ;
�

(28)

where we have used the Fourier transform of eqn (13b) in the

final equality. Eqn (28) can then be solved for ~~wmðoÞ, which can
be used to produce

~Fm oð Þ ¼ 1

io
~~vm oð Þ � ~Bm oð Þ (29)

¼ 1

io
e
,T
m

~~wm oð Þ � ~Bm oð Þ (30)

¼ T
,
m~Bm oð Þ þ 1

io
e
,T
m e
,
mL
,

m e
,T
m

� ��1
~~Pm oð Þ; (31)

where

T
,
m¼ 2 e

,T
m e
,
mL
,

m e
,T
m

� ��1
e
,
mL
,
m� I

,
m; (32)

is the transmission matrix and I
,
m is the |Nm| � |Nm| identity

matrix.
Eqn (31) represents the method by which one may directly

calculate the amplitude of all outgoing waves from the ampli-
tudes of all incoming waves and the force applied to the joint. It
is also functionally equivalent to other representations of the
same wave scattering phenomenon,13 but is here presented in a

compacted notation. Of note is that when Dm = |Nm|, e
,
m is

invertible and T
,
m simply reduces to I

,
m. In this case, the wave

amplitudes of each element are completely decoupled from
each other so that no energy can pass through the joint except
for that which is supplied by any external forcing.

The transmission matrix can be used in a variety of ways.
The scattering of wavefronts can be easily tracked by propagat-
ing them through the rods of a structure, using eqn (31) to
calculate how they transmit through and reflect off of the
joints, and repeating for the desired amount of simulation
time. The natural frequencies of the system can even be
determined by also enforcing a matching condition throughout
(see SI Section S2). This method of wavefront tracking is
functionally equivalent to the reverberation matrix method
explored in ref. 14; wherein a global scattering matrix is
constructed as a diagonal block matrix whose component
matrices are the transmission matrices. The reverberation
matrix is then constructed by matching the backward waves
with their corresponding index exchanged forward waves and
solving eqn (31) for the applied forces.

How a square structure with a crossbar responds to external
forces can be determined from the use of scattering wavefronts.
Fig. 5 shows a time lapse of a compression wave generated by a
sudden impact moving through the structure. Eqn (31) dictates
how the initial wave interacts with joint 2 to become two
separate transmitted waves and one reflected wave. This pro-
cess repeats itself every time one of the waves reaches joint 2 or

Fig. 4 Comparison between the lumped mass matrix method (balls and
springs) and the truss network method in a disordered network (inset). A
periodic excitation is applied at the source joint (red) in the direction
indicated by the red arrow. The amplitude of oscillation at the target (ũT) is
computed at the target joint (magenta). Parameters: L = 1 for all rods. t
values of rods vary from a minimum of 0.015 to 0.025 with a mean value of
0.02.
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3, steadily creating a continuously increasing number of waves.
Fig. 5 also highlights how waves merely reflect off joints 1 and 4
rather than scattering through them due to the fact that
Dm = |Nm| at these joints. As discussed before, this causes the
rods attached to them to be effectively uncoupled and incap-
able of passing energy to one another.

3.4 Using our method to search for structures with enhanced
vibrations at target

The ability to control the oscillation of specific joints has broad
applications, ranging from earthquake or blast protection systems to
piezoelectric devices. Previous reports have discussed impedance-
matching or mismatching protocols to achieve the desired
control.33–39 While impedance matching in one-dimensional sys-
tems has been extensively studied,40 two-dimensional and disor-
dered networks present significantly more complex challenges,41,42

requiring computational approaches.
Because our network Laplacian method is accurate and fast,

it can be used to predict designs with novel mechanical
prooperties. Here we sweep through design space of parameters
and show structures with widely different oscillations of a

target joint (T) for the same boundary conditions. We consider
an example in which the target joint (T) oscillates in response to
input oscillations at a source joint (S) within a square network
with a crossbar, subject to boundary conditions that prevent
rigid body translation and rotation. (Fixed boundary condition,
ũx = ũy = 0 for lower right joint, and roller boundary condition
ũy = 0 for upper left joint) (inset in Fig. 6A).

We first analyzed the response of a square frame with a
crossbar as a function of the impedance of crossbar
L2 ¼ A

ffiffiffiffiffiffiffi
Er
p

ð Þ in (Fig. 6A). The four other rods have impedance,
L1. When L2 is much smaller than L1, the target joint’s
response is minimal, analogous to a thin rod ineffectively
transmitting forces from the source joint. As L2 increases,
improved momentum transfer leads to an increased target
response, reaching a maximum at a specific L2 close to
L2 = L1. Note that this optimal impedance value is not simply
equal to L1 but is a complex function of the network architec-
ture and the frequency of the force signal at the joint. (In
contrast, the equivalent one-dimensional system has the oscil-
lation amplitude maximized when L2 = L1, when t1 = t2 = 1 for
o = 100. See SI, Section S4.2, two rods end to end.) We have
derived an analytical relationship between response and para-
meters L and oscillation frequency o for a single rod, confirm-
ing the accuracy of our computational model (see SI, Section
S4.1). In addition to maximized response when impedance is
matched, there can also be some resonant modes, which lead
to sharper peaks in this response.

Further investigation involved modifying impedances L2

A
ffiffiffiffiffiffiffi
Er
p

ð Þ while maintaining constant total mass by adjusting

t2 L

ffiffiffiffi
r
E

r� �
accordingly as t2 = 1/L2 (Fig. 6B). This approach

revealed multiple amplitude maxima due to resonances, occur-

ring when the cot(ot) term in the Laplacian matrix, D
,

diverges.
We then tested how this method compares with balls and

springs methods (lumped mass matrix without any rod sub-
divisions) (Fig. 6C). This analysis also confirms that the
response of the network Laplacian method and the ball-and-
spring method is comparable at lower frequencies but the ball-
and-spring method is not adequate for higher frequencies as
discussed in previous sections. It is interesting to note, at
higher frequencies, the ball-and-spring method gives similar
qualitative behavior as the network Laplacian method when L2

is small relative to L1, however at higher values of L2, the ball-
and-spring method gives a constant response while the network
Laplacian method shows a decreased response.

Next, we apply the method to disordered networks and give
an example where our method shows that simple changes in
network connectivity can lead to large changes in response
(Fig. 6D). We consider a disordered structure comprising
18 joints, equidistantly arranged in two parallel horizontal
lines at y = 0 and y = 1. The network is constructed by randomly
pairing joints at y = 0 and y = 1 and connecting them with
slanted rods until the average coordination number reaches
z = 4, ensuring network rigidity. All horizontal rods have an
impedance of L1 = 1, while all slanted (and vertical) rods have a

Fig. 5 Movement of stress wave through a square structure. In the case
presented here, each element is assumed to be made of the same material
and have the same cross section so that all values of L and c are
equivalent. (A) The structure is impacted by an impulse at time t = 0 in
such a way as to create stress in rod 12. (B) At time t = L/3c the
compressive stress wave has moved a third of the way across rod 12. (C)
At time t = 4L/3c the wave has scattered off joint 2 and created three new
wavefronts; a compressive wave in rod 24, a tensile wave in rod 23, and a
reflected tensile wave in rod 12. (D) At time t = 7L/3c the waves in rods
12 and 24 have reflected off joints 1 and 4 respectively while the wave in
rod 23 has not yet reached joint 3. Transmission matrices are explicitly
computed in the SI Section S2.1.
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variable impedance L2. The boundary conditions are defined as
follows: the source joint (lower leftmost joint (S) at (0,0)) is
subjected to a constant unit displacement amplitude, ũ1

x = 1;
the lower rightmost joint, at (8,0) is fixed along x and y axes,
ũx = ũy = 0; and the upper leftmost joint, at (0,1) is fixed along
the y-axis, ũy = 0. These conditions prevent rigid body transla-
tions and rotations. We measure the oscillation amplitude
(response) of the target joint (T) (upper rightmost, at (8,1.0))
as a function of L2, with fixed parameters L1 = 1, o = 1, and t1 =
t2 = 1. Fig. 6(D) shows that the target joint’s response is highly
sensitive to the specific network realization. The grey lines
represent different random network configurations, all main-
taining the same average coordination number but with unique

pairings of joints at y = 0 and y = 1. The response curves exhibit
three distinct regimes: In the low L2 regime (L2 { L1), the
response is relatively constant as L2 increases. This contrasts
with the low and increasing response observed in simpler
geometries (Fig. 6A and C), attributable to the fact that in this
system, even vertical rods have impedance of L2, which is not
the case for square with a crossbar system considered in Fig. 6.
Even a square network with a crossbar with a more number of
L2 elements shows similar behavior in this regime (see SI,
Fig. S10) The intermediate L2 regime (L2 E L1) shows many
resonance peaks. Maximum variability between network reali-
zations is observed here, highlighting the system’s sensitivity to
specific network realization. In the high L2 regime (L2 c L1),

Fig. 6 (A) Tuning the response of a square network with a crossbar. Sinusoidal displacements of unit magnitude are given as input along x-axis at the
source joint (S) and the magnitude of amplitude of oscillation at the target joint (T) along the y-axis, |ũT

y| is computed. The other two diagonally opposite
joints are given appropriate boundary conditions to prevent rigid body translation and rotation. The diagonal rod has an impedance L2, rest of the rods
have an impedance L1. t1 = t2 = 1. (B) Response of the target joint as a function of impedance keeping the total mass of the structure constant, by setting
t2 = 1/L2, t1 = 1. (C) The amplitude of oscillation of the target joint (T) for different frequencies from the truss method (solid lines) compared with balls and
spring (dashed lines). t1 = t2 = 1. (D) Responses of random networks with slanted rod connections between two parallel rows of rods. Light grey lines
represent responses from different network realizations. Source (S) is at (0,0), and target (T) is at (8,1.0). All slanted rods have impedance L2, while
horizontal rods have impedance L1. Grey lines represent responses for different random realizations of the network. Blue and chocolate colored lines
indicate two selected realizations with markedly different responses; insets near the curves show corresponding network structures (shown in
rectangular aspect ratio for legibility). The mass of the network was not held constant as L2 was varied. Time constants and frequency are set as
t1 = t2 = 1 and o = 1, respectively.
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the response reaches a plateau (but distinct for each network
realization). We identified two network realizations with mark-
edly different responses in the high L2 regime (L2 c L1). The
corresponding network structure is included as insets near
these curves. This shows that subtle changes in network
structures can lead to several orders of magnitude differences
in the responses. However, it is to be noted that whole range of
L2 values considered in this study may not be accessible by
changing areas of cross-section of rods. Larger areas could lead
to steric hindrance with neighbours. Nonetheless, the strategy
of changing impedances with changes in area of cross section
offers a valuable and practical design approach for 3D-printed
microarchitectured materials to tune their response.

4 Conclusions

In this work, we developed a computationally tractable
approach for computing the dynamic responses of complex
truss networks. We derived a network Laplacian formalism that
relates displacements (or velocities) of joints to applied forces,
taking into account the mass distribution along the rods. We
demonstrated that our method accurately computes natural
frequencies of truss networks through comparison with more
detailed finite element methods on simple structures. This
method is at least an order of magnitude faster than mass
matrix techniques (finite element) for a reasonable level of
accuracy. We then compared with balls and springs model and
showed that while balls and springs model gives comparable
results at low frequencies, it breaks down at high frequencies
(beyond the highest normal mode or the Debye frequency of
spring networks).

Our method can contribute to research efforts in uncovering
the effects of network topologies, impedance distributions, and
other network properties on the mechanical responses of
disordered soft matter systems. For example, our specific
observation of high variability between random realizations
in Fig. 6(D) illustrates the potential for fine-tuning mechanical
properties through structural design using our method. More-
over, the contrast with simpler geometries emphasizes the
importance of considering larger networks in predicting and
designing mechanical responses. Furthermore, the observed
resonance behavior in the intermediate L2 regime hints at the
possibility of designing switchable materials, where small
changes in the network properties could lead to significant
shifts in mechanical response. This could have applications in
areas such as vibration damping, acoustic metamaterials, or
responsive soft robotic systems. With suitable optimization
techniques, this approach could aid in designing materials
with tailored mechanical properties through the large design
space provided by disordered networks.

We believe this approach could be a valuable addition to
computational toolkits for designing micro-architectured 3D
printable materials. This method, coupled with suitable opti-
mization methods, can help in efficiently designing networks
with nontrivial mechanical properties. One can also apply the

method to understand more complex disordered and hierarch-
ical biological structures, such as bones. Finite element meth-
ods are not appropriate for hierarchical cases as they require
refinement of mesh sizes when modeling different levels of
arrangement. The truss network Laplacian method is specifi-
cally useful for hierarchical truss structures as it relies only on
joint positions and connectivities and doesn’t involve the
discretization of rods.

While our method is efficient and runs fast for a wide range
of cases it does suffer from several drawbacks that in some
contexts limit its applicability. Currently, our approach is
appropriate for designing only small-amplitude dynamics of
stretch-dominated structures. We ignore transverse forces, i.e.,
rods cannot transmit forces in directions perpendicular to their
long axis. We also ignore the bending of the rods. This can be
crucial if the structure is floppy or if the applied forces are
large. Thus, this method, while universally applicable to any
network of rods with pin joints, becomes particularly powerful
and accurate only for 3D printed materials when coordination
numbers are at or above the critical value dictated by Maxwell’s
criterion for rigidity. Finally, here we considered perfectly
elastic rods that don’t dissipate any mechanical energy. This
is not true for real materials, especially polymeric materials
used for 3D printing which dissipate mechanical energy
over time.

Another consideration in assessing the applicability of our
model is the concept of a representative volume element (RVE),
defined as the smallest material volume whose effective properties
match those of the bulk.43,44 In metamaterials, when the excitation
wavelength becomes comparable to or smaller than the RVE size,
the internal microstructure of the RVE begins to influence the
response, and additional variables may be required to capture its
behavior accurately. For a rod network model, the RVE is effectively
the full length of a rod, which limits its validity in the regime where
the excitation wavelength is smaller. In contrast, by treating each
rod as a one-dimensional continuum, our formulation has an RVE
that is, in principle, infinitesimally small, allowing it to resolve
wavelengths much smaller than the rod length. However, in real
systems, making wavelengths smaller and smaller will eventually
excite complex physical and nonlinear effects. Once such effects
become significant, the fundamental assumptions of our model
break down, and the network Laplacian we develop ceases to be an
accurate representation. Nonetheless, within the range where
these additional mechanisms (specifically non-linear and visco-
elastic effects) are negligible, our method remains more accurate
than traditional spring network approaches for short-wavelength
regime.

Most of the examples presented in this paper assumed a
periodic excitation with a single frequency. However, if the
system were to be subjected to more complex forcing (involving
multiple discrete frequencies, or a conitnuum of frequencies),
then we would have to add or integrate over frequency space (as
in the example Fig. 2), which would introduce computational
convergence issues. Additionally, for a non-recurrent (non-
periodic) impact, we would have to consider a cutoff frequency
as we cannot integrate all the way out to infinity. Finding an
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appropriate way to numerically integrate the inverse of a
Laplacian matrix would be interesting to explore.

Future directions also include further improving the model
by incorporating rod bending, transverse forces, and viscoelas-
ticity. These improvements would make the model more sui-
table for designing networks with complex mechanical
properties and more accurate at extremely small excitation
wavelengths. In particular, this approach could be used to
design metamaterials with controlled mechanical energy or
vibrations – an area of interest for soft robotics. Additionally,
the method can help study the stress response of complex
hierarchical structures, such as bone tissue, and how these
tissues remodel under stress. This may offer insights into
adaptation principles under external periodic forces and aligns
with current efforts in soft matter research to explore physical
learning in biological systems. Beyond understanding biologi-
cal structures, this approach can also be applied to the devel-
opment of artificial adaptive mechanical metamaterials that
dynamically modify their properties in response to external
conditions.
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