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Prediction rigidities for data-driven chemistry’

Sanggyu Chong?, Filippo Bigi?, Federico Grasselli?, Philip Loche?, Matthias Kellner® and
Michele Ceriotti**

The widespread application of machine learning (ML) to the chemical sciences is making it very
important to understand how the ML models learn to correlate chemical structures with their prop-
erties, and what can be done to improve the training efficiency whilst guaranteeing interpretability
and transferability. In this work, we demonstrate the wide utility of prediction rigidities, a family of
metrics derived from the loss function, in understanding the robustness of ML model predictions. We
show that the prediction rigidities allow the assessment of the model not only at the global level, but
also on the local or the component-wise level at which the intermediate (e.g. atomic, body-ordered,
or range-separated) predictions are made. We leverage these metrics to understand the learning
behavior of different ML models, and to guide efficient dataset construction for model training. We
finally implement the formalism for a ML model targeting a coarse-grained system to demonstrate
the applicability of the prediction rigidities to an even broader class of atomistic modeling problems.

1 Introduction

In data-driven chemistry, computational and experimental
datal™® is exploited to deduce new insights that are beneficial
for the mechanistic understanding of chemical processes. Data-
driven chemistry relies on machine learning (ML) models,m
which exhibit greater flexibility and scalability to larger datasets
compared to pre-existing regression methods. One crucial aspect
to consider in ML is that the models are intrinsically statistical,
and hence their predictions are always made with a degree of
uncertainty > This can be exploited to understand when and
when not to trust the model predictions by reliably quantifying
their uncertainties.

In this application domain, ML models are often built to pre-
dict a quantity as a sum of constituent terms rather than directly
predicting the global, physical observable associated with a given
chemical system. Examples include predicting the local ener-
gies of constituent atoms as opposed to the total energy of an
entire system, 217 or combining predictions at multiple length-
scales. 1821 sych approaches enhance the transferability of ML
models, and offer a heuristic understanding of complex chemi-
cal phenomena as projections over interpretable components of
the system. However, they contribute a degree of arbitrari-
ness to the ML models, as the global target properties can be de-
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composed in many different ways. Consequently, the inter-
pretability and transferability of the ML model are also connected
to the quality and robustness of these intermediate predictions.

To better understand the implications of arbitrariness in the tar-
get decomposition, some of us have recently proposed prediction
rigidities as metrics to quantify the robustness of ML model pre-
dictions.2230 prediction rigidities are derived from a constrained
loss formulation to quantify the degree of sensitivity, or “rigid-
ity”, of a ML model when the value of one prediction is perturbed
away from that obtained from the unconstrained model. From
a practical perspective, they allow for an understanding of how
stable the ML model predictions are with respect to changes in
the model architecture or dataset makeup. One can easily derive
several different versions of the prediction rigidity depending on
where the constrained loss formulation is applied. This allows
for a form of “introspection” of the ML models, even at the level
of intermediate (e.g. atomic, body-ordered, or range-separated)
predictions. The prediction rigidities are also versatile in that the
precise details of model training, e.g. incorporation of multiple
loss terms, weighting of different training samples, can be exactly
accounted for.

In this work, we demonstrate the utility of prediction rigidities
in ML for chemical sciences under a wide range of atomistic
modeling scenarios. First, the theory behind the prediction
rigidities is briefly revisited. Next, a practical extension of
the prediction rigidities to neural network-based ML models
is demonstrated, which we then use to explore the learning
dynamics of such models. This is followed by a section where
the global and local prediction rigidities are used to guide the
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efficient construction of a training set, where these metrics make
a difference in resolving degeneracies and decreasing the error
for the systems of interest. Subsequently, we analyze the learning
behavior of multi-component models (e.g. a body-ordered model,
a multi-length-scale model), showing that orthogonalization of
different components can improve their interpretability. Finally,
the wide applicability of the PRs is showcased by implementing
the formalism for a coarse-grained ML model of water and
observing that one can use the metrics to monitor convergence
and to detect potential failures.

2 Theory

In this section, we present the theoretical background of predic-
tion rigidities for atomistic ML models. As there exist two previ-
ous publications where the general derivation of prediction rigidi-
ties was presented in detail,223% here we exclusively focus on
how the prediction rigidities can be formulated for ML models in

View Article Online

. . .DOI: 16.1039/D4FD00101J
2.2 Versatile formulation for arblPrary(iosse/s

Given the versatility in their mathematical construction, the PRs
can easily account for different loss forms. Here, we take the case
of ML interatomic potentials (MLIPs) as a practical example, since
it is one of the most widespread applications of ML for chemical
sciences, 12H1SU7I33535 M1 IPs are trained on first-principles ener-
gies, often in conjunction with the forces and/or stresses. The
loss for the model corresponds to
Nirain

2w =Y 6 4)
i=1

where

U= (Ei—E) + A Y (fia— Fra)* + A Y (sip —Sip)  (5)
@ B

Here E, f, and s are energy, forces and stresses, o and 8 corre-
spond to different force and stress components, and A denotes
the weight applied to each loss term. In such a case,
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2.1 Prediction rigidity (PR)

The name "prediction rigidity", hereon abbreviated as PR, comes
from the mathematical construction devised by Chong et al.2? to
quantify the response of a regression model, in terms of its loss,
to a small perturbation Ag, (where x denotes a specific sample)
in the prediction that is imposed through a Lagrange multiplier.
By taking a constrained loss minimization approach, one obtains
an expression for the change in model loss with respect to the
optimum:

AY — %R*Aeﬂﬁ[mf]. &)

A% is proportional to the square of Ag,, and the corresponding
coefficient R, defines the PR. Several different types of PR can
be defined by targeting different terms in the model (e.g. local,
component-wise, etc.) with Ag,, all sharing the following struc-

ture:
-1

R~ (e/H's.) . )
where 5
¥
H, = 3
awow' |, )

is the Hessian of the loss .# with respect to the weights w com-
puted at the optimum w,. Note that H, does not depend on the
specific sample or prediction type. Only the vector g, does, and
it can be easily adjusted to target different prediction types as
outlined in Table[1| Additionally, the PRs do not require the tar-
get values used for regression when the model is trained with a
squared loss. From Eq. (@), it is evident that the PR has the
meaning of the inverse norm of g, using the matrix H,! as the
metric tensor. Note that similar expressions can be identified in
the formulations of pre-existing approaches for uncertainty quan-
tification and active learning. 21132

2| Journal Name, [year], [vol.], 1

(6)
which follows from using a generalized Gauss-Newton approxi-
mation of the Hessian. This avoids prohibitively expensive cal-
culations of the second derivatives of the model. More informa-
tion on this approximation and on its application to arbitrary loss
functions can be found in Appendix[A]

2.3 Formulation for neural networks

The PR can be formulated in a simple, closed form for both linear
and kernel models. In the case of “deep” neural network (NN)
models that are widely used for their enhanced flexibility and
scalability to large datasets, the formulation is less obvious. Al-
though the application of PRs to NN models can be attempted by
treating the entire NN as a pseudo-linear model??, the quadratic
scaling of the pseudo-Hessian matrix with respect to the number
of NN parameters makes it impractical.

Recently, Bigi et al.®% have proposed a different approach to
conveniently obtain the PRs of NN models. Grounded on the
theories of the Laplace approximation and neural tangent ker-
nel (NTK), they properly justify the exclusive use of the last-layer
latent features of the NN in calculating the PRs when the model is
linear in the final readout layer for prediction. Note that similar
last-layer approaches can be found in other related works, 11136738
The last-layer PR is then given by modifying so that only
the weights of the last layer are considered for the derivatives
in Eq. (@), and in the definitions of g, in Table [I} For instance,
assuming a loss function given by a sum of squared errors, the
last-layer PR is given by

Rlec (t] (FTF+¢7T) 1) ", %)

where F is a matrix (of dimensions Ny X Nfeatures) CONtaining
the last-layer latent features for every sample in the training set,
f. are the analogous features for sample x under consideration,
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Table 1 Types of prediction rigidities presented in this work, along with the purpose they serve and the corresponding %Qluégdl%%?fggg\llgjc\]ons

Name and purpose

Prediction type Form of g, in

PR Prediction rigidity — for assessing the confidence on the
global predictions of ML models

LPR Local prediction rigidity — for assessing local predictions of
models that incorporate a locality ansatz
CPR Component-wise prediction rigidity — for separately assess-

ing different prediction components of models that incorpo-
rate several additive prediction components

Global prediction, ¥, Y,
ow

Wo

Local prediction for environment j, j;

95;
Y. = Zyj ow Wo
Jjex
Prediction component, ¥¢
I )7
Vo=To, + T, + a—c
w Wo

(e.g. body-orders, multiple length-scales)

and (_;21 term is a regularization term. Likewise, the last-layer
local prediction rigidity (LPR) is given by

R o (]] (FTF+67D) ') 1, (8)
where f; are the last-layer latent features for environment ;.

In the following section, we present the application of this
approach to NN-based atomistic ML models in performing
uncertainty quantification and assessing their learning dynamics.
We remark that the computational cost to obtain these last-layer
PRs is typically small, no re-training or modification to the NN
model is needed, and that the formalism can also be applied to
the trained NN models.

3 PRs of NN models

In this section, we study the last-layer PRs of three representa-
tive NN-based atomistic ML models: a Behler-Parrinello NN12
that takes the smooth overlap of atomic positions (SOAP)=? as
input (hereon referred to as SOAP-BPNN), a polarizable atom in-
teraction NN (PaiNN),12/ and MACE=2. The first two models were
trained on the QM9 dataset4? to predict the total energies of the
molecules, using smaller subsets of 10,000 training, 1000 valida-
tion, and 5000 test samples. For MACE, a different dataset com-
posed of Si;, clusters with 8000 training, 1000 validation, and
1000 test samples was employed, also using the total energies as
targets. Full details of model training and dataset acquisition can
be found in the Supplementary Information."

3.1 Last-layer PRs of NN models

We start by establishing the validity of a last-layer approxima-
tion when computing the PR of NN-based models. To do so, we
show that the inverse of the last-layer PR can be used to quantify
the model uncertainty in the total energy for the three architec-
tures. 2% Results in Figureshow the correlations between empir-
ical errors of the model on the test set vs. their estimates using
the inverse of the PR. A linear correlation between the actual and
estimated errors can be clearly observed for all three models, and
across the entire range of consideration, which shows the valid-
ity of the last-layer PR as a metric to quantify the robustness of
NN-based atomistic model predictions.

We also consider the last-layer LPR of the three NN-based mod-
els. As there exist no physical targets for the local energies, we
performed ten additional training runs for each NN model on a
10-fold sub-sampled dataset, and analyzed the variance in the lo-
cal predictions with respect to the committee average. Figure
shows that in all three cases, a clear inverse trend between the lo-
cal energy variance and the last-layer LPR exists, indicating that
the local predictions for the high LPR environments are more ro-
bust, and vice versa. These results corroborate the efficacy of the
last-layer approximation in also computing the LPR of NN-based
atomistic ML models.

3.2 Assessing the learning dynamics

We now consider the impact of training details on the PR distri-
bution. In NN-based models, the training is almost always carried
out via numerical optimization, as opposed to linear or Gaussian
process regressors that are commonly trained in an analytical,
deterministic manner. Hence, we first investigate the changes in
the model along the optimization “trajectory” by computing the
last-layer LPR of the local environments in the test set for sev-
eral intermediate checkpoints of a SOAP-BPNN model along its
optimization trajectory.

Figure [3h shows that the randomly initialized model at epoch 0
already captures the overall trend in the LPRs observed in the
final model. As the learning progresses, the LPR distribution
quickly converges, as apparent from the lack of clearly distin-
guishable markers for epochs between 120 and 220. In fact, the
average relative change in the LPRs with respect to the original
model drops below 5% at epoch 120, and below 1% at epoch 160.
We conjecture this to be connected to the Gaussian-process neu-
ral network theory in the last-layer approximation, 41743 whereby
the NTK calculated with last-layer weights remains approximately
constant during training and independent of random initial val-
ues in the limit of infinitely wide neural networks. Within this
theory, the equivalence between the linear and Gaussian process
formalisms implies the approximate invariance and initialization-
independence of the LPR (and all other PRs) for sufficiently wide
neural networks.

Next, we consider the dependence of the PR distribution on
dataset size by training additional SOAP-BPNN models using
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Fig. 1 Trends between empirical errors and estimated model uncertainties for SOAP-BPNN, PaiNN, and MACE. The top row presents the absolute
error vs. estimated error. The bottom row shows the plots of squared error vs. estimated variance (inverse of PR), where each point is an average
over 50 (SOAP-BPNN and PaiNN) or 25 (MACE) test set samples with similar estimated variance values. Results for SOAP-BPNN and PaiNN are
on the QM9 dataset, and for MACE are on the Si;q dataset. In all plots, y = x line is shown in black. In the top row, isolines that enclose fractions of

the total probability equivalent to ¢, 206 and 36 of a Gaussian distribution (approximately 68%, 95%, 99%) are shown in gray.
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Fig. 2 Variance in the local energy predictions vs. last-layer LPR for SOAP-BPNN, PaiNN, and MACE. Results for SOAP-BPNN and PaiNN are on
the QM9 dataset, and for MACE are on the Si;y dataset. The LPRs are normalized to the maximum observed value from the test set in each case.
Each point corresponds to an average over 100 local predictions with similar LPR values.

smaller training subsets of 500, 1000, 2233, and 5000 structures
while keeping the validation set fixed. Resulting changes in the
last-layer LPR of local environments in the test set are presented
in Figure [3p. Here, apart from the increasing trend due to the
growth of the training set, notable differences in the relative
LPR distributions are observed across the models, with average
normalized (by LPR; of each model, where j is the highest LPR
environment for the original model) relative LPR differences of
41%, 52%, 32% and 55% with respect to the original model.
This is explained by how the smaller subsets of the training set
can describe entirely different loss landscapes for the model. It
also highlights the importance of judicious dataset composition
in achieving a robust description for the systems of interest,
which is further investigated in the next Section.

4 Journal Name, [year], [vol.], 1

4 PR-guided dataset construction

In this section, we demonstrate the utility of the PRs in guid-
ing efficient dataset construction for ML model training. Such an
effort becomes important when computational resources are lim-
ited, the desired level of theory — and thus the computational cost
of additional reference calculations — is high, and/or it is neces-
sary to refine a pre-trained ML model on a curated set of addi-
tional structures, as in the fine-tuning of universal or foundation
models for a specialized application.44%2 We target such scenar-
ios in two separate case studies: in the first, we consider the case
of fine-tuning a trained model to extend its applicability to an-
other system of interest. In the second, we consider how the PRs
can be exploited in the active learning of atomistic ML models,
where one seeks to identify the structure(s) that best resolve the
uncertainty within each iteration of the active learning process.
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Fig. 3 Dependence of the last-layer LPR distribution of 100 test set
molecules on (a) model optimization trajectory, and (b) training set size,
for the SOAP-BPNN model trained on QM9. The left panels show raw
LPR distributions, where the local environments are ordered by the LPR
distribution of the final model trained on the full dataset to numerical
convergence. Right panels show the average (normalized) LPR differ-
ences of the intermediate models from the final model.

4.1 PR-guided dataset augmentation
As a case study, we consider extending the applicability of a ML
model trained on the total energies of bulk carbon structures to
surface-containing structures. For this, a linear Laplacian eigen-
state ACE (LE-ACE) model®# is trained on a set of 800 bulk, high
density (p > 3.0 g/cm?) amorphous and liquid carbon structures
taken from the GAP-17 carbon dataset.>? We attempt to make this
model transferable to surface-containing structures by adding a
few additional structures and re-training the model, where the
additional structures are selected from a larger candidate pool
of bulk amorphous carbon structures that span the entire den-
sity range. While there exists an obvious approach of directly in-
corporating the surface-containing structures, we limit the choice
to bulk structures for the sake of highlighting the utility of our
proposed metrics. This creates a challenging scenario where we
attempt to achieve model applicability for one system by incorpo-
rating a few samples from another system. Full details of model
training and target-oriented dataset augmentation are provided
in the Supplementary Information.®

Here we devise an iterative, PR-guided dataset augmentation
strategy where, given a candidate pool, the structure that most
increases the PR for the target systems is selected at each iter-
ation. The added structure is promptly taken into account by
updating H, as multiple structures get selected. We demonstrate
this strategy for the present case study by selecting up to 10 bulk
structures that best improve the PR of the surface-containing sys-
tems. For reference, we also perform random selection from the
entire candidate pool, as well as random selection of low-density
structures (p < 2.0 g/cm?) that are more likely to contain surface-
resembling local environments as a less naive baseline. Both ran-
dom selection approaches are repeated 10 times with different
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Fig. 4 Results of dataset augmentation for the linear LE-ACE carbon
model in extrapolating to surface-containing systems while only being
trained on the bulk systems. Panel (a) shows the PR and panel (b) shows
the energy RMSE of surface-containing carbon structures when up to 10
additional samples are added to the training set. Three approaches for
structure selection are considered: random selection, random selection of
low-density (p < 2.0 g/cm?) samples only, and the iterative PR-guided
selection. Plots for the random selection cases are the average of results
from 10 random seeds.

random seeds.

Figure [4p shows that the PR-guided strategy unsurprisingly
yields significantly higher PRs for the surface-containing struc-
tures. Random selection of low-density bulk structures exhibits
higher PRs than complete random selection, but is much less ef-
fective. In Figure[dp, the PR-guided strategy efficiently diminishes
the root mean squared error (RMSE) for the surface-containing
structures by 0.297 eV with only one additional structure. The
RMSE remains low for the proposed strategy from there on, with
the lowest RMSE of 0.107 eV observed at four additional struc-
tures. Both random selection approaches perform poorly in di-
minishing the RMSE for the surface-containg structures, exhibit-
ing large fluctuations and higher RMSE than the initial model in
some cases. All in all, the PR-guided dataset augmentation strat-
egy successfully identifies a small set of structures that best de-
crease the error for the target systems, without any explicit model
training or reference calculations. The strategy goes beyond sim-
ple chemical intuition, as it selects the samples among the low-
density ones that are the most adept at reducing the RMSE for the
target systems. Our proposed strategy would be even more useful
when there does not exist a clear, chemically intuitive approach
of selecting the additional structures for fine-tuning.

4.2 Active learning

Active learning is a ML technique where the model predictions are
continuously assessed during their application, and if the predic-
tions do not satisfy a certain criterion, new training samples are
added and the model is re-trained.*1"27 The simplest realization
of this strategy based on the PR formalism would be to estimate
the uncertainties as the inverse of the PR during inference, iden-
tify the samples where the predictions fall below a certain con-
fidence threshold, and add them to the training set to increase
the reliability of the model. In Appendix B} we show that this ap-
proach is guaranteed to achieve the desired effect, since adding a
sample to the training set results in an increase of its PR by one.

Journal Name, [year], [vol.], 1 |5
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Fig. 5 LPR enhancements for the local environment of high uncertainty when different strategies are employed to acquire the additional samples for
active learning. Panel (a) is a schematic that visually explains the different strategies of obtaining the additional structures. Blue atoms comprise
the identified local environment of high uncertainty. In high-symmetry (HS) embedding, atoms in the HS local environment are shown in red. In
both embedding cases, buffer atoms are shown in light gray. Note that the systems are not in scale with one another. Panel (b) presents the LPR
enhancements when a single additional structure is used, except for the case of HS embedding where the diamond structure used for embedding is
also added. Panel (c) shows the LPR enhancements vs. the number of added samples. In the case of original structure inclusion and cluster carving,

the same sample is added multiple times.

In atomistic ML, however, active learning is often employed at
the local level to identify the environments for which the model
exhibits high uncertainty, and add new samples that best improve
the model accuracy for those environments. Here, the simplest
approach may still be to directly add the structure that contains
the local environment of high uncertainty. Nevertheless, this is
not always possible: in cases where the ML models are used to
simulate large bulk chemical systems, reference calculations for
the problematic structures of interest would be prohibitive. An al-
ternative approach is to exploit the locality of atomistic ML mod-
els and add smaller structures that still contains the local environ-
ment of high uncertainty. This then raises the question of what
would be the best approach to obtain the smaller representative
structures. In this subsection, we use the LPR to assess different
approaches of obtaining the small representative structures for
active learning.

For the case study, we use a linear LE-ACE model®# trained to
predict the total energies of 500 randomly selected carbon struc-
tures from the entire GAP-17 dataset.>? We then consider per-
forming a single active learning iteration for the model, targeting
a liquid carbon structure with 13,824 atoms from a large-scale
molecular dynamics (MD) simulation. Further details regarding
model training and acquisition of the MD structure are given in
the Supplementary Information.” After identifying the local envi-
ronment with the highest uncertainty (lowest LPR) in the large
structure, we investigate the following strategies of small repre-
sentative structure construction (see Figure [Sa for illustrations):

* Cluster carving®™3: the local environment is simply treated
as a non-periodic spherical cluster with the high uncertainty
atom at the center

* Periodic embedding@'@: a cube tightly containing the lo-
cal environment of interest is extracted to generate a smaller
periodic system

6 | Journal Name, [year], [vol.], 1

* High-symmetry (HS) embedding: the local spherical envi-
ronment is removed from the original structure and embed-
ded into a high-symmetry, crystalline structure

In the case of periodic embedding, the unit cell dimensions are ad-
justed so that close-contact distances between atoms are above 1
A to avoid non-physical atomic configurations. In the HS embed-
ding, the unit cell dimensions of the HS structure are expanded
to a minimum size that includes both the local environment of
interest and a local environment from the high-symmetry struc-
ture, whilst satisfying the close-contact criterion. Exceptionally,
in this case, the HS structure used for embedding (diamond in
our case study) is also added to the training set. In both em-
bedding approaches, “buffer atoms” that exist outside of the fixed
local environments are randomly displaced by sampling from a
Gaussian distribution with ¢ = 0.2 A. Apart from the listed strate-
gies, inclusion of the entire target structure is also considered as
a baseline.

In Figure [Bb, both original structure inclusion and cluster carv-
ing exhibit LPR enhancements slightly below 0.2%. From the LPR
perspective, since the original structure contains a large number
of atoms, there is large, unresolved arbitrariness in how the total
energy of the structure is partitioned into the local contributions.
In the case of cluster carving, lack of information on the local en-
vironments other than the one of interest leads to the unresolved
arbitrariness, especially given that the other local environments
encompass the cluster surface that most likely does not appear in
the original training set. As a result, the LPR enhancements for
these two approaches are rather low.

The two embedding strategies result in comparably larger LPR
enhancements of 0.5% for periodic embedding and 0.8% for
HS embedding. In the periodic embedding case, using a much
smaller unit cell tightly bound to the local environment of interest
results in a smaller number of atoms, and this allows the model
to better resolve the uncertainty in the local environment of in-
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terest. In the case of HS embedding, the strategy benefits from
similar factors as well as the coexistence of a local environment
from the HS structure, diamond. By additionally including the
diamond structure, the LPR for the diamond environment is fully
resolved,?? and hence the LPR of the target local environment
gets further enhanced.

Results in Figure [5c show that inclusion of multiple structures
can further resolve the uncertainty in the target environment.
In the case of periodic embedding, inclusion of 10 structures
as opposed to 1 increases the LPR enhancement from 0.5% to
7.7%. This is explained by the presence of buffer atoms and
their random displacement between multiple structures, which
effectively resolves their local degeneracies. For this particular
case study, the LPR enhancement for HS embedding becomes
lower than periodic embedding with a few more added samples
due to a larger number of buffer atoms (see Figure ). These
results reveal the clear benefits of adopting an embedding
approach and adding multiple structures at each iteration of the
active learning process to best resolve the local uncertainties
encountered by atomistic ML models. Note that first-principles
calculations for 10 small representative structures would still
be immensely cheaper than that for the original structure. In
practice, a threshold can be implemented to ensure that enough
structures are used to sufficiently resolve the uncertainties in the
identified local environment at each active learning iteration.
Lastly, one can envision more realistic methods of imposing the
displacements on the buffer atoms (e.g. constrained MD 20N

5 Component-wise prediction rigidity

In many cases, a single type of descriptor falls short in ade-
quately describing the system of interest. Atomistic ML models
are hence often constructed by using a concatenation of multiple
sets of features that describe the same system in different ways.
A straightforward example is given by body-ordered expansion
approaches, 113558559 ywhere the descriptor is a combination of
several components that describe the same local environment in
terms of increasingly large groups of neighbors. Another example
is the use of a long-range descriptor in conjunction with a short-
range descriptor to allow the ML model to learn the chemical
system at multiple length scales, 181221

In common model architectures, these different components in
the descriptors contribute to the prediction separately. That is,
the global prediction of the model is expressed as a sum over the
prediction components, which shares a resemblance with classi-
cal force fields. In this case, one can compute the component-wise
prediction rigidity, or the CPR, for the individual prediction com-
ponents (see Table. The CPR then allows one to diagnose the
model by considering the prediction components individually, al-
lowing for a more practical understanding of where the model
succeeds or fails, which model component needs improvement,
and whether the decomposition is robust and hence interpretable.

For the remainder of this section, we consider the CPR of a lin-
ear atomic cluster expansion (ACE) modell¥ as well as a multi-
length-scale model that combines SOAP22 and long-distance
equivariant (LODE) 18 descriptors. In both cases, we first use the

Faraday Discussions

View Article Online

.. DQI: 10.1039/D4FH00101J
CPR to expose the non-orthogonality of conventiona approaches

in computing the descriptors and its implication on the learning
behavior of the resulting model. We then compute the CPR for the
case where the different components of the descriptors are made
orthogonal with respect to one another, revealing the clearly dis-
tinct learning behavior of the ML models as a result of such treat-
ment.

5.1 Body-orderedness of linear ACE models

ACE is a many-body expansion formalism1# that involves the re-
formulation of the canonical many-body expansion into another
expansion that also includes “self-interactions” (i.e. higher body-
order contributions where the same atom is counted multiple
times), 22 allowing for much greater efficiency in computing the
descriptors. While the success of the ACE formalism is evident
from the literature,©1764 ML models adopting the ACE formalism
describe the chemical systems with the spurious self-interactions
included. Here, we use the CPR to investigate the impact of the
self-interactions in the nature of ACE models and its implication
on their learning behavior.

We consider linear ACE models®® where the highest correlation
order Vmax is 4. An initial model is first trained on a dataset of 500
randomly generated silicon pentamers, training on their total en-
ergies. Next, successively modified training sets are obtained by
replacing 50 samples with dimers, then another 50 with trimers,
and finally 50 more with tetramers. Separate linear ACE mod-
els are then trained on each of the modified datasets. Details
of model training and silicon cluster generation are given in the
Supplementary Information.t Here, one can interpret the models
based on the fact that the ACE feature vector is a concatenation of
multiple blocks that each correspond to a different v. Then, since
the weights applied on different v blocks are strictly independent,
each block can be seen as a separate prediction component. One
can then individually compute the CPRs for the individual v com-
ponents, as well as their energy contributions. Note that based
on this interpretation, the successive inclusion of lower n-mers to
the training set is aims to resolve the degeneracies in the energy
partitioning between the different v components.

The top row of Figure[6]shows the CPRs and energy predictions
of conventional, self-interacting ACE models. The CPRs remain
low across all v components for the four models considered, with
no resolution taking place as the lower n-mers are added to the
training set. In the total energy predictions for silicon dimers,
the three models that have seen the dimer configurations during
training are able to recover the reference dimer curve accurately.
However, the v = 1 component of the energy has no resemblance
to the dimer energy in all four cases, which is a clear indication
of the arbitrary partitioning reflected by the low CPR.

Recently, Ho et al.®® have introduced a “purification” operator
for ACE, which eliminates the self-interactions and allows for the
exclusive consideration of canonical contributions to the many-
body expansion in the computation of ACE features. To investi-
gate the effect of purification on the learning behavior of ACE
models, the above exercise was repeated for the purified ACE
models. In the bottom row of Figure [6] one sees that the purified

Journal Name, [year], [vol.], 1 |7
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Fig. 6 Difference in the learning behavior of linear ACE models before and after purification of the feature vectors. Results for the self-interacting
ACE are shown in the top row, and for the purified ACE are shown in the bottom row. The left column shows the differences in the CPR for a test
set of silicon pentamers as the original training set of silicon pentamers is amended to include dimer, trimer, and tetramers, successively. The middle
column shows the predicted energies along the Si—Si dimer curve, when the entire feature vector is used for energy prediction. The right column shows
only the the v =1 (two-body) component of the predicted dimer energies. In the latter two rows, total energy of the dimers from DFT calculation is

shown with a dashed gray line for reference.

ACE models are capable of resolving the partitioning degeneracy
between different v components, as evident from the significant
increase in the CPR of the v component when samples of the cor-
responding n-mers are included in the training set. Interestingly,
the final addition of tetramers also leads to a notable increase in
the CPR for v = 4, which corresponds to the pentamers. This is a
sign that the degeneracy across all of the v components has been
largely resolved. Such a trend in the CPR is reflected by a distinct
behavior in the energy predictions: in the case of purified ACE
models, both the total energy predictions and the v = 1 energy
components are capable of recovering the reference dimer curve.

These results altogether reveal that the matching of the v fea-
ture blocks with their respective body-orders is not possible in
the presence of self-interaction terms in conventional ACE mod-
els. As an example, the models learn the dimer energetics by
using not only the v = 1, but also all of the other v compo-
nents. It is only with purification, which removes the spurious
self-interaction terms, that the ACE models become capable of
learning in an explicitly body-ordered manner.

5.2 Range separation in multi-length-scale model

Many atomistic ML models employ a locality ansatz where the
global property is expressed as a sum of local contributions,
based on the nearsightedness principle of electronic matter.©”
This means that the models are incapable of incorporating struc-
tural information beyond a fixed radius around the central atom.
While such a description is sufficient in many cases, there exist
several instances where it cannot be, most notably when long-
range physics is present within the target system. To overcome
this deficiency, several strategies have been proposed,©87Y one
of which is the use of long-range atomic descriptors such as

8 | Journal Name, [year], [vol.], 1

LODE. 181221 1 ODE replaces the the Gaussian or delta functions
placed on the atoms with Coulomb potentials that possess 1/r”
tails. This allows the model to account for the long-range inter-
actions while retaining the atom-centered approach in describing
the chemical systems. In practice, LODE is often used in conjunc-
tion with a short-range descriptor, such as SOAP, to allow the ML
models to account for multiple length scales.

Here, we investigate the differences in the ML model learning
behavior before and after strict range separation, i.e. eliminating
any double counting of atoms between prediction components
that correspond to different length scales. To this end, two dis-
tinct implementations of SOAP+LODE models are considered: in
the first case of non-orthogonal SOAP+LODE, the LODE descrip-
tor is simply computed in reciprocal space, accounting for the
contributions from all atoms in the periodic system. This results
in a double counting of the atoms within the short-range (SR) cut-
off set at 2.8 A, where they contribute to both SOAP and LODE
descriptors. In the second case of range-separated SOAP+LODE,
the abovementioned LODE descriptor is further treated by sub-
tracting the contributions from the atoms within the SR cutoff.
A dataset composed of 100 water dimer configurations and their
total energies is used for model training. In all configurations,
dimers are separated by more than 3 A so that only the long-
range (LR) prediction component of the model can capture the
intermolecular interactions. Then, to understand the effects of
range separation, extrapolative energy predictions of the models
on 100 monomer configurations is considered. Further details on
the model training and dataset construction are provided in the
Supplementary Information."

The left panel of Figure |7| shows changes in the CPR with
respect to the training set size. In the case of non-orthogonal
SOAP+LODE, both the SR and LR prediction components ex-
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hibit low CPR values throughout all considered training set sizes,
and the values remain very close to one another. On the con-
trary, range-separated SOAP+LODE shows a marked difference
in the CPR at lower number of training samples, with a higher
CPR for the LR component. As the training set size grows, the
two converge to a high CPR value, corresponding to a differ-
ence of seven orders of magnitude when compared to the non-
orthogonal case. The water monomer energy prediction results
reveal that the non-orthogonal SOAP+LODE models extrapolate
poorly to the monomers, yielding worse predictions as the train-
ing set size grows. Conversely, the extrapolative performance of
the range-separated SOAP+LODE models improve with the train-
ing set size, and the final model is able to make accurate pre-
dictions with an RMSE of 7.6 meV (as opposed to 939 meV of
non-orthogonal SOAP+LODE).

The results here can be explained as the resolution in the de-
generacy between the SR and LR components of range-separated
SOAP+LODE that takes place as more samples are added. Since
the water dimer dataset spans a range of different separation dis-
tances from 3 to 10 A, when the separation is large, the LODE
block of the range-separated SOAP+LODE descriptor converges
to zero, allowing SOAP to obtain an accurate description of the
individual monomers. Such effects are promptly captured by the
different trends in the CPR observed for the non-orthogonal and
range-separated SOAP+LODE models.

Both case studies presented in this section demonstrate that
without carefully considering the overlap between different pre-
diction components, ML models may utilize the available features
in an unexpected manner, where multiple prediction components
are used to learn the physics that can be sufficiently described by
only one. While feature orthogonalization does not guarantee a
significant improvement in accuracy,©® one should still recognize
the benefits in ensuring that each prediction component is used
for its originally engineered purpose. The CPR provides an easy
strategy to individually gauge the robustness of intermediate
predictions made by the model.

6 Application to coarse-grained ML

In the computational simulation of proteins and other macro-
molecules, coarse-graining techniques are often employed to
study the system of interest at a significantly reduced cost by
combining rigid and/or unreactive groups of atoms into pseudo-
atoms, or beads, and sampling their configurations through an
effective potential built to match the statistical behavior of the all-
atoms simulation.”2"74 Recently, such approaches have also been
combined with ML interatomic potentials, allowing researchers
to benefit from the highly versatile functional forms offered by

the ML techniques in studying the large-scale systems of inter-
75H77
est.

Here, one should note that the conventional coarse-graining
approach of “force-matching” 7872 Jeads to the absence of an ex-
plicit energy target for model training. The quality of the model
can then be ascertained by verifying that that thermodynamic
properties, such as configurational distributions, match those of
an all-atoms simulation. Another aspect to recognize is the large
noise from the non-bijective relationship between all-atomic and
coarse-grained systems. As multiple all-atomic configurations
with different energetics can be represented by the same coarse-
grained configuration, a large noise is expected to be present in
the reference data, and the ML models are expected to learn the
underlying “potential of mean force” (PMF).”2 Given these com-
plications, it is ever more crucial to devise methods that can reli-
ably provide the uncertainties associated with the predictions of
ML models for coarse-grained systems. &0

In this final section, we demonstrate the applicability of the
PR formalism for MACE models trained on coarse-grained water,
a system explored by several others in previous ML studies. 81182
To generate the training data, we performed classical all-atoms
MD simulation for an NVT ensemble at 300 K. The trajectories
are coarse-grained by taking the center of mass of each water
molecule as the bead position, and separately summing the force
components of the constituent atoms to compute the three force
components of each bead. The MACE models are trained on train-
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ing set sizes of 50, 100, 1000, and 10,000 configurations, where
each configuration contains 128 beads that provide 384 force tar-
gets in total. For each training set size, random sampling and
model training is repeated four times. Fixed validation and test
sets of 1000 configurations each are used. The trained models
are used to run 1 ns simulations of a 128-bead coarse-grained wa-
ter system under the same conditions as the reference all-atoms
simulation. The accuracy of the models is considered by calcu-
lating the relative PR of the resulting trajectories with respect to
the test set average, as well as comparing the pair correlation
function, g(r), for two-body correlations, and the average | = 4
local Steinhardt order parameter g4 distributions®83 for higher
body-order correlations. Full details of dataset generation, model
training, and MD simulations are provided in the Supplementary
Information.’

In the top row of Figure |8 the MACE models exhibit different
degrees of deviation in the relative PR from the reference data for
the different training set sizes. As the training set size increases,

10 | Journal Name, [year], [vol.], 1

the models better distinguish and learn the underlying PMF, and
as a result, PRs for the simulated system trajectory converges to
that observed for the test set configurations. A similar trend is
also captured in the g(r) and g4 distributions presented in the
middle and bottom row of Figure [8] respectively. At 50 training
configurations, both g(r) and g4 distributions of the coarse-
grained model MD trajectories notably deviate away from the
reference distribution. As the training set size increases, they get
closer and closer to the reference, until at 10,000 configurations,
good agreement between the coarse-grained MD trajectories
and the reference is observed. These results reveal that the
PRs are useful in assessing the robustness of coarse-grained ML
model predictions and tracking their training convergence. For
this application, the PR provides only a qualitative indicator of
convergence, as it is not possible to convert it into a calibrated
uncertainty estimate, given the intrinsic error in the forces
associated with the coarse-graining procedure. Still, it can be
very useful, and more informative than the validation force error
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that saturates quickly to the limiting coarse-graining error: when
going from 50 to 10,000 training configurations, it drops only
slighly from 150 to 145 meV/A. In Appendix we further show
that the LPR of the models can validly detect the local uncertainty
along a MD trajectory.

7 Conclusion and outlook

Throughout this work, we have established the PRs as a highly
versatile set of tools to understand, and enhance, the robustness
of ML model predictions, presenting many concrete examples for
data-driven chemistry. We have shown that the PRs can quan-
tify the robustness of local and global predictions for various NN
architectures. We then revealed that the PR distribution for a
NN model with a fixed architecture shows dependence on dataset
makeup while being largely insensitive to the optimization de-
tails. Next, we have presented the utility of the PRs in guiding
target-oriented dataset augmentation and active learning, where
the metrics can be used to identify a set of structures that can best
reduce the error for a target system or resolve the uncertainty for
a local environment.

We have also extended the PR formalism to the case where
the model predictions are made as a sum over several predic-
tion components. There, our metrics uncovered that without
proper orthogonalization of the features, model learning behavior
can deviate significantly from expectations, and that, for exam-
ple, commonly adopted body-ordered or range-separated archi-
tectures cannot be interpreted in terms of clearly-separated con-
tributions. Finally, we have demonstrated the wide applicability
of the PRs by applying the formalism to NN models for coarse-
grained water and showing that the PRs correlate well with the
accuracies in the macroscopic observables from the MD simula-
tions performed with the trained models.

The underlying mathematical formulation for PRs can be
applicable to a wide variety of ML models, even those trained
on experimental reference data. It is, however, presently limited
to regression models where the prediction is made linearly
with respect to the (last-layer) features. Future research efforts
should extend the formalism to models with non-linearity in the
prediction layer, such as classification models. All in all, the PRs
are ideal metrics to adopt for improving the interpretability and
transferability of data-driven techniques, which we hope will
contribute to reliable machine learning practices in the field of
chemical sciences.
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A Prediction rigidities for generic loss functions

Although the main text focuses on the ubiquitous case of a sum of
squared error loss, it should be noted that prediction rigidities can
be calculated for any loss functions. In any case, Computing H,
can be prohibitively expensive and requires an implementation of
the second derivatives of the model. Therefore, an approximation
of the Hessian is often used in practice, where

=~y (%)

i€y

T 9% dyi
owow' ow’

9

This pseudo-Hessian, also known as generalized Gauss-Newton
Hessian, does not contain any second derivatives of the model,
and it is equivalent to the full Hessian in the important case of
a linear model trained with a loss function corresponding to the
sum of squared errors. We recommend this formulation for most
application of the PRs.

B Proof that PR for a sample increases by one upon
its addition to the training set

Assume a loss given by a sum of squared errors. We rename,
without any loss of generality,

dyi

w (10)

=Xj,

where X is the matrix that stacks all the (dy;/ow)' and i € 2.
The PR before the addition of the structure « is given by

b= (x](XTX) " 'x,)7 1, 11
while the PR after the addition of the addition of the structure is

al= (XI(XTX+X*XI)_]X*)_]. 12)
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The difference between the two is therefore

al—b'=aa-bp =
a 'x] (XTX+xx] ) Tx, —x] (XTX) " Ix, )b ! =
a ' (x[ (XTX4xx)) 7 = (XTX) T Dx )b =
a ' (x] (XTX 4+ xx]) " Ixx] (XTX) 7 Ix )bt =
alabb™! = 1,

where the matrix identity A~! —B~! = A~!(A —B)B~! has been
used twice (the first of which is applied on the two scalars a and
b). Trivially, this proof also holds in the case where the same
regularization term is added to X' X and X" X +x,x, before the
inversion.

C Utility of LPR in coarse-grained ML

In the ML models for coarse-grained systems, the LPR quantifies
the robustness of local predictions made for individual coarse-
grained beads in the system. To showecase its utility, an energet-
ically unstable MD trajectory is obtained with the MACE model
trained on 1000 reference configurations from Section[6] and the
LPRs are computed for the initial configuration and the config-
uration at which energy instability is first observed. In Figure
[ one can see that the LPR distribution for the initial configura-
tion is relatively uniform without any outliers. In the problematic
configuration, the LPR values are lower for the beads that are in
close contact with one another (< 2.5 10\), which the model has
never seen during training and are hence the sources of energy
instability. Apart from the beads that are involved in the close-
contact network, several other beads are also observed with no-
tably lower LPR values, which indicates that the LPR is capable of
detecting local uncertainties beyond what can be deduced from
simple chemical intuitions.

logso(LPR)

-1.5 0

Fig. 9 Bead configurations from a MD trajectory that becomes ener-
getically unstable from = 0.4 ns. Each bead corresponds to a single
water molecule. The initial configuration is shown on the left, and the
first energetically unstable configuration is shown on the right. Beads
are colored by their LPRs. The LPR values are normalized to the mean
of the initial configuration. In both cases, interatomic distances smaller
than 2.5 A are expressed as bonds.
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