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Probing cage dynamics in concentrated hard-
sphere suspensions and glasses with high
frequency rheometry†

Thanasis Athanasiou, ab Baicheng Mei, *c Kenneth S. Schweizer*cd and
George Petekidis *ab

The cage concept, a central microscopic mechanism for glassy dynamics, has been utilized in

concentrated colloidal suspensions to describe a number of phenomena. Here, we probe the evolution

of cage formation and shear elasticity with increasing volume fraction in hard sphere suspensions, with

emphasis on the short-time dynamics. To this end, we utilize linear viscoelastic (LVE) measurements, by

means of conventional rotational rheometers and a home-made HF piezo-rheometer, to probe the

dynamic response over a broad range of volume fractions up to the very dense glassy regime in

proximity to random close packing. We focus on the LVE spectra and times shorter than those

corresponding to the dynamic shear modulus G0 plateau, where the system approaches transient

localization and cage confinement. At these short times (higher frequencies), a dynamic cage has not

yet fully developed and particles are not (strictly) transiently localized. This corresponds to an effective

solid-to-liquid transition in the LVE spectrum (dynamic moduli) marked by a high frequency (HF)

crossover. On the other hand, as the volume fraction increases caging becomes tighter, particles

become more localized, and the onset of the localization time scale becomes shorter. This onset of

transient localization to shorter times shifts the HF crossover to higher values. Therefore, the study of

the dependence of the HF crossover properties (frequency and moduli) on volume fractions provides

direct insights concerning the onset of particle in-cage motion and allows direct comparison with

current theoretical models. We compare the experimental data with predictions of a microscopic

statistical mechanical theory where qualitative and quantitative agreements are found. Findings include

the discovery of microscopic mechanisms for the crossover between the two exponential dependences

of the onset of the localization time scale and the elastic shear modulus at high volume fractions as a

consequence of emergent many body structural correlations and their consequences on dynamic

constraints. Moreover, an analytic derivation of the relationship between the high frequency localized

short-time scale and the elastic shear modulus is provided which offers new physical insights and

explains why these two variables are experimentally observed to exhibit nearly-identical behaviors.

1. Introduction

Brownian hard sphere colloidal suspensions are one of the
simplest model soft matter systems with their structure and
dynamics extensively studied.1–3 Nevertheless, although simple
in terms of constituents and their interactions, these systems
still pose challenges4,5 as they exhibit rich structural, thermo-
dynamic and mechanical behaviors especially upon increasing
the volume fraction towards their maximum value or a random
close packing (RCP) state. In the concentrated regime, where
particle surfaces approach to distances far less than their radii
on average, many body interactions dominate, affecting micro-
structure, quiescent dynamics, and viscoelasticity. These many
body correlations impose significant theoretical challenges.
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The nature of the glass transition is still a debated topic with
advances being made by comparing the physics of colloidal
suspensions with molecular glass formers.6–10 While in theory,
hard core interactions are defined by an infinite repulsion at
contact and zero at larger distances, in a real system such as
sterically stabilized polymethylmethacrylate (PMMA) spheres,11

the repulsion pair potential cannot be infinitely steep12 and the
softness induced by the steric layer may affect the viscoelastic
response at higher frequencies.13

In the colloidal regime, time scales are set by the elementary
Brownian time t0 (=R2/6D0), where R is the particle radius, D0 =
kBT/6pZsR is the Stokes–Einstein–Sutherland self-diffusion
coefficient at infinite dilution, kB is the Boltzmann constant,
T is the absolute temperature, and Zs is the solvent viscosity.
As the particle volume fraction increases from the dilute limit,
particles start to interact via solvent-mediated hydrodynamic
and excluded volume (entropic) interactions and hence the
microscopic particle dynamics slow down. Eventually, at
volume fractions around f E 0.4,14 the dynamics split into
two distinct relaxation modes, one on a short length and hence
a short time scale (often referred to as b-relaxation in the mode-
coupling theory (MCT) framework) within the first neighbor
distances and the other on a larger length and hence a longer
time scale, the so-called a-relaxation, where particles diffuse
beyond their first neighbor shell.15,16 At the onset of the
thermodynamically metastable17 regime at f E 0.49, the two
relaxation processes start to strongly separate in time.5 At the
phenomenologically deduced glass transition volume fraction,
typically cited to occur at f E 0.58 and determined based on
the (arbitrary) practical longest time scale of a measurement or
extrapolated fits of an ‘‘ideal’’ MCT critical power law, the
inverse long-time diffusion constant and the related zero-
shear viscosity exhibit a sharp increase. Taking the cage model
as a reference15 the two relaxation modes have different origins:
the b-relaxation is linked to in-cage rattling18,19 and the struc-
tural a-relaxation is linked to thermally activated hopping or
cage escape. This mobility reduction is also reflected in the
mean squared displacement (MSD), hDr2(t)i = h|r(t) � r(0)|2i,
where r(t) denotes the particle position at time t and the bracket
represents an ensemble average over all particle trajectories
under consideration. At higher volume fractions (f 4 0.58)
and intermediate time scales (between a and b-relaxation),
single particle motion becomes even more strongly coupled
to the structure and dynamics of neighboring particles, and its
subdiffusive character on intermediate time and length scales
becomes more prominent. This is the regime where the loca-
lization plateau emerges, thereby separating the dynamics into
long-time and short-time regimes with their diffusion coeffi-
cients DL and DS

20–23 corresponding to the a-relaxation and
b-relaxation, respectively. Interestingly, the term b-relaxation
was originally used in molecular glass formers to describe
the relaxation modes that are extrinsic to the nature of glass
transition.24 It is noted that the b-relaxation can refer
to different microscopic dynamical processes in thermal mole-
cular glasses and hard sphere colloidal glasses; however, in
both cases they reflect the more short-time and local motions in

each system, but at different values of absolute length- and
time-scales. In the colloidal field – hence in this work – it refers
to the particle in-cage motion.

A similar behavior is exhibited in linear viscoelastic (LVE)
spectra where dynamic moduli at low- and high-frequencies
(long- and short-times, respectively) are separated by the caging
plateau which thereby defines the intermediate time dynamically
relaxed elastic shear modulus G0, as has been shown in previous
studies.25–27 When the probing frequency is decreased sufficiently
(at frequencies often inaccessible to commercial rheometers),
the suspension exhibits a liquid-like behavior marked by the
low-frequency (LF) G0, G00 crossover with a time scale, 1/oc-LF. A
similar phenomenology, but for a completely different reason, is
exhibited at elevated frequencies. During such short-time obser-
vations the system behaves in a liquid like manner as the
measured LVE corresponds to the particle in-cage diffusivity. This
is reflected in the rheological response which exhibits a second
solid-to-liquid transition and a relevant high frequency (HF) G0, G00

crossover at a frequency, oc-HF 4 1/t0 c oc-LF.
A significant amount of work in the literature has focused

on the long-time a-relaxation process and the caging plateau
which is the manifestation of the kinetic glass transition and
the transiently localized state, respectively. The a-relaxation has
been the epicenter of a debate concerning whether the literally
frozen dynamics predicted by MCT28 is true or whether the cage
has a finite lifetime due to the presence of ergodicity-restoring
thermally activated hopping processes5 as predicted by other
theories.29 The latter is generally acknowledged to be the
case based on dynamic scattering experiments30,31 and direct
trajectory observations.32,33 To the best of our knowledge, no
systematic study has quantitatively linked the rheological sig-
nature of colloidal glasses at high frequencies with the theore-
tical description of short-time relaxation. Hence, its connection
with an elastic shear modulus remains elusive.

In this work, we focus on microscopic times and in particular
a measure of the time scale for the onset of transient localiza-
tion, tloc, and its relationship with 1/oc-HF obtained from macro-
scopic rheology. In the case of monodisperse spheres, the LF
crossover can be modeled using a single element Maxwell fluid
where the relevant time scale is defined by the moduli crossover
frequency. This Maxwell relaxation is linked to the long-time
diffusion coefficient.34 However, this is not the case for the HF
crossover where its prediction is more challenging.35 The HF
crossover clearly sets a time scale, tc-HF = 1/oc-HF, and a corres-
ponding modulus, Gc-HF = G0(oc-HF) = G00(oc-HF), that marks the
practical solid to liquid crossover transition and should reflect
the characteristic dynamics within a cage length-scale. We
explore the behavior of the HF crossover by performing inter-
mediate and high frequency small amplitude oscillatory shear
experiments in a HS colloidal suspension where the volume
fraction is systematically increased.

There are many direct36 and indirect37,38 methods to obtain
high frequency LVE data, with their own merits and limitations.
High frequency oscillatory shear is not possible with most
commercial rheometers which are limited to frequencies up
to around 200 rad s�1. We utilize high frequency rheometry by
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means of an in-house developed piezo rheometer (PZR) capable of
extending the accessible frequency range of up to 7000 rad s�1,
thus probing faster dynamics.39 The volume fraction dependence
of Gc-HF and oc-HF extracted from the LVE spectra is compared
with the predictions of the nonlinear Langevin equation (NLE)
theory within the dynamic free energy framework40,41 and the
physical mechanisms underlying our Gc-HF and oc-HF measure-
ments are elucidated. The relationship between LVE and
dynamics is briefly described in Section 2 where the relevant time
scales are defined. Section 3 presents the background on NLE
theory followed by the description of materials and methods in
Section 4. Theoretical predictions of NLE theory and experimental
rheological data are compared and discussed in Section 5, before
concluding in the last Section 6.

2. High frequency LVE and
in-cage dynamics

The classic Stokes–Einstein–Sutherland (SE) equation relates
the solvent viscosity to the single particle self-diffusion con-
stant in the dilute limit.21 By generalizing this equation, Mason
et al. related the MSD to the frequency-dependent complex
modulus G* (o) given by ref. 27 and 42:

G� oð Þ ¼ kBT

pRio D~r2 tð Þh i (1)

where i is the imaginary unit and hDr̃2(t)i is the Fourier trans-
form of the MSD. Hence,

G0 oð Þ ¼ G� oð Þj j cos pa oð Þ
2

� �
(2)

G00 oð Þ ¼ G� oð Þj j sin pa oð Þ
2

� �
(3)

where a is:

a oð Þ ¼ d lnDr2 tð Þ
d ln t

(4)

eqn (1) is one of the so-called generalized Stokes–Einstein (GSE)
equations, which is contrary to the simple SE equation for
simple liquids, and is an approximate extension to all frequen-
cies for viscoelastic systems.27,43 Moreover, the SE equation and
its generalizations do assume the validity of the fluctuation
dissipation theorem which in turn implies a system at thermo-
dynamic equilibrium. Nevertheless, this is a reasonable
approximation also for glassy systems where the evolution
towards equilibrium is slow or completely halted, i.e. the
system is at a long-lived local minimum of the free energy.
This has been evidenced by microrheological experiments44

and verified theoretically for colloidal glasses.34 In a reverse
procedure, Fig. 1 demonstrates the use of linear viscoelastic
data measured by a dynamic frequency sweep in the linear
regime to calculate the MSD in a hard sphere glass sample.

Fig. 1 presents the interrelation, via eqn (1)–(4), of a mea-
sured LVE spectrum to the corresponding particle MSD for a
hard sphere colloidal glass. The sample used as an example

here is a suspension of PMMA particles of a hydrodynamic
radius Rh of 151 nm in a viscous solvent (squalene) with a
volume fraction f of 0.63. At long times (low frequencies),
particles are localized within a cage localization length, rcage,
determined by the plateau of the MSD. This localization length
is linked to the plateau modulus of G0 via the GSE relationship.
At short times (high frequencies), the MSD slope approaches a
linear dependence on time. The corresponding volume fraction
dependent short-time diffusion coefficient, Ds(f), at such high
volume fractions, is expected to be about one order of magnitude
slower than the dilute suspension (bare) SE diffusion coefficient,
D0. A localization time is defined as the time required for a
particle to sufficiently explore its environment, i.e. to ‘‘feel’’ its
cage constraints and become transiently localized by its nearest
neighbors. This process represents a transition of the MSD from
diffusive to highly sub-diffusive, and the corresponding localiza-

tion time can be crudely estimated as t
0
cage ¼ r2cage

.
6DsðfÞ;

where rcage is the displacement related to the dynamical cage
size, as defined by the MSD long-time plateau. Still particles
need, on average, significantly longer time to reach a distance
equal to rcage; this time was qualitatively introduced above and is
indicated as tcage in Fig. 1. From this simple graphical repre-

sentation, it is clear that this microscopic localization time t
0
cage

and the tc-HF deduced from macroscopic linear viscoelastic
measurements at the high frequency G0, G00, cross-over point,
are comparable and potentially interrelated.

We should point out here that the microscopic dynamics deduced
from the high frequency LVE measurement (shown in Fig. 1) could in

Fig. 1 Typical LVE spectrum (left Y axis), G0 (solid circles) and G00 (open
circles) of a colloidal glass in the HF regime measured with a commercial
rotational rheometer MCR702 and a homemade PZR up to an angular
frequency of 4000 rad s�1. The corresponding MSD (right Y axis, solid
squares) is obtained by rearranging eqn (2) and (3). Abscissa is either angular
frequency (bottom) or the corresponding observation time t = 1/o (top). An
indication of the dynamic cage size, rcage, can be provided by the MSD
plateau. The corresponding times for the high frequency cross-over and
approach to the cage limits are also indicated by the vertical arrows.
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principle be measured by optical microscopy or dynamic light
scattering (DLS), when the latter probes, under certain contrast
conditions, the self-intermediate scattering function and there-
fore particle self-diffusion. In this sense, hydrodynamic effects
present in quiescent colloidal systems affect the dynamics
probed both in LVE and DLS in the same way. On the other
hand, under non-linear shear (not utilized here), hydrodynamic
interactions would strongly affect the microstructure and
microscopic dynamics.

3. Nonlinear Langevin equation theory

Within the dynamical, ‘‘ideal’’ MCT, a glass transition picture
for hard sphere colloidal glass formers, the long-time diffusivity,
DL(f), approaches zero experimentally at fg B 0.58 for mono-
disperse spheres. This is typically only inferred via an extrapola-
tion from experimental and simulation data by fitting to a
presumed functional form, e.g., the critical inverse power law
of MCT. On the other hand, a finite slow a-relaxation has been
detected at higher volume fractions of slightly polydisperse
particles where it is argued the a time crosses over to an activated
form.30,45 In contrast to this ‘‘ideal’’ MCT glass transition
picture, the nonlinear Langevin equation (NLE) theory predicts
a non-zero DL of up to fRCP. This is due to the thermally activated
hopping of particles over an entropic barrier (computed micro-
scopically) that always restores ergodicity via cage escape, in
principle, at long enough times.46 This is qualitatively consistent
with experimental observations43 for the out-of-cage diffusion
which is predicted to freeze only at RCP, avoiding MCT singula-
rities which have been estimated by various methods to lie in the
interval of 0.64 c f 4 0.515. The precise value of the latter
number depends on the structural input to MCT and the
statistical mechanical level of a MCT-like analysis47 employed,
but is always below RCP. The short-time diffusivity, Ds(f),
remains finite and measurable even upon approaching

fRCP B 0.64 for monodisperse spheres due to local in-cage particle
diffusion since some internal free volume is still available.

Within the NLE theory, the entropic barrier emerges from
the prediction of a spatially resolved effective dynamic free
energy, Fdyn(r), where r is the scalar particle displacement from
its initial position, and the negative gradient of the dynamic
free energy defines an effective force on a particle due to all
surrounding particles. It is calculated based solely on the
equilibrium structural input via the radial distribution or pair
correlation function, g(r), or its Fourier analogue, the static
structure factor S(q),40,41 and is given as follows:

bFdyn rð Þ ¼ �3 ln r

d

� �
� 1

2pð Þ3
ð
dq

rC2 qð ÞS qð Þ
1þ S�1 qð Þ e

�q2r2 1þS�1 qð Þ½ �=6

(5)

where d is the particle diameter, b = 1/kBT is the inverse thermal
energy, C(q) is the Fourier transform of the direct correlation
function C(r), S(q) = (1 � rC(q))�1, and r is the particle number
density. An example of the dynamic free energy for f = 0.58 is
shown in Fig. 2(a). It consists of an ideal entropy-like term,
which favors the ‘‘delocalized’’ Fickian diffusion liquid state

(per the �3 ln r

d

� �
term in eqn (5)), and smooth decaying,

negative contribution, finite at r = 0 (the second term in
eqn (5)) due to interparticle interactions and correlations which
favors particle localization. The minimum of the dynamic free
energy defines a simple measure of the transient localization
length rloc in the cage. The combination of the two contribu-
tions in eqn (5) leads to an entropic (for hard spheres) activa-
tion barrier in dimensionless units, bFB (see Fig. 2(a)), beyond
a volume fraction of B0.43 that must be surmounted via
thermally driven hopping to achieve out of-cage motion and
ultimately structural relaxation and long distance Fickian diffu-
sion. However, the barrier is only of order of kBT or less until
the volume fraction approaches the onset of the thermodyna-
mically metastable regime at f B 0.49, and hence activated

Fig. 2 (a) Dynamic free energy in units of the thermal energy at f = 0.58. Localization and hopping jump lengths related to in- and out of-cage motion,
respectively, are indicated, and FB is the entropic barrier. (b) Value of the direct correlation function with a reversed sign for different volume fractions
based on PY (dash-dotted) and MV (solid) closures in the near contact region. It represents an effective or renormalized interparticle interaction pair
potential in units of the thermal energy.
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dynamics emerge only sufficiently deep in the metastable
regime where the barrier is significantly higher than kBT.

The required structural input (S(q) and c(q)) for hard sphere
fluids in eqn (5) can be calculated from the Ornstein–Zernike
(OZ) integral equation:48

h rð Þ ¼ c rð Þ þ r
ð
c jr� r0jð Þh r0ð Þdr0 (6)

where h(r) � g(r) � 1, and an approximate closure relationship
is needed. The classic Percus–Yevick (PY) is a good approxi-
mation in the normal fluid regime, but not nearly as accurate in
the metastable regime of present interest since it sets c(r) to
zero outside the hard core and misses important many body
effects.48 Recent combined theory and simulation work, for the
metastable regime, has shown that the modified Verlet
(MV)49,50 closure is remarkably accurate up to very high volume
fractions of B0.585.51 Physically, the key is that the direct
correlation function has a short-range attractive tail outside
the core that grows in amplitude as volume fraction increases
(see Fig. 2(b)). This effective many body attraction strongly
modifies g(r) and S(q), the key input to the dynamical free
energy construction in NLE theory.

The OZ-MV theory for monodisperse hard sphere fluids
predicts a structural and thermodynamic crossover at fs of
B0.60 associated with new types of many body effects.52 The
distinctive changes of all equilibrium properties are in good
accord with simulations and experiments.52 As true of all
approximate integral equation theories, the location of RCP is
not captured correctly and is typically (well) beyond 0.644. For
the OZ-MV theory, it is found at fRCP B 0.77. Though far
beyond the correct value of 0.644, it is much closer to the
correct value than well studied integral equation theories such
as OZ-PY, or popular empirical representations such as the
Carnahan–Starling model, which both locate the incompressi-
ble RCP state at f = 1. Moreover, it has been argued that the
new physics emerges in the deeply metastable state (e.g. f 4
0.60) but well below the RCP volume fraction is not affected to
leading order by the too large value predicted for fRCP.52

Given the dynamic free-energy from eqn (5), the mean time
required for a tagged particle to displace ‘‘downhill’’ from its
initial position to the minimum (localized state) in the over-
damped limit (no inertia) can be computed by using Kramers
mean first passage time theory53,54 as

tloc
t0
¼ 2g dð Þ

d2

ðrloc
0

dreFdyn rð Þ=kBT
ðr
0

dr0e�Fdyn r0ð Þ=kBT (7)

where g(d) is the value of the radial distribution function at
contact (d = 2R) and it enters via quantification of the short
time dissipative friction relevant to hard sphere colloidal
suspensions.40,55 Eqn (7) ignores collective elastic contribu-
tions to the barrier of the ECNLE theory56,57 which have been
shown to be critical for the deeply metastable regime a-time
which is associated with the relatively large particle displace-
ment characteristic of barrier crossing. However, this long-time
contribution is not important for the present analysis of the
dynamic elastic shear modulus and localization length on

short-time and -length scales. The dynamically relaxed elastic shear
modulus plateau associated with the transiently localized state can
then be calculated theoretically by projecting stresses onto collec-
tive density fluctuations in the usual way, and within the single
particle dynamical framework of naı̈ve MCT (NMCT)58 one has:

G0 ¼ kBT

60p2

ð1
0

dq q2
d

dq
ln S qð Þð Þ

� �2
exp
�q2r2loc
3S qð Þ

� �
� (8)

We note that the mean-time scales for particle displacement to
longer distances can be similarly computed. For example, though
not our focus here, for the barrier crossing event identified as the
elementary step of the long-time a-relaxation, the time scale follows
from Kramers theory by changing the upper limit of the integration
range from rloc to the barrier location rB as shown in Fig. 2(a), and
including the collective elastic barrier contribution.56,57

4. Materials and experimental
methods

Sterically stabilized nearly hard-sphere PMMA particles with a
hydrodynamic radius Rh of 264 nm dispersed in squalene
(Sigma Aldrich, Germany) were utilized as the primary sample.
Steric stabilization is realized by chemically grafted poly-hydro-
stearic acid chains (E10 nm). Squalene was chosen as a solvent
for its high boiling point and its refractive index proximity to
PMMA in order to prevent evaporation and minimize any
remaining van der Waals attractions, respectively. Its relatively
high viscosity enhances torque signals but most importantly
slows down the in-cage dynamics allowing the high frequency
crossover to be accessible to conventional rotational rhe-
ometers such as MCR501, MCR702 (Anton-Paar, Austria) and
ARES (TA Instruments, USA), and our in-lab developed high
frequency piezorheometer (PZR). MCR702 was fitted with cone–
plate geometry and utilized in a separated motor transducer
mode to minimize the tool and sample inertia effects.39

The solvent shear viscosity was measured with a DMA 4100 M
viscometer (Anton Paar, Austria) and found to be Zs = 13.32 mPa s
at T = 23 1C. The particle hydrodynamic radius was confirmed by
dynamic light scattering measurements in the dilute regime.

The size polydispersity (standard deviation over the mean) of
our samples is around 10% which suppresses crystallization.
Different volume fractions were prepared from a single random
close packing (RCP) batch, created by centrifugation. Starting
from RCP, which was taken to be fRCP E 0.67 (for a 10%
polydisperse particles),59 the sample was successively diluted
from about 0.64 to 0.45, with a total of 38 discrete samples
progressively prepared, ensuring an accurate determination of
the volume fraction among each other and relative to the initial
RCP sample. More recent work60 suggest that the RCP volume
fraction for 10% polydisperse hard spheres is in the range of
0.638–0.658 depending on the compression rate (or the centri-
fugation speed in our experimental protocol), i.e. clearly lower
than that estimated by Schaertl et al.59 which we use in this
study, for consistency with our previous work.25
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Aging at these systems is weak and affects mainly G00 at the
lower frequency-end as short time in-cage dynamics are essen-
tially age-independent;39,61,62 hence, the system is considered
within the experimental time scales as time invariant. Particle
swelling can induce significant uncertainties and therefore the
stock sample was left at rest for two months after solvent
exchange and then centrifuged to RCP. After solvent addition,
the vial was placed on a rolling mixer for sufficiently long
period depending on the concentration. Once the particle
dispersion was completed, followed by a rest time of 12 hours,
the sample was loaded on the rheometer. A reduction of the
rest time was required for the less concentrated samples (f o
0.58) to prevent sedimentation. All measurements were com-
pleted within 2 hours upon loading with no shear induced
rejuvenation, i.e. no steady or oscillatory pre-shear.

To accurately determine the HF moduli crossover small
amplitude oscillatory shear measurements were performed
with 20 points per decade in the frequency regime of interest.
Each dynamic frequency sweep measurement was performed at
an optimum strain amplitude (ranging from 2% to 0.8%) in
order to achieve significant torque signals and keep perturba-
tion below the linear limit determined by dynamic strain
sweeps. A weak evolution of the moduli was observed in very
dense samples (f 4 0.6) within the first 30 minutes. At longer
times, the LVE spectra and particularly the HF crossover were
found to be time independent. Plate–plate 25 mm geometry was
utilized in the very dense samples to overcome difficulties
related to loading a stiff sample. Less concentrated samples
were measured with cone-plate 50 mm geometry in the ARES
rheometer.

5. Results and discussion

Dynamic frequency sweeps were utilized to capture the LVE
spectrum of these hard sphere suspensions as the volume
fraction is systematically decreased. The angular frequency
and the modulus of the HF crossover were the parameters of
specific interest. Hence, the conventional MCR702 or ARES
data were complemented by measurements in the PZR when
needed, i.e., at very concentrated samples where the HF cross-
over is detected at higher frequencies, beyond the range of
conventional rheometers.

The LVE spectra of three samples (out of the total 38
measured) are shown in Fig. 3. The most concentrated sample
with f = 0.64 exhibits the HF crossover at 586 rad s�1 while at
lower frequencies the caging plateau emerges. As f is decreased
to 0.617, still in the nonequilibrium glassy regime, oc-HF

decreases and falls within the frequency range of the MCR702
instrument. This frequency decrease of the HF crossover
reflects the cage enlargement and the less frequent exploration
of cage boundaries exhibited by the particles as their concen-
tration is reduced. The caging plateau is shifted to even lower
frequencies with no indication of a LF crossover at the lower
frequencies reached, (0.1 rad s�1). In contrast, at f = 0.545, the
LF crossover becomes faster and the HF crossover becomes

slower; hence, both are now accessible with our conventional
rotational rheometers. In this low volume fraction but still in
the metastable regime, the cage becomes larger and weaker as
the entropic barrier height decreases resulting in more fre-
quent out-of-cage hopping events.

5.1. Short-time dynamics: theory and experiment

Kramers theory is used to predict the mean first passage time for a
particle to displace ‘‘downhill’’ on the dynamic free energy from
r = 0 to rloc (see Fig. 2(a) and eqn (7)) and thereby reach its
transiently localized state40 and become ‘‘caged’’, thereby defining
the localization time, tloc. The theoretical predictions can be
compared with the experimental time (or frequency) of the HF
crossover obtained from LVE measurements. This comparison is
shown in Fig. 4 where the behavior of oc-HF for the entire f range
probed (panel (a)) and the NLE theory predictions for oloc = 1/tloc

from eqn (7) (panel(b)) are depicted. Interestingly, our experi-
mental results reveal two exponential regimes with a much
stronger exponential increase at ultra-high volume fractions. In
particular, the experimental data for f4 0.60 show an exponential
increase as oc-HF B exp(61f), while for lower volume fractions
(still high in an absolute sense), the slope is a factor of 2 smaller,
per oc-HF B exp(31f). Data enclosed in the dashed rectangle,
corresponding to the even lower volume fraction regime (0.53 o
fo 0.55), depart from exp(31f) behavior and will be discussed later.

The NLE theory predictions for monodisperse hard sphere
fluids in Fig. 4(b) for the localization time tloc are expressed in
units of the elementary bare time scale, which, as discussed
above, for a colloidal suspension is t0 = R2/D0 where D0 is the
dilute suspension Stokes–Einstein diffusion constant. Results
are plotted as the dimensionless oloc = 1/tloc, and are in good
semi-quantitative accord with the experimental data. In parti-
cular, the two exponential behaviors are predicted, and the ratio

Fig. 3 Dynamic frequency sweeps of concentrated (f = 0.64, 0.617 and
0.545) hard spheres (Rh = 264 nm) dispersed in squalene at T = 23 1C.
Measurements were performed using various commercial rotational rhe-
ometers such as MCR 702, ARES, and our in-lab developed PZR as
indicated. Vertical and horizontal arrows point to the dynamic moduli
crossover frequency, oc, and modulus (magnitude), Gc, respectively.
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of the exponential slope parameters is comparable to that of the
experimental data (a factor of B2), albeit smaller in an absolute
magnitude sense. Moreover, the absolute value of f at the cross-
over between the 2 exponential regimes is nearly the same for
theory and experiments, occurring at a value of f B 0.6. Notably,
this change of slope only appears when the structural input to
NLE theory is from OZ-MV theory, as indicated by the black
squares in Fig. 4(b). Moreover, the exponential growth laws have
a theoretical basis in OZ-MV theory which predicts multiple
structural metrics (including the density correlation length objec-
tively deduced from h(r) = g(r) � 1) to grow exponentially in the
metastable regime.63 On the other hand, the dynamical predic-
tions that use OZ-PY theory structural input in Fig. 4(b) (purple
circles) exhibit a single exponential regime, a direct reflection of
the absence of the new emergent many-body attraction in the
direct correlation function in OZ-PY theory.52 Thus, the crossover
of the two exponential regimes observed in experiments is attrib-
uted to the importance of the new structural many-body effects on
the dynamic caging process that leads to particle localization in
the highly dense metastable or so-called deep glass state.

The theoretically predicted Gc-HF corresponds to the
value of the elastic shear modulus in the localized state and
is computed using eqn (8). This is effectively a MCT calculation
albeit within the simpler single particle based ‘‘naı̈ve’’
version.52 The theoretical dynamic shear modulus also exhibits
two regimes with a change in slope at fs = 0.6, consistent with
the experimental findings, as shown in Fig. 5. This qualitative
behavior has been observed in earlier work25 and attributed to a
rheological signature of the glass transition that was shifted to
a higher volume fraction (compared to the nominal at f E
0.58) due to particle polydispersity. The present theory clearly
predicts the same behavior for monodisperse spheres if the
effective many body attractions in c(r) contained in the MV

closure are included. Therefore, the two exponential regimes in
Gc-HF(j) and ocr_HF(j) observed experimentally are again a
consequence of the importance of many-body effects in local
packing structural correlations and elastic stress storage which is
strongly coupled to slow density fluctuations. This implies that
these many body interactions, although not negligible at f smaller
but close to 0.6 (see Fig. 2(b)), become very important at higher
volume fractions and dominate at f 4 0.6 (see Fig. S1, ESI†).

If the experimental and theoretical results in Fig. 4 and 5 are
compared quantitatively, then one should note that the shear
modulus results of the latter have been extended to higher
volume fractions (up to about 0.72). This high value (for all
integral equation theories) is still well below the RCP volume
fractions predicted by the OZ-MV theory as discussed above and
in depth in ref. 52. We do not believe that this caveat affects the
model predictions at lower volume fractions, as has also been
discussed in ref. 49. Nevertheless, both the experimental and
theoretical data plotted as a function of the distance to their
corresponding RCP volume fractions are presented in Fig. 4
and 5, even though we do not expect that this distance is
the controlling factor that determines the new physics for
Brownian colloids. Indeed, we emphasize that the second
exponential regime in G0 (as well as in the high cross over
frequency) emerges from the theory well below the theoretical
RCP. For the experiments, we note that although the absolute
volume fraction values depend on the value of frcp used, the
relative distance to rcp, frcp � fs, is not affected. Moreover,
direct comparison of theory results for a monodisperse hard
sphere model with the polydisperse colloid experimental system
inevitably involves some (modest) quantitative uncertainty. It is to
within these caveats that all quantitative comparisons of theory
and experiments at a fixed common value of the absolute volume
fraction should be viewed.

Fig. 4 Volume fraction dependence of (a) the HF crossover frequency obtained from small amplitude oscillatory shear experiments scaled by the bare
Brownian time (t0 = R2/6D0) (right axis) and unscaled (left axis) and (b) the dimensionless localization frequency (t0/tloc) related to the in-cage dynamics
calculated from the NLE theory (eqn (7)) with MV closure approximation (open squares) and PY closure (open circles), where the y-axis (o) is also
normalized by 1/t0. The lines in both (a) and (b) indicate the different slopes as denoted. The vertical arrow in (a) indicates the experimental distance from
RCP for the critical volume fraction for the change of slopes. Data points in (a) shown in open red symbols (shaded area) are discussed below in Fig. 8. The
top horizontal scale in panel (b) indicates the distance in the volume fraction from the OZ-MV theory predicted RCP volume fraction.
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Overall, we believe that our findings above contribute to a
deeper understanding of the nature and origin of the dynami-
cal cage concept as it relates to the correlated pair structure.
One can identify a characteristic crossover volume fraction of
f B 0.6 in various dynamic properties (Fig. 4 and 5) as fs

defined above based purely on a qualitative change of the
structure and thermodynamics in the deeply metastable
regime, which signals when a new type of many body effects
become dominant. This deduction relates to simulation findings
that indicate, irrespective of the existence or not of an MCT-like
glass transition volume fraction, the emergence of a distinct type
of dynamic and structural response in a high volume fraction
regime approaching RCP but well below it ref. 52 and 64–66. On
the experimental side, this volume fraction regime is identified
with a type of nonequilibrium glassy state as defined in a
practical sense where (i) crystallization (if particles are mono-
disperse) is practically suppressed, (ii) the a relaxation is long
enough (though presumably not infinite) that is practically out of
the experimental window (see extrapolation shown in Fig. S2,
ESI†), and (iii) a solid like response is observed at all practical
time scales. In colloidal suspensions, this volume fraction
(usually denoted as fg) is typically estimated to be B0.58–0.6,
with the exact value depending on the particle polydispersity,
compression rate, and/or other experimental or simulation
conditions.

Returning to the primary issue of the relatively short time
and length scale dynamics, an important question is whether
there is any intuitive theoretical understanding of why oloc

behaves so similarly to the dynamic shear modulus G in Fig. 5,
a trend observed in our experiments. In order to provide an
answer, we explore different technical simplifications of the
NLE theory since we do not directly theoretically analyze the
frequency-dependent moduli. First, we note that the theoretical
result for oloct0 in Fig. 4(b) was numerically calculated based on

eqn (7) with a specific input from the dynamic free energy of
eqn (5), an approach we call Method-I. As discussed above in
the theoretical background section, Fdyn(r) contains two con-
tributions, one favoring delocalization and one favoring locali-
zation, and both are included in Method-I. Regarding the short-
time and -length scales associated with particle displacements
that reach the localized caging state, activated barrier crossing
processes are entirely irrelevant, suggesting that the first con-
tribution might dominate to leading order. One can thus

simplify the dynamic free energy to bFdyn ffi �3 ln
r

d

� �
. Substi-

tuting this in eqn (7), and employing the correctly computed
value of rloc from the full theory, one can obtain a different
estimate of oloct0, an approach we call Method-II. A third
approach follows from noting that the dynamic free energy
near its minimum is, by definition, parabolic, per an Einstein
amorphous solid. This suggests considering the harmonic

approximation bFdyn ¼
K0

2
r� rlocð Þ2 where the spring constant

K0 is the curvature at the localization length scale rloc predicted
by the full NLE theory, an approach we call Method-III.

To test the robustness of our theoretical analyses, the results
of these three different approximate methods are compared in
Fig. 6. We found that Methods II and III deliver very similar
results as that shown in Fig. 4(b): two exponential regimes with
the crossover at nearly the same volume fraction. Moreover, all
slopes in the same f range are nearly identical for all three
Methods. This agreement provides support for the idea that,
although the theory does not explicitly analyze the frequency
dependent shear modulus, the extraction of related informa-
tion from the dynamic free energy reports information physi-
cally akin to the experimental oloc, a conclusion in accord with
our a priori physical expectations.

To test the level of quantitative agreement between the
functional form of the predicted results based on the different

Fig. 5 Volume fraction dependence of (a) the HF crossover modulus obtained from experiments with hard spheres, Rh = 264 nm, dispersed in squalene
at T = 23 1C and (b) the normalized elastic shear modulus calculated theoretically from eqn (8) with MV closure approximation (open squares) and PY
closure (open circles), where the y-axis is normalized over thermal energy per volume to allow comparison with theory. The lines indicate the different
slopes as shown in Fig. 4. The vertical arrow in (a) indicates the experimental distance from RCP at the critical volume fraction where data exhibit a
change of the power law slope. The top horizontal scale in panel (b) indicates the distance in the volume fraction from the OZ-MV theory predicted RCP
volume fraction.
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methods, the results of Methods II and III are vertically shifted
to align them with the predictions based on Method I. Encoura-
gingly, the inset of Fig. 6 shows that a well-collapsed master
curve is obtained. Thus, the short time or high frequency
behavior associated with cage formation and the onset of
particle location discussed in Fig. 4(a) from experiments and
in Fig. 4(b) from the NLE theory, can be interpreted as corres-
ponding to a physical picture of particle motion akin to a
damped, Brownian, localized vibrational-like downhill motion.
Finally, analytic insight can be obtained based on Method-II
since the integral of eqn (7) can be exactly performed, thereby

yielding oloct0 ¼
d2

2g dð Þr2loc
. This result provides explicit physical

insight into what controls the inverse localization time: the
dynamic localization length, and the contact value of g(r) which

amplifies the pure solvent friction, zSE, to that felt by a
translating colloid in concentrated suspensions, zs, due to
independent binary collisions on short-length and -time scales

as
zs
zSE
¼ g dð Þ

� �
.40 In addition, it has been well established

previously, both numerically and analytically,58 that the
dynamic elastic shear modulus within the NMCT framework
is predicted to obey a microrheology-like relationship to the

inverse square localization length rloc
�2, per bGd3 � 9

5p
fd2

r2loc
.

Combining this with the above relationship oloct0 ¼
d2

2g dð Þr2loc
;

we obtain an interesting connection between the shear mod-
ulus and the short-time frequency as bGd3

p fg(d)oloct0.
For further perspective, we note that in the framework of

NLE theory, an analytic relationship between the localiza-
tion length and the contact value g(d) was deduced58 as

d2

r2loc
/ f2g4 dð Þ. Combining this relationship with the above

results of bGd3 � 9

5p
fd2

r2loc
and oloct0 ¼

d2

2g dð Þr2loc
; we predict that

both the elastic shear modulus and the short time dimension-
less frequency oloct0 obey a power law relationship with the
contact value g(d). This is a physically appealing result given
that the rate of collisions in a hard sphere fluid scales with the
contact value, and that stresses in hard sphere fluids are
associated with impulsive ‘‘forces’’ and hence particles being
in contact. This consistency physically explains why bGd3 and
oloct0 behave so similarly in Fig. 4 and 5, e.g., slope changes in
the two exponential growth laws and crossover position.

Furthermore, by combining the above analytic relationships,
we obtain bGd3

p fg(d)oloct0 = f0.33(oloct0)1.33. Within the
theory, this power law relationship between G and oloct0 is easy
to test based on numerical calculations, as shown in Fig. 7(b),
where one sees that it works extremely well, although the power

Fig. 6 Volume fraction dependence of the dimensionless localization
frequency, oloct0 � t0/tloc, based on the 3 theoretical methods I, II and
III described in the text. (inset) Same display as in the main frame but with
red and green data vertically shifts up by multipliers of 1.25 and 1.7,
respectively.

Fig. 7 Modulus at the high frequency crossover as a function of the corresponding frequency in (a) experimental (red solid squares) and (b) theoretical
(black open circles) data. The plot verifies the theoretically inspired power law relationship between the dimensionless shear modulus and oloct0. Solid
lines indicate the power law fits with slope values as indicated. Vertical arrows in (a) indicate the characteristic volume fractions, fons and fs, discussed in
the text. The shaded area in (a) indicates the lower volume fraction regime data shown also in Fig. 4.
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law exponent in numerical calculation is slightly larger, B1.53.
To validate this power law prediction further, we plot the HF
crossover modulus obtained from experiments (Gcr-HF) as a
function of the crossover frequency (ocr_HF) in Fig. 7(a).
Remarkably, the data do obey a power law relationship with
an exponent of 1.25, modestly lower than the numerically and
analytically obtained values of B1.53 and B1.33, respectively.

Given the origin of the analytical theoretical relationships
deduced above, we suggest that they may be relevant to other
spherical particle systems with different interparticle interac-
tions, for example in dense suspensions, sticky spheres and
perhaps thermal liquids. However, it is often difficult to mea-
sure the contact value g(d) experimentally for nanoparticles or
colloidal fluids, and essentially impossible for thermal liquids.
Moreover, strong repulsive intermolecular interactions are gen-
erally not literally hard core. In the latter case, one could
replace g(d) with the first maximum value of g(r). Future
experiments can test the power law relationship of Fig. 7 in
other complex systems such as viscous molecular liquids.

5.2. Long-time dynamics: experiments and theory

In contrast to the high frequency crossover, the LF crossover
shifts to shorter times as the volume fraction is decreased and
hence becomes visible in the frequency range of the ARES
rheometer, as shown in Fig. 8 for a volume fraction of 0.539.
This shift is due to cage escape as these events become faster
and more frequent. Consequently, as f is decreased, the two
crossovers tend to approach each other along the frequency axis
until they merge. This behavior is in analogy with molecular
glass formers, where the slow glassy a-mode and the more
fluid-like b-mode time scales converge at sufficiently high
temperatures above the kinetic glass transition temperature.67

The LF and HF crossover times and their merging point as
derived from LVE measurements are shown in Fig. 9(a). For

comparison, the short and long characteristic inverse times,
1/tloc and 1/thop as calculated using Kramers mean first passage
time theory within the NLE framework and which, as discussed
above, arise from different parts of the spatially resolved
dynamic free energy, are shown in Fig. 9(b). As mentioned
earlier, the mean a process hopping time thop is calculated from
the same formula as the localization time (tloc in eqn (7))68,69

but the integration range is from rloc to rB corresponding to the
displacement required for the particle to surmount the entropic
barrier in Fig. 2(a) per activated hopping dynamics. Indeed, the
microscopic times tloc and thop increase and decrease, respec-
tively, with dilution until they become equal at f E 0.43, the
NMCT transition point. At this volume fraction (merging point
derived from theory), the barrier approaches zero, and in its
vicinity the barrier is less than kBT and hence the idea of
activated dynamics loses its physical meaning.

Overall, the theoretical results are in good agreement with
the experimental observations considering the practical uncer-
tainties stemming from aging of low frequency dynamics, f
determination, and errors associated with the measurement
itself. We interpret this volume fraction deduced from the theory
as defining the onset or emergence of dynamic caging, fons.
The corresponding experimentally deduced value where the
two cross-over frequencies merge takes place at around 0.53
(with distance from RCP, fRCP � f = 0.14) for the present
polydisperse sample. We note that this is comparable with a
freezing volume fraction of 0.494 (where fRCP � f = 0.146) for
monodisperse hard spheres.70,71 Therefore, freezing as deduced
from the experimental linear viscoelasticity data and the onset of
cage formation volume fraction, fons, as determined from the
theoretical model, seems to coincide to the leading order with
the merging of the two characteristic times scales of the in-cage
localization and out-of-cage escape.

We note that the merging point in the experimental and
theoretical data takes place at similar, but not the same,
volume fractions. The reason is well known; the NMCT predicts
the dynamic crossover to activated motion at a quantitatively
too low volume fraction due to its single particle nature. This
theoretical point has been analyzed in great depth long ago.40,46

Moreover, the theory studies monodisperse hard spheres, while
the experiments employ polydisperse samples which generic-
ally delay the emergence of slow dynamics to higher volume
fractions. From the NLE perspective, for f lower than the
crystallization volume fraction, the hard sphere suspension
behaves in a more liquid-like manner since activated caging
effects are not really important because the entropic barrier
is only of order the thermal energy or less. In this regime, the
non-self-consistently determined55 friction associated with
independent binary collisions and weak-caging are dominant.
By the same token, from the theoretical perspective, fons marks
a dynamic crossover that signals the onset of a barrier larger
than kBT, and a nontrivial separation of the minimum
and maximum values of the dynamic free energy. Hence, this
is the minimum volume fraction where short- and long-time
dynamics begin to be separated by a caging plateau-like feature,
although in practice clear observation of such a separation

Fig. 8 Dynamic frequency sweeps of two less concentrated samples with
f = 0.539 and f = 0.449 exhibiting moduli crossover and tan d minimum,
respectively. Particles are PMMA hard spheres of radius Rh of 264 nm
dispersed in squalene at T = 23 1C. Measurements were performed using
the MCR 501 and ARES rheometers.
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requires a barrier well beyond 1–2kBT, and hence a volume
fraction beyond 0.5.

Below, but still near, fons, the experiments and theory agree
that a continuous relaxation is observed, with short and long-
time diffusion still distinguishable but not well separated
by a clear caging plateau. Moreover, Ds and DL are comparable
(although not identical) and affected by a binary collisions,
hydrodynamic effects, plus the non-self-consistent weak-caging
friction effects discussed above.55 Samples with volume
fractions lower than fons, such as the sample with f = 0.449
in Fig. 8, exhibit no moduli crossover, i.e. they behave in a liquid-
like manner with G004 G0 at all time scales. Nevertheless, despite
the absence of a moduli crossover, the LVE spectrum is not
featureless; the moduli approach more at a certain frequency
where tan(d) attains a minimum value (see Appendix A.2). This
frequency seems to set a time scale with a different volume
fraction dependence than the moduli crossover frequency above
fons. In this regime, there is a ‘‘loose caging’’ effect imposed by
neighboring particles; constraints are very weak, with barrier
below 1 kBT, and this is reflected in the dynamics with an
absence of the typical caging plateau but still a clear separation
of short and long diffusivity. At much lower volume fractions
(not probed here), Ds and DL approach each other and eventually
at the dilute limit become equal to its bare value, D0.

In addition to the near quantitative agreement of experi-
ments with NLE theory predictions for the volume faction
dependence of the high frequency cross-over, oc-HF, and corres-
ponding elastic modulus Gc-HF (Fig. 4 and 5), similar agreement
between experiments and theory is observed for the approach
of the frequencies oc-H and oc-LF, identified with model pre-
dictions for 1/tloc and 1/thop, respectively. As seen in Fig. 9,
these follow an exponential increase (oc-HF or 1/tloc) or decrease
(oc-LF or 1/thop) as a function of f with larger exponents (as in
the case of G0), higher for the LF (long-time hopping relaxation)
than the HF (short-time cage localization time) and different in
absolute values in experiments and theory. Interestingly, we
found out that the LF-to-HF exponent ratio of roughly a factor

of two (110 : 61) observed in experiments is in good accord with
that predicted by theory (36.6 : 19.8).

6. Conclusions

The characteristic time scales derived from the experimental
G0 and G00 data dynamic crossovers at high and low frequencies
of very dense hard sphere like colloidal suspensions have been
determined for an extensive range of volume fractions. Overall,
very good qualitative (and in some cases near quantitative)
agreement of the distinctive trends is found with the predic-
tions of the microscopic NLE theory, based on the spatially
resolved dynamic free energy concept. The characteristic
frequencies exhibit a double exponential increase with volume
fraction with semi-quantitative agreement between experi-
ments and theory. Two distinct volume fractions have been
identified as fons and fs. The former, fons, signals the merging
point of short- and long-time dynamics and marks the onset of
activated caging at a volume fraction of about 0.53 in the
present polydisperse particle experiments. As expected, this
value lies above that predicted by the single particle dynamics
NLE theory for monodisperse hard sphere fluids. The latter, fs,
is derived in experiments from the change of a slope in the
volume fraction increase of oc-HF or Gc-HF. It can be identified
as an experimental dynamic crossover volume fraction that is
connected theoretically with the emergence within OZ-MV
theory of a new type of structural many-body effect as mani-
fested in effective attraction in the direct correlation function,
c(r). Both the NLE theory and experiments agree that the
dynamic crossover for oc-HF and Gc-HF takes place at f B fs =
0.6. A caveat is that this quantitative agreement should be taken
cautiously given that the theory analyzes monodisperse hard
sphere fluids while the experimental studies polydisperse col-
loidal suspensions. Overall, the experiments and theory indi-
cate the existence of a regime above fs with a distinct character
than that of the modestly metastable fluid below, fs, which is

Fig. 9 Experimental LVE data (a) and the corresponding theoretical calculation (b) of the convergence of short- and long-time characteristic dynamical
frequencies as a function of volume fraction. Circles denote the LF crossover frequency and squares denote the HF crossover frequency, respectively.
Lines represent the exponential dependencies indicated. Red stars indicate the merging point of the two crossover frequencies. Vertical arrows indicate
the merging point volume fraction fons, which is found from experiments and theory to be f E 0.53 and f E 0.43, respectively.
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crucial at very high volume fractions in determining the for-
mation of a long-lived cages with implications for the micro-
scopic dynamics and linear rheology. Experimentally, this is
identifiable with the non-equilibrium glass in the sense that
the viscoelastic response is solid like at all finite frequencies
probed. On the theoretical side, it is linked to distinct dynamic,
structural and thermodynamic behavior predicted to emerge in
the equilibrated deeply metastable (or ‘‘deep glass’’) regime
associated with new many body packing effects. Thus, the
question of whether fs can be identified with the experimen-
tally deduced kinetic glass transition volume fraction, fg,
where hard sphere suspensions are expected to transit to an
effectively arrested state, and whether this is indeed identical
with an observable property sense to the equilibrated deep
glass regime analyzed by the theory, remains open.

What is new in our modeling is the application of NLE
theory with the accurate MV (rather than the PY) closure
employed for the required structural input to make predictions
consistent with our new experimental findings based on a wide
volume fraction range, robust experimental data. One can also
argue that this agreement provides additional new support for
the dynamic free energy concept at the heart of NLE theory
(which to date has focused on longer time and length scale
processes than those studied here), and the important struc-
tural many body effects captured by the MV closure which are
critical for quantifying dynamic caging constraints.

The presented new analytical theoretical results have also
provided a microscopic physical basis for the mechanism of the
experimentally observed nearly-identical behaviors of the high
frequency (short time) localized dynamics time scale and the
dynamic shear modulus. The physical picture is based on
the small distance aspects of the spatially resolved dynamic free
energy and is akin to dynamics describable as a damped,
Brownian, localized vibrational-like ‘‘downhill’’ motion towards
the transient localized state with the frictional resistance related
to short time dissipative independent binary collisions.

Constraints by neighbors are evident in the rheological data
at volume fractions below fons. The frequency where the two
moduli approach more (ttand minima) sets a time scale, and
hence provides important information that can be explored
theoretically and experimentally in future work. In a similar
manner, a systematic study of HF data of attractive glasses will
provide insights into cage formation in the presence of compet-
ing attractive interparticle interactions and physical bond
formation which reflects a rich interplay between entropic
and enthalpic contributions in dynamic cage arrest. Further
extension of the present work could aim to correlate fons and fs

with other characteristic volume fractions in glass forming
suspensions8 where it has been proposed that local domains
of cooperatively moving particles become more rigid with
increasing f and eventually percolate leading to a glassy,
solid-like response. Overall, we anticipate that the data pre-
sented here, which were obtained by simple rheological experi-
ments and interpreted in terms of NLE theory, will aid in
developing a deeper understanding of the dynamical caging
mechanism and the glass transition phenomenon.

Finally, we note that previous results based on ECNLE
theory63,72 showed that the mean a relaxation time of a deeply
supercooled liquid (or metastable glass for hard spheres, f 4
0.58) can be directly related to the dynamic shear modulus in
an exponential manner. This result emerges from not only thop

involving the local cage barrier, but also inclusion of the longer
range collective elastic barrier which is of critical importance.
Combining this exponential behavior with the relationship
found here between 1/tloc and the dynamic shear modulus G0,
an exponential connection between the mean a relaxation time
and 1/tloc is predicted. Most importantly, both the a relaxation
time and the fast process relaxation rate 1/tloc can, in principle,
be measured experimentally over a wide range of degrees of
metastability, which can provide an experimental test for the
proposed exponential connection. This is of particular interest
for supercooled thermal liquids where the measurement of G0

at relatively high and intermediate temperatures is difficult.
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Appendices
Appendix A.1. High frequency scaling and volume fraction
consistency

The weak power law dependence of G0 is sensitive to local
interactions (Schroyen et al. 2019) and hence is strongly
affected by the steric layer of colloids that induce deviations
from ideal hard sphere interactions.73,74 The slope of G0 at
frequencies above the HF crossover is typically 0.3 for hairy
(sterically stabilized) particles.39,75 Furthermore, the volume

Table 1 Volume fractions of four samples: comparison of the experi-
mental estimation with predictions of eqn (9)

Determined from RCP Prediction of eqn (9) Deviation

0.64 0.665 0.025
0.62 0.649 0.029
0.609 0.639 0.029
0.6 0.628 0.028
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fraction response of the total complex viscosity deduced at high
frequencies can be used to determine the effective volume
fraction of the suspension.

The uncertainties and the various methods of f determina-
tion are well discussed in the literature.76 Given that all
samples were prepared from the same initial batch by
sequential dilution, the uncertainties in the relative f are
minimized. The reduced high frequency viscosity is given

by Z
0
r;1 ¼ Z

0
1
�
Zs; where Zs = 13.3 mPa s for squalene at 23 1C,

and Z
0
1 is the limiting value of the real part of the complex

viscosity obtained from oscillatory shear. Once this is
known, the theoretical volume fraction can be calculated77,78

according to:

Z
0
r;1 ¼ 15:78 ln

1

1� j
.
frcp

� �1=3
0
B@

1
CA� 42:47 (9)

which is valid for 0.60 r j o jrcp = 0.67. The denominator
portrays the singular behavior (divergence) of the high fre-
quency viscosity at random close packing. This empirical
equation is extended to f as low as 0.6, a crossover point
discussed in the main text, as the authors suggest a different
equation for the less concentrated regime.77 The calculated
volume fractions from eqn (9) and the experimentally estimated
ones for four samples are summarized in Table 1. Predictions
from fitting using eqn (9) are B0.03 higher than the experi-
mentally estimated values and in agreement with findings in
our earlier work.39 The modest discrepancy could be attributed

to our overestimation of Z
0
1 as the plateau value has not been

fully attained (Fig. 10) or to particle polydispersity that would
affect the quantitative accuracy of eqn (9). However, the relative
volume fractions are proven to be consistent. This indicates
reasonably good agreement of experimental data and theore-
tical predictions with a potential shift of experimental volume
fractions by 0.03 would not significantly change any of the main
findings of this work.

Appendix A.2 Low volume fraction (/ o /ons) samples with
no dynamic crossover

At volume fractions below fons (B0.53 in experiments, see
Fig. 8), the dynamic moduli do not exhibit a crossover, but
they do approach each other at a certain frequency and this is
clearly detected as a minimum of tan d = G00/G0 as shown in
Fig. 11(a). This frequency marks a time scale defined as ttand =
1/otand. At this time scale, the constraints felt by a tagged
particle due to its neighboring particles are maximized, and
this can be viewed as a ‘‘loose caging effect’’. At shorter and

Fig. 10 The in-phase with the strain rate dynamic viscosity limiting
behavior of hard spheres, Rh = 264 nm, dispersed in squalene at T =
23 1C. The legend indicates the experimentally estimated volume fraction.
Data for f = 0.64 (magenta symbols) are measured with a PZR of up to
3000 rad s�1. Horizontal arrows indicate high frequency viscosity deter-
mination for the two highest volume fractions shown.

Fig. 11 LVE data for samples with fo fons = 0.54, where no G0, G00 crossover is exhibited. (a) Loss angle tangent dependence on the angular frequency;
different j values, as indicated, increase as shown by a solid black arrow; a vertical arrow indicates the minimum of tan d (for j = 0.45) where otand is
determined. (b) Frequency of the minimum in tan d plotted as a function of f. The dashed line is the best data fit.
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longer times, particle mobility appears higher. Interestingly,
otand exhibits the opposite trend from oc-HF as shown in
Fig. 11(b). This suggests that the characteristic time is related
to the transition from in-cage (b-relaxation) to out-of-cage
(a-relaxation) motion. Below fons, this is identified in experi-
ments by ttand increasing with j, whereas above fons, oc-HF is
related to the time scale of cage exploration decreases with j as
shown in Fig. 8. Such non-monotonic behavior, with a maximum
at fons, is in reminiscent of the time scale tB determined from
dynamic light scattering data (or from the self-intermediate
scattering function) as the transition time scale between a and
b-relaxations around the glass transition volume fraction by van
Megen & Underwood.79
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