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This tutorial review describes the ongoing effort to convert main-group elements of the periodic table
and their combinations into stable 2D materials, which is sometimes called modern ‘alchemy’. Theory is
successfully approaching this goal, whereas experimental verification is lagging far behind in the
synergistic interplay between theory and experiment. The data collected here gives a clear picture of the
bonding, structure, and mechanical performance of the main-group elements and their binary
compounds. This ranges from group Il elements, with two valence electrons, to group VI elements with
six valence electrons, which form not only 1D structures but also, owing to their variable oxidation
states, low-symmetry 2D networks. Outside of these main groups reviewed here, predominantly ionic
bonding may be observed, for example in group [I-VIl compounds. Besides high-symmetry graphene
with its shortest and strongest bonds and outstanding mechanical properties, low-symmetry 2D
structures such as various borophene and tellurene phases with intriguing properties are receiving
increasing attention. The comprehensive discussion of data also includes bonding and structure of few-
layer assemblies, because the electronic properties, e.g., the band gap, of these heterostructures vary
with interlayer layer separation and interaction energy. The available data allows the identification of
general relationships between bonding, structure, and mechanical stability. This enables the extraction of
periodic trends and fundamental rules governing the 2D world, which help to clear up deviating results
and to estimate unknown properties. For example, the observed change of the bond length by a factor
of two alters the cohesive energy by a factor of four and the extremely sensitive Young's modulus and
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ultimate strength by more than a factor of 60. Since the stiffness and strength decrease with increasing
atom size on going down the columns of the periodic table, it is important to look for suitable
allotropes of elements and binaries in the upper rows of the periodic table when mechanical stability
and robustness are issues. On the other hand, the heavy compounds are of particular interest because
of their low-symmetry structures with exotic electronic properties.
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Introduction

The family of two-dimensional (2D) materials is growing rapidly
by expanding to more elements of the periodic table and
by their characterization being extended predominantly by
theoretical studies.'® The preparation ranges from straight-
forward exfoliation of layered materials, such as graphene, with
a huge reservoir of weakly bonded layered materials, to entirely
synthetic methods, such synthetic 2D monolayers are
borophene, silicene, bismuthene, and tellurene."® Besides
monolayers this includes bilayers, tri-layers, and few-layer
assemblies up to about 10 layers, where a transition to bulk
properties is observed.””®
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Strong covalent and ionic interatomic bonding in 2D materials
and weaker interlayer interaction between monolayers are the
focus of this review. Besides the quantum-mechanical concepts of
electron sharing, electron transfer, and electron delocalization,
phenomenological binding models describe the role played by the
three fundamental types of interaction forces, termed covalent,
ionic, and metallic bonding. Confining strong chemical bonding
to one or a few layers, usually less than five, creates a huge flat
molecule without dangling bonds at the surface. Mixing planar
sp” hybridization with tetrahedral sp® hybrids dramatically
extends covalent bonding to quasi-two-dimensional corrugated
phases, by introducing buckling and puckering but also chemical
reactivity. Besides mechanical constraints, chemical stability
under environmental conditions is a crucial requirement, made
important by the extremely large surface area exposed to the
environment.

This journal is © The Royal Society of Chemistry 2021
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AD initio calculations are the first choice for computing the
pristine structure as well as chemical and physical properties of
2D materials.*® It is important to note that first-principles
calculations have not only predicted the existence of new 2D
materials but also helped to find possible routes of synthesis
and understand the growth process.”'® Of the two main
approaches, namely, the wave-function-based methods and
density functional theory (DFT) calculations, the latter plays
the major role. In the latter approach the many-body system of
electrons is treated by considering non-interacting electrons
moving in an effective potential. To take the exchange and
correlation effects in the calculation of electron density into
account, the local density approximation (LDA) uses Ceperley-
Alder (CA) functionals or Troullier-Martins (TM) pseudopotentials.
In most calculations the generalized gradient approximation (GGA)
is employed with Perdew-Burke-Ernzerhof (PBE) functionals.®
Large differences may occur between the LDA and GGA approach,
especially for few-layer systems, where, besides strong covalent
in-plane interaction, weak interlayer forces such as van der Waals
and electrostatic interactions must be considered.” At present, most
results are based on the numerical DFT-GGA-PBE approach, which
plays a crucial role in our present understanding of 2D materials.

Molecular dynamics (MD) simulations complete the
investigation of the atomic structure and mechanical behavior
of monolayers because they can deal with system sizes of
thousands or even millions of atoms, in comparison with about
a hundred atoms usually manageable by DFT calculations. The
simulation is based on classical Newtonian dynamics, where
potential energy functions, which describe the interaction
between atoms, play a critical role. These theoretical methods
give access not only to the intrinsic structures of monolayers
and few-layer systems but also provide valuable estimates of the
thermal or thermodynamic stability of the 2D materials at
temperatures above 0 K.*

While the data presented for bonding, structure, and
mechanical properties primarily is based on first-principles
calculations, we also apply the tight-binding theory of solids
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that uses the linear combination of atomic orbitals (LCAO).
The LCAO approach and hybridization concept can deliver
analytical expressions for the coupling parameters and the
electronic-state energies.'' Despite the fact that it is less exact
than numerical first-principles computations, the simplified
bonding model that follows chemical intuition often offers
valuable insight and a deeper understanding of the nature of
bonding and allows the recognition of chemical relationships
within related groups of the periodic table.

Reliable mechanical performance of 2D materials from
manufacture to final use is a key requirement for any
application.”"® While calculated intrinsic Young’s moduli
and ultimate strengths are already available for various
monolayers, toughness values that characterize the strength
of large-area defective monolayers are available only for
graphene. The following work concentrates primarily on
calculated mechanical properties such as the intrinsic Young’s
modulus, Poisson’s ratio, ultimate strength, and ultimate
strain of both free-standing and surface-bonded monolayers.
Most 2D materials exhibit a positive Poisson’s ratio between
0 and 0.5, where the material contracts in the transverse
direction when stretched in the longitudinal direction. For
some low-symmetry monolayers a negative Poisson’s ratio or
auxetic behavior exists. This means, for example, that the
material expands perpendicular to the plane when stretched
in the in-plane direction."® For a rigorous comparison of the 2D
mechanical properties of monolayers, 2D units are needed, due
to the thickness or volume dependence of the 3D properties.'
These 2D properties can be obtained by transforming 3D units
(N m~?) to 2D units (N m~") using the monolayer thickness or
by direct measurement. Unfortunately, reliable measurements of
the intrinsic stiffness and ultimate strength, e.g., by indentation,
are available only for graphene, while the measurements for
other monolayers such as graphene oxide, h-BN, and black P
are still preliminary.’® The monolayer thickness can be defined
for free-standing layers, whereas in few-layer assemblies the
interlayer spacing changes with the strength of interlayer
interaction.

Up to now, only a few 2D materials have been prepared in
their free-standing form, for example by exfoliation, allowing a
direct measurement of their intrinsic properties. It is possible
to grow quasi freely suspended monolayers that retain their
properties under ultrahigh vacuum (UHV) conditions by
molecular beam epitaxy (MBE) on suitable substrates. A buffer
layer may stabilize an otherwise unstable monolayer by weak
interaction forces. However, often stronger electrostatic and
covalent interaction forces dominate the interaction of a mono-
layer with the substrate and change the structure. Structural
analysis is performed by scanning atomic force microscopy
(AFM),"® scanning tunneling microscopy (STM), in situ microscopy
techniques such as scanning electron microscopy (SEM),
low energy electron diffraction (LEED), X-ray diffraction (XRD),
X-ray photoelectron spectroscopy (XPS), selected area electron
diffraction (SAED), and high resolution transmission electron
microscopy (HRTEM), supplemented by energy dispersive X-ray
spectroscopy (EDX)."” Atomic steps in layered assemblies are used
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Fig.1 Scheme of the periodic table, highlighting the elements of the
columns II, Ill, IV, V, and VI that form covalently bonded elemental and
binary monolayers and isoelectronic mixed monolayers.

for the direct measurement of the interlayer spacing by AFM
and STM.

The present review of main group elements provides a
systematic discussion of covalently bonded elemental group-III
monolayers and their isoelectronic group II-IV compounds,
elemental and binary group-IV monolayers and their isoelectronic
group II-V compounds, elemental and binary group-V
monolayers and their isoelectronic group IV-VI compounds,
and elemental group-VI monolayers (see Fig. 1). Extension to
other groups, for instance to alkaline earth-halogen monolayers,
may lead to strong ionic bonding due to the large difference in
their electronegativities. Importantly, bonding by long-range
Coulomb forces is less effective in 2D than in 3D materials. The
relevant bonding information, structural data, and mechanical
properties of the predominantly covalently bonded monolayers
are presented in 13 tables. The explosive growth of studies on
2D compounds has allowed the identification of general
relationships between bonding, structure, and mechanical
stability and the extraction of basic rules governing the 2D world
down the periodic table.'® These relationships are extracted for
main group elements by plots of the cohesive energy, describing
the bonding energy of an atom in the 2D solid, versus bond
length. To elucidate the intrinsic linear and nonlinear mechanical
behavior we plot the Young’s modulus and ultimate strength as a
function of bond length.

Group III elemental monolayers

The bonding behavior of elements varies drastically with the
main group of the periodic table. The reason for this is that
group II elements have two, group III elements three, group IV
elements four, group V elements five, and group VI elements six
valence electrons in the outer shell (see Fig. 2). It is well known
that graphene with its four valence electrons per C atom forms
the most stable covalent bonds in the plane, involving eight
electrons in the closed outer shell of a noble gas configuration
(‘octet rule’). A fundamental question is how the behavior of
monolayers changes if the octet rule is not fulfilled and valence
electrons are missing or additional electrons are available. For
example, trivalent group III atoms cannot form a closed-shell
structure by conventional bonding.

Since group III atoms have three electrons in their outer
valence shell, they can form extended covalent networks by sp>-
type hybridization, however, only with electron-deficient bonds,
because the 2p, orbital is empty. According to the octet rule for
efficient bonding, the missing electron reduces the bond energy
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Fig. 2 Scheme of valence electrons of group Il to group VI elements.

and thus the energy of cohesion. The realized bonding type can
be elucidated by comparison with the conventional two-center,
two-electron bonds of carbon (2c-2e): 1. A single chemical bond
is formed when each of two atoms provides an electron, and
both share the formed electron pair. 2. Electron configurations
with eight atoms in the outer shell possess a lower energy and
higher stability (‘octet rule’) due to the stable noble gas
configuration. Group III atoms with three valence electrons
cannot fulfill these conditions and therefore arrange as
delocalized three-centered bonds or multi-centered bonds in
o and n frameworks, where electron pairs are shared at least
among three or more atoms."? This complex bonding behavior
gives access to flexible chemistry with a wide variety of
allotropes in 2D space. DFT calculations propose a series of
dynamically stable 2D structures and a variety of 2D bonding
types for borophene, aluminene, gallenene, and indiene, the
single layers of boron, aluminium, gallium, and indium.

In the following, tight-binding theory is used to treat three-
centered bonds by the LCAO ansatz, describing the formation
of molecular orbitals, which are combined to produce covalent
bonding of an extended 2D network."*° The electron configuration
and the arrangement of orbitals for three-centered bonding
is shown in Fig. 3. Boron is the lightest atom that can develop
2D extended metallic phases by sp>type hybrids, described by
delocalized three-center, two-electron bonds (3c-2e), involving a
motif of three shared boron atoms.

Based on the LCAO method, the electron configuration with
promoted electrons can be described by three equivalent atomic
orbitals, which form the molecular orbitals of a triangular motif,
where three atoms share one pair of electrons.*" In this triangular
boron motif, the sp*like hybrids overlap, yielding one bonding
and two anti-bonding orbitals (see Fig. 4). These orbitals broaden
into bands by adding more triangles with increasing orbital
overlap.”' Two of the three electrons are in the in-plane bonding
orbital, but one electron is in an in-plane antibonding orbital and
not in the remaining empty 2p,-bonding orbital. Therefore, a
planar triangular hybrid prefers to hybridize with a high-energy
electron to a o-n mixture of in-plane and out-of-plane states to
gain further stability in a buckled configuration. The fact that a

This journal is © The Royal Society of Chemistry 2021
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Fig. 3 Scheme of the electron configuration of valence electrons and
sketch of the corresponding three-center bonding orbitals of boron.

small fraction of electrons occupies bonding n bands and a small
fraction of & states stay unoccupied seems to be the reason for the
instability of the planar network.>' This configuration is metallic
due to partial occupancy of the ¢ and n states. However, the
freestanding regular triangular borophene sheet with buckling
along the armchair direction, called striped &s-borophene, is
dynamically unstable. The cohesive energy and structural data
of this polymorph are given in Table 1 and a scheme of the
structure is presented in Fig. 5(a).?’ > For corrugated monolayers,
Table 1 provides an estimate of the layer thickness dy.a, by
adding the van der Waals diameter d,,>* and the corresponding
corrugation effect Az.

Interestingly, besides the unstable striped phase, stable
planar borophenes exist. By combining electron donors, provided
by the three-center flat triangular regions with a surplus of
electrons in an antibonding state, and two-center hexagonal
regions, acting as electron acceptors, in the right proportion,
boron can form stable polymorphs consisting of hexagonal sites
with holes and triangular sites. In Fig. 5(b and c) two such highly
symmetric phases, called f;, and y; borophene, are displayed.
These highly symmetric perfectly flat metallic sheets achieve a
high stability of free-standing borophene. The enormous number
of possible 2D arrangements of hollow hexagon and triangular
sites (variation of boron hexagons with or without a boron atom at
the center) makes it possible to tailor lattice properties. The
structural and mechanical data of the two phases that have
already been synthesized (fi;, and y; borophene) are given in

antibonding

*

a

bonding
a

Fig. 4 Energy diagram of three-center bonding with one bonding level a,
two antibonding levels a*, and the formation of a 2D network with level
broadening to electronic bands and possible formation of a band gap.

This journal is © The Royal Society of Chemistry 2021

View Article Online

Nanoscale Horizons

Tables 1 and 2.>'”>® To explain the high stability of the planar
phase an aromatic or anti-aromatic character of bonding has been
invoked."’

Furthermore, complex geometrical structures consisting of
several covalently bonded sublayers exist. This includes a
borophene phase with the space group 8-Pmmn, consisting of
four atomic sublayers (see Fig. 5(d)).>® This hard but flexible
material has a large cohesive energy, which is in line with the
high values of the other polymorphs. Contrary to the failure
mechanism of triangular borophene, which shows elastic
instability in the zigzag direction and phonon instability in
the stronger armchair direction, the 8-Pmmn structure fails by
elastic instability.

In the search for other defect-free polymorphs of borophene, a
thermodynamically stable puckered phase with an asymmetric
centered-washboard (acw) structure of orthorhombic symmetry has
been discovered that, unlike other boron sheets, is a semiconductor
(centered because there is another atom at the center of the
hexagons).”” According to MD simulations, this semiconducting
polymorph is dynamically and thermodynamically stable up to about
800 K. Interestingly, the application of uniaxial or biaxial tensile
strain closes the gap and transforms the system back to the metallic
state, and the positive Poisson ratio becomes negative.”’

For aluminene, besides the planar honeycomb structure of
aluminium,”®*° a graphene-like buckled,*® triangular, and
four-layer 8-Pmmn structure®' have been proposed (see Table 1).
Note that some of these phases have not yet been fully char-
acterized and confirmed by other authors and some allotropic
modifications may only be stable if the phonon dynamics
is stabilized by the strain exerted by monolayer-substrate
interaction. For the dynamically and thermodynamically stable
four-layer network of 8-Pmmn aluminene, covalent sp*-type
bonding seems to be stronger than sp” bonding, according to
an analysis of the electron localization function (ELF).*!

In its bulk chemical behavior, a-Ga is known as the only
elemental ‘molecular metal’ that favors both covalently bonded
dimers and weaker metallic bonding in the plane perpendicular
to the average alignment of the Ga-Ga dimers. Monolayers of
gallium have been investigated by several authors.**™* A tight-
binding model based on the combination of LCAO and ab initio
calculations led to the proposal of the existence of a graphene-
like planar a;q,-gallenene.®” This phase can be derived from
bulk a-Ga by extracting a monolayer of Ga from the 100 surface
(a100-Ga) and allowing relaxation (see Fig. 6(a)).>* This slightly
distorted honeycomb network needs stabilization, for example
by strain engineering, due to dynamical instability in its free-
standing form. A second phase studied by the tight-binding
model is the by;-gallenene monolayer, which resembles a zigzag
rhombic lattice.*” This phase can be derived from bulk a-Ga by
extracting a monolayer of Ga from the 010 surface (by;o-Ga) and
allowing relaxation (see Fig. 6(b)).>* The pucker effect originates
from mixed hybridization of the in-plane orbitals with the p,
orbitals. The Ga-Ga bonds in a;go-gallenene are covalent in
nature, whereas both metallic and covalent interaction is
observed in by;o-gallenene. It is important to note that the two
gallenene structures exhibit imaginary frequencies, however,

Nanoscale Horiz., 2021, 6, 856-892 | 859
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Table 1 Space group, cohesive energy, lattice constants, bond length, corrugation, and van der Waals diameter of elemental group Il monolayers

Structure, Cohesive energy, Lattice constants Bond lengths  Corrugation distance van der Waals diameter
Monolayer  space group E. (eV per atom) a, b (nm) d,, d, (nm) Az;, Az, (nm) dyy”* dyyen, (nm)
Borophene  Triang., 86 —6.00%" 0.161, 0.286%> 0.160, 0.186**  0.088** 0.384,% 0.472
Pmmn** —5.66%% 0.322, 0.329%3 0.091%*
Borophene  Planar, 3, —6.15%2 0.293, 0.507%* 0.165, 0.170*°*  0%** 0.384%*
Pmm2** —5.71% 0.292, 0.506%
Borophene  Planar, y3 —6.16%2 0.445, 0.445%* 0.160, 0.171%°  0** 0.384%*
cmmm®
—5.72% 0.290, 0.444%
Borophene  4-Layer slab 8-Pmmn®®  —6.33%¢ 0.452, 0.326%° ~0.17-0.19%°  0.218%¢ 0.384,%* 0.602
Borophene  Pucker, acw Pmn2,*’ —5.73%7 0.319, 0.530%7 0.157-0.226*”  0.126, 0.202%7 0.384,%* 0.586
Aluminene  Planar —1.96>® 0.449%% 0.259%% 0%8 0.368**
Pemmm>® —2.32%° 0.446%° 0.257%°
Aluminene  Buckled —3.47% 0.275%* 0.275, 0.292°"  0.245%! 0.368,2* 0.613
P3m1** 3.27% 0.272% 0.296%° 0.252% 0.368,%* 0.620
Aluminene  Triang., Pmmn>° 2.76%° 0.268, 0.465%° 0.268%° 0.217%° 0.268,%* 0.585
Triang., Pmnm>° 3.27%° 0.269, 0.272%°
Aluminene  4-Layer slab 8-Pmmn®! 3.16%1 0.674, 0.503! 0.258-0.286°"  0.344°1 0.368,>* 0.712
Gallenene  Quasi planar 0.787, 0.465%> 0.266, 0.267°% 032 0.374%*
a100-Ga 0.250, 0.251% 0%
Gallenene  Puckered —2.32% 0.474, 0.492%2 0.273%2 0.119%2 0.374,%* 0.493
bo10-Ga 0.465, 0.482%* 0.271, 0.273*  0.127% 0.374,%* 0.501
Indiene Planar —1.81%¢ 0.496°¢ 0.286° 0%¢ 0.386>*
Indiene Buckled 1.83%¢ 0.4243%¢ 0.289%° 0.154%¢ 0.386,%* 0.540
Indiene Pucker, sw 1.88%¢ 0.425, 0.568%¢ 0.291, 0.287%¢
a) top view front view b) ) d) top view

side view

armchair

side view

front view

jpodaPodPoqPodPodl|

Fig. 5
hexagons and triangular sites: (b) f1, structure (y = 1/6) and (c) y3 structure (n
bonded sublayers. The dashed rectangle delineates the unit cell.

they can be stabilized upon application of biaxial strain or
by adsorption on a surface. In fact, few-layer assemblies of
atomically thin 2D gallenene (~4 nm) have been successfully
exfoliated from the molten phase of o-gallium (~30 °C) on a
silicon substrate, where the substrate stabilizes the dynamically
unstable quasi-free-standing layer.**

The investigation of 2D phases of the heavier homologues In
and, especially, Tl is still in its infancy. First principles DFT-PBE
calculations indicate the existence of two dynamically stable
phases of indiene, namely a planar honeycomb phase that
behaves like a metal and a buckled graphene-like allotrope,
which is an indirect semiconductor that transforms to a metal
under compressive and tensile strain.>® In addition, a dynamically
unstable puckered structure with a comparable cohesive energy
has been described by the authors.

The structure, space group, cohesive energy, lattice
constants, bond length, corrugation effect, and monolayer

860 | Nanoscale Horiz., 2021, 6, 856-892

(a) Buckled triangular monolayer with top, side, and front views. (b) and (c) Stable polymorphs consisting of hexagonal sites with holes or hollow
= 1/5). (d) Geometric structure of 8-Pmmn borophene with four covalently

thickness of group III monolayers are presented in Table 1 for
the known triangular, planar, 8-Pmmn, and puckered allotropes.
To elucidate the nature of the bonding, we plot the cohesive
energies as a function of the accurately known bond lengths
(see Fig. 7(a)). The cohesive energy describes the interaction of
an atom with its surrounding atoms of the 2D network and
controls the mechanical stability of the whole network. In the
case of corrugated monolayers, usually the largest bond length is
employed, designating the bond with lowest critical fracture
strength, and for the large differences of some puckered phases
the mean value is used. For comparison, graphene is included,
which has the largest cohesive energy and shortest bond of any
uniform single-atom layer.*”*

The boron allotropes assemble in a region of short bonds
and consequently strong bonding. Note the striking similarity
of cohesive energies for the diverse phases. To explain the
unusual stability of planar and quasi-planar 2D boron

This journal is © The Royal Society of Chemistry 2021
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ultimate strain of group Ill monolayers

Structure, space
group

Young’s modulus

Monolayer (Nm™) Eaey Ery

Poisson’s ratio Ve, Vg,
)

Ultimate strength

(Nm™) 0ac 07 Ultimate strain, guc &,

382, 163%°
399, 163*°
190, 210*°
189, 210°°
208, 205%°
196, 208°°
241, 305%°
24532, 322
.
2534
2842
2542

Borophene Triangular, d¢
Pmmn**
Planar, f;,
Pmm2*
Planar, y3
Cmmm™
4-Layer slab
8-Pmmn®®
Planar
Triangular
Puckered
Planar
Triangular

Borophene 0.18%

Borophene 0.11*

Borophene 0.042,
0.048,
0.31%*
0.49%
0.20%*

Aluminene
Aluminene
Gallenene
Indiene

Indiene 0.37*

Fig. 6 (a) Honeycomb graphene-like lattice of gallenene obtained by
cleaving bulk a-Ga along the (100) direction after relaxation (ajpo-Ga).
(b) Distorted rhombic lattice of gallenene obtained by cleaving bulk a-Ga
along the (010) direction after relaxation (bgi0-Ga). The dashed rectangle
and square show the unit cells.

structures, the bonding concepts of aromaticity and anti-
aromaticity have been invoked." The three heavier group III
monolayers cluster in a region with significantly longer bonds
and thus much lower cohesive energies. Surprisingly, the atom
size, approximated by the van der Waals diameter of B
(0.384 nm), Al (0.368 nm), Ga (0.374 nm), and In (0.386 nm),
does not increase™ and the corrugation effects are comparable. It
is the drastic extension of bond length observed from borophenes
(0.16-0.19 nm) to aluminene phases (0.26-0.29 nm) that strongly

This journal is © The Royal Society of Chemistry 2021
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reduces orbital overlap and leads to the large decrease of bond
energy of the homologues of boron. The missing fourth valence
electron seems to have a much stronger effect on the stability of
the higher homologues than on borophenes.

The structure, Young’s modulus, Poisson’s ratio, ultimate
strength, and ultimate strain of the studied phases of
borophene,”>*****! aluminene,*” gallenene,** and indiene*?
are collected in Table 2. The plot of the Young’s moduli and
ultimate strengths as a function of the bond lengths offers an
overview of the mechanical behavior of elemental group III
monolayers (see Fig. 7(b)). Note the different scales of the left
and right ordinates, which differ by a factor of ten and therefore
give direct insight into the applicability of Griffith’s rule ¢ = E/10,
where ¢ is the ultimate strength and E is the Young’s modulus.
This rule connects the elastic stiffness with the about ten times
smaller critical stress or ultimate strength. The intrinsic or
ultimate strength is the maximum stress a perfect crystal can
withstand at zero temperature, and thus is a measure of the
strength of bonding at the ultimate strain. To illustrate the
mechanical performance of group III monolayers, we included
the outstanding mechanical properties of graphene with the
highest Young’s modulus of 340 N m™", confirmed by experiment
and theory, and the theoretical mean strength of 37 N m~"*” for
uniaxial tension, in good agreement with 42 N m ™" measured by
biaxial indentation using AFM.**

Note that in the armchair direction the Young’s modulus of
triangular borophene is larger than the stiffness of graphene
due to extreme directional bonding. In the zigzag direction,
however, a significantly smaller stiffness is calculated and the
whole structure becomes dynamically unstable. Altogether, the
phases of borophene cover a huge range of stiffnesses and
fracture strengths originating from the diversity of accessible
2D structures, which, however, possess comparable cohesive
energies. The latter describes the mean reaction energy of the
atoms per atom independent of the anisotropy of the structure.
Besides the polymorphic behavior, the flexibility of the planar
structures is more than twofold higher than graphene’s value,
which can be explained by delocalized multi-center bonding
with well-ordered holes in the planar phases.*”

Remarkably, from borophene to aluminene,** gallenene,**
and indiene,** concomitant with the observed decrease of the
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Fig. 7
length of group Ill elemental monolayers.

cohesive energy by a factor of about three, the stiffness and
strength of all phases decrease drastically by a factor of about ten.
This illustrates the severe deterioration of mechanical
performance within group III elements, in line with an increase
of bond length by a factor of approximately two (see Fig. 7(b)).
Thus, besides the higher reactivity, problems with the mechanical
in-plane rigidity and strength may appear for the heavier
homologues. Amazingly, the strongly anisotropic triangular phase
has a negative Poisson ratio (see Table 2). Instead of shrinking
along the out-of-plane direction, the ridge-to-ridge distance
increases upon application of in-plane strain, due to a much
smaller in-plane modulus across the ridges than along the
ridges.*® Delocalized multi-center bonding enables structural
fluxionality that causes structural phase transitions under
tension, for example by inducing atomic rearrangements by bond
rotation at small strains. As can be seen in Table 2, the ultimate
strains increase substantially, namely by a factor of about three,
from borophene to indiene. Surprisingly, 1, borophene exhibits a
strain-induced phase transition by atomic rearrangement via
bond rotation at a strain of ~0.12, and then resists loading up
to a strain of 0.36.>° A high mechanical toughness with ultimate
strains in the range of the latter value is reported for indiene.*

The mechanical properties of few-layer systems (1-4 layers)
of metallic triangular borophenes without holes have been
studied theoretically.*® The interlayer separations of 0.31 nm
(AA stacking) and 0.34 nm (AB stacking) are much smaller than
the estimated layer thickness of buckled borophene, taking the
corrugation effect into account.”® This points to strong inter-
layer interaction between the metallic layers. Calculations
of the metallic bilayer structure of planar hexagonal
aluminene yielded an interlayer separation of 0.270 nm,
which is also much smaller than the van der Waals
diameter. The small spacing allows interlayer electron
transfer, as confirmed by a huge interlayer interaction energy
of —519 meV per atom.** Therefore, aluminene has been
recommended as a promising material for electric charge
storage and as a nanocapacitor.

862 | Nanoscale Horiz., 2021, 6, 856-892

(a) Plot of cohesive energy versus bond length for group Il elemental monolayers. (b) Plot of Young's modulus and ultimate strength versus bond

In 3D structures the metalloid boron shows neither metallic
nor non-metallic behavior, whereas metallic properties are
found in its 2D structures. Despite the energetic and dynamic
stability suggested by DFT calculations for several allotropes of
group-1II monolayers, the thermodynamic stability of metallic
monolayers remains a fundamental problem. Owing to the
absence of electrons occupying © bonds, the stability is significantly
reduced. However, close-packed triangular and planar polymorphs
with different vacancy patterns have been grown on Ag(111)
substrates and identified by STM.>**® A recent progress report
covers the experimental synthesis of metallic and also semi-
conducting borophene sheets, e.g., on metal substrates by CVvD
and MBE, and discusses relevant stability issues, which are a
prerequisite for practical applications in nanoelectronics and
optoelectronics.*’

Group II-1IV and III-IV monolayers

The distinctive nature of bonding of several group II-IV and
MI-IV monolayers has been studied theoretically, while experi-
mental verification is still missing. Remarkably, these monolayers
show the rule-breaking phenomenon of quasi-planar hyper-
coordinate chemistry. This is of enormous significance for the
development of 2D materials due to the enforced restriction of
covalent bonding to two dimensions. Contrary to conventional 3D
tetrahedral and planar tricoordinate sp” bonding of carbon,
binary monolayers with Be, Mg, Ca, B, and Al atoms exhibit
quasi-planar tetracoordinate (ptC), quasi-planar pentacoordinate
(ppC), and quasi-planar hexacoordinate (phC) moieties, deviating
from carbon’s established tetrahedral bonding and its maximum
coordination number of four.** Reasons for this unusual
coordination in the plane are delocalization of electrons of the
carbon 2p, orbitals by efficient n-acceptors and the donation of
o electrons to electron-deficient bonding. Moreover, electron
transfer is promoted in these compounds by different electro-
negativities, leading to ionic contributions. The increase of
electron density at the C (Si) moiety enforces planarity of the
¢ bonds. In isolated molecular species besides electronic

This journal is © The Royal Society of Chemistry 2021
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stabilization of planar hypercoordination mechanical effects such
as steric constraints have been studied intensively by theory and
by experiments.*’

The peculiar molecular motifs with unconventional bonding
may serve as building blocks for an extension to infinite
monolayers (see Fig. 8). To incorporate these generally unstable
entities in a monolayer, mechanical interconnects such as
non-hexagonal rings can be used to stabilize hypercoordinate
bonding in 2D space. This additional structural degree of free-
dom opens the door to novel although complex structures with
unforeseen physico-chemical properties, as well as promising
applications. It is well known that elements with multicenter
bonding such as boron allow a variety of strong bonding types
and various configurations with delocalized charge distribution.
The nature of interlinks combining the individual hypercoordinate
motifs plays a fundamental role in the stabilization of infinite
layers and in the realization of distinct monolayer properties.

The necessary information on charge distribution and type
of bonding in the extended systems is mainly based on two
methods. The interpretation of charge distributions in terms of
electron lone pairs, two-center and multicenter bonding are
usually examined by the solid state adaptive natural density
partitioning (SSAANDP) method.*® The second method delivering
insight into the electron distribution and nature of bonding is
ELF.* The key ELF values of approximately 0, 0.5, and 1 refer to
extremely low electron density, fully delocalized electrons, and
extremely high density of electrons, respectively.

The theoretical strategies employed to find stable hyper-
coordinated 2D arrangements of atoms are bottom-up
approaches, maintaining the number of valence electrons by
isoelectronic substitution, and direct global minimum search.
Clearly, 2D materials with the lowest energy configuration of
the global minimum on the potential energy surface (PES) have
a high chance to be realized experimentally. Quite often,
however, additional configurations with a local minimum and
quite similar cohesive energies exist. If these monolayers are
thermodynamically and dynamically stable, experimental
synthesis may be possible, especially if further stabilization
takes place by adsorption on a suitable surface.

Global structure search resulted in a minimum energy
monolayer of BeC with a complicated structure, containing
rings with three, six, and eight atoms.” In this planar low
symmetry structure with ptC moieties the carbon atoms bind
four Be atoms. The perfect planarity has been explained by the
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Fig. 8 Step-by-step growth of an extended B,C monolayer, containing
the hypercoordinated ptC motif, by starting from a hypothetical CBy4
molecule. See Fig. 9(c) for the structure of the corresponding extended
network.
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small-ring mechanical strain and n electron delocalization.
Table 3 presents the structure, cohesive energy, lattice constants,
bond lengths, Poisson’s ratios, and in-plane mechanical moduli of
all hypercoordinated compounds considered here. Furthermore,
the table gives the sum of the van der Waals radii (d,,) of the two
constituents and in case of corrugation the van der Waals diameter
plus buckling effect (dy.a) as an estimate of the layer
thickness.">?* Besides BeC, based on DFT calculations and particle
swarm optimization (PSO), global minimum search resulted in
quasi-planar phC moieties incorporated in a weakly buckled
monolayer of Be,C.”"**> Each C atom binds to six Be atoms, while
each Be atom is connected to three C atoms and three Be atoms
(see Fig. 9(a)). Symmetric buckling of two adjacent Be atoms of
0.046 nm out of the central C atom plane reduces repulsion
between neighboring cations.>® The thermodynamic, dynamic,
and thermal stability up to 1500 K have been confirmed for Be,C.

The computationally designed BesC, monolayer contains
quasi-planar pentacoordinate carbon motifs (quasi-ppC) in a
global minimum structure.>® Remarkably, the Be;C, monolayer
contains no classical lone pairs or localized conventional 2c-2e
bonds, but only three-, four, and six-center bonds.*® The large
buckling effect of 0.214 nm reduces the repulsive interaction
between Be atoms. The negative cohesive energy reveals
thermodynamic stability, the positive phonon modes dynamic
stability, and the high melting point of >1500 K thermal
stability. The unit cell contains eight B;C, units with 72
electrons. The BesC, monolayer is a gapless semiconductor
with a Dirac-like point in the band structure.

DFT calculations, including electronic structure calculations,
revealed that Mg,C monolayers with quasi-planar hexacoordinate
C (phC) and hexacoordinate Mg represent a global minimum
structure.>*> The corrugation of the puckered hinge structure is
0.179 nm.>* Owing to the larger Mg atom the bond lengths
increase and the cohesive energy decreases to —3.43 eV per
atom.”® The monolayer is thermodynamically, dynamically, and,
as MD simulations indicate, thermally stable up to 900 K. The
strain-tunable band can be tuned from its metallic equilibrium
state to a gapless semimetal and narrow semiconductor by
modest biaxial tensile strain.>* The monolayers possess the rare
intrinsic in-plane negative Poisson’s ratio, where responsive strain
is observed in the armchair direction if strain is applied in the
zigzag direction.”®

A structure with quasi-planar hexacoordinate C (phC), as
already described for Be,C and Mg,C, is also formed by Ca,C,
however, with a larger corrugation of 0.234 nm.*® This
monolayer is dynamically, mechanically, and thermally stable
up to 700 K.*® According to the long Ca-Ca bonds of 0.326 nm
the low cohesive energy and in-plane stiffness is expected.
The 2D network shows only small deviations from isotropic
mechanical behavior and belongs to the family of MXenes
that has received enormous attention for potential use in
supercapacitors and batteries.”®

Inspired by the bonding of the molecular species Ca,Si,>~
with a ppSi center as building block, following the 18-electron
rule, a CaSi monolayer has been designed by DFT computations
(see Fig. 9(b)).%” Stabilization occurs by delocalization of Si 3p,
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Table 3 Space group, cohesive energy, lattice constants, bond lengths, buckling distance, van der Waals diameter, Poisson’s ratio and Young's modulus
od lI-1V and llI-IV compounds

Planar Cohesive Buckling  van der Waals Poisson’s Young’s
structure, energy, E. Lattice constants Bond lengths distance diameter Ratio modulus Ej, ,,
Monolayer space group (eV per atom) a, b (nm) dexssix dxx, (nm) Az (nm) Ay Awinz (MM)  Vacyay Vazyb E,p (N m )
BeC ptC, AMM2*°  —6.67°° a=bh=0.435" 0.138, 0.166°° 0°° 0.323% 146°°
Be,C phC, P3m1°'  —4.86°> a=b=0.299>> 0.173, 0.198°2 0.092°2 0.323,%* 0,415 162°2
BesC, ppC —4.58% 0.892, 0.921°% 0.170, 0.239°3 0.214%3 0.323,>* 0.537 —0.041, —0.16>® 32.7, 130
Mg,C phC, P3m1*® —3.43°* 0.354,°* 0.335°>  0.223, 0.271°° 0.179°* 0.343,* 0.522  0.03, —0.023°°  59.6, 56.8°°
Ca,C phcC, P3m1 0.394°¢ 0.256, 0.326°° 0.234°¢ 0.401,>* 0.635  0.448, 0.448°° 72.9, 32.6°°
CaSi ppSi —3.07%7 0.933, 0.686°” 0.297, 0.398%7 0.076°” 0.441,2* 0.517 —0.15, —016>"  21.8, 24.6°7
B,C ptC, Pmm2’°  —6.47°° 0.256, 0.345%° 0.156, 0.169°° ~0.0085*° 0.362,>* 0.371  0.148, 0.123*° 237, 197°°
B4Cs ptC —6.56%2 0.47%* 0.153, 0.169°* ~0.030°%  0.384,>* 0.414 252, 287°%
Al,C ptC —4.49% 0.304, 0.506> 0.196, 0.260% 0% 0.354%* 0.114, 0.104%* 121, 110%*

electrons and o-donation of Ca electrons. In the CaSi layer the
Si atom binds with five ligands, namely one Si atom and four
Ca atoms (quasi-ppSi). The Ca atoms of this monolayer are
buckled with a total buckling distance of 0.076 nm, 0.038 nm
on both sides of the central Si layer. The cohesive energy is low,
owing to large bond lengths diminishing orbital overlap.
The CaSi monolayer is thermodynamically, mechanically,
dynamically, and thermally stable up to about 1200 K.>’

For B,C first-principles lattice dynamics and electron-phonon
coupling calculations predicted a monolayer consisting of a
mosaic of hexagons and rhombuses with quasi-ptC moieties,
ensuring a preferred 18 valence electron count (see Fig. 9(c)).*®
The C layer and B layer are separated by only 0.0032 nm
(~0.0085 nm*®).”® Global minimum search on 2D boron-carbon
compounds revealed that this thermodynamically and
dynamically stable structure has not the lowest-energy
configuration, however, a comparable stability.”>*® The possibly
metallic network is formed by strong bonds and is dynamically
and thermally stable up to about 2000 K.*° Another proposed
boron carbide is the B,C; monolayer derived from quasi-planar

hexacoordinated B,C; clusters®® with tetracoordinate carbon
(quasi-ptC).®> This global minimum structure was obtained by
DFT computations and swarm-intelligence structure-searching
methods. Since the central B atom of each B,C; motif is situated
about 0.03 nm above the hexagonal B;C; ring, the monolayer is
slightly buckled. The strongly bonded thermodynamically stable
monolayer is dynamically and thermally stable up to 1600 K.
The Al,C monolayer can be derived from the planar molecular
species C,Alg>~ and follows the already described structure of B,C
with tetracoordinate carbon (ptC) and tricoordinate Al atoms with
a global minimum structure.®® Better c-donation due to the larger
electronegativity difference between C and Al (~1.0) than between
C and B (~0.5) completely avoids buckling by delocalized
electrons. Note that the size of Al atoms implies much larger
bond lengths, resulting in a moderate cohesive energy.**
This semiconducting monolayer is thermodynamically and dyna-
mically stable, and maintains its structural integrity up to 1500 K.
The plot in Fig. 10(a) displays the cohesive binding energies
versus the range of bond lengths found in the nonuniform
monolayer structures of BeC,>® Be,C,”"*> Be;C,,”* Mg,C***°
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Fig. 9

(a) Top and side view of the Be,C monolayer. The black hexagon shows the quasi-phC motif and the red dashed rhombus displays the unit cell.

Braun and yellow balls represent C and Be atoms, respectively, a and b are the lattice vectors, and Az is the buckling effect. (b) Top and side view of the
CaSi monolayer, containing the quasi-ppSi motif as indicated by the black circle. The yellow and blue balls present the Si and Ca atoms, respectively. The
red dashed lines label the unit cell. (c) Top and side view of the B,C monolayer with quasi-ptC motif. Braun and yellow balls are the C and B atoms,

respectively. The black rectangular box shows the quasi-ptC motif.
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Fig. 10 (a) Plot of cohesive energies versus the range of bond lengths realized in group I1-1V and IlI-1V monolayers. For comparison, the dependence of

planar binary and buckled elemental group-IV monolayers are displayed. Furthermore, the binding energy and bond lengths of honeycomb graphene
and BCz monolayers are included. (b) Plot of in-plane stiffness of group II-1V and IlI-1V monolayers versus bond lengths. For comparison, the values of
planar binary and buckled elemental group-1V monolayers are displayed. Moreover, the Young's moduli of honeycomb graphene and BCs monolayers

are displayed.

Ca,C,”° CaSi,”” B,C,>**° B,C;3,°"%* and Al,C.**** According to
the valence-shell electron-pair repulsion (VSEPR) rule, hyper-
coordinated moieties seem to be energetically unfavorable
owing to repulsion of the high density of bonds in the plane.
The plot, however, demonstrates surprisingly strong bonding of
quasi-planar hypercoordinate structures with their unconventional
bonding types. A comparison of planar tetracoordinated structures
with the strong 3D tetragonal structure of diamond with a cohesive
energy of —7.71 eV per atom (exp. —7.54 eV per atom) and bond
length of 0.154 nm supports the statement.*® Obviously, not only
stabilization of the molecular moieties achieved by delocalization
of lone-pair electrons combined with n-accepting and c-donating
substituents is efficient but also the whole 2D arrangement by
inter-motif bonding.

The distinctive inverse dependence of the cohesive energies
on the range of calculated bond lengths is consistent with the
prediction of tight-binding theory."* Due to the nonuniform
structure the cohesive energy represents a mean value of
individual bond energies, which is plotted versus the resulting
spread of bond lengths. Notably, the mean values exhibit
a characteristic inverse behavior comparable to that of the
uniformly bonded group-IV monolayers. According to the
tight-binding model the strength of covalent orbital coupling,
V (which is the cohesive energy in nonpolar compounds),
decreases with increasing bond length as V ~ 1/d**° The
binding effect of electrostatic forces is larger for compounds
of C (2.55) with Be (1.57) and Al (1.61), and for Si (1.9) with Ca
(1.0), whereas it is smaller for C (2.55) and B (2.04) compounds.

In the following the bonding-structure relationship of quasi-
planar hypercoordinated compounds is compared with the
uniform hexagonal monolayer of graphene, characterized by
the smallest bond length of 0.142 nm and the largest cohesive
energy. Further, the BC; monolayer is considered that can be
described as a doped graphene with honeycomb structure,
where all carbon hexagons are connected by boron atoms.®®

This journal is © The Royal Society of Chemistry 2021

The introduction of boron atoms in BC; monolayers generates
B-C bonds of 0.156 nm length, whereas the C-C bonds of the
carbon hexagons are still ~0.142 nm.*® The cohesive energy
of graphene of —7.85 eV per atom (see Table 4) decreases to
—6.86 eV per atom®” in BC;. The reasons for the decay are the
missing valence electrons and the larger atom size of boron.
Increasing the boron content, e.g., in hypercoordinated B;C,
and B,C monolayers, reduces the cohesive energy only slightly
to —6.56 and —6.47 eV per atom, respectively. While B;C,
contains two different B-C bonds (0.153 nm and 0.159 nm)
and one B-B bond (0.169 nm), B,C has one B-C bond
(0.156 nm) and one B-B bond (0.169 nm). These observations
imply efficient covalent bonding not only within the ptC
moieties. The observed behavior can be correlated with the
reduction of the mean number of valence electrons per atom.

The large cohesive energy of —6.67 eV per atom for BeC is
consistent with the short bonds of 0.138 nm for C-C bonds
assigned to carbon triangles and the two bond lengths of
0.160 nm and 0.166 nm for Be-C bonds. The much longer
Be-C bonds of 0.173 nm and even longer Be-Be bonds of
0.198 nm in Be,C are responsible for the much smaller cohesive
energy of —4.86 eV per atom. While the smaller size of Be atoms
improves orbital overlap, the two missing valence electrons
per atom reduce the overall binding power. Bonding in BesC,
compounds fits into the general bonding-structure scheme
with —4.58 eV per atom and longer Be-C and Be-Be bonds of
0.170 and 0.239 nm, respectively. The weakest bonds and the
largest alteration of bond lengths are observed for Al,C and
CaSi monolayers, containing only one or no element of the
second period of the periodic table.

To benchmark the bonding-structure relationships of
hypercoordinated monolayers with those of the planar sp-
bonded binary group IV carbides SiC, GeC, and SnC, as well
as the weakly buckled hexagonal group-1V elements Si, Ge, Sn,
and Pb, Fig. 10(a) gives a direct comparison that provides
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Table 4 Space group, cohesive energy, lattice constant, bond angle, buckling distance, van der Waals diameter, and layer spacing of elemental and

binary group IV monolayers

Geometry Cohesive energy, Lattice constant Bond angle

Bond length Buckling van der Waals Interlayer

Monolayer space group E. (eV per atom) a (nm) 0 (deg.) d (nm) distance Az (nm) diameter dy,** dy+a, (nm) spacing d; (nm)

Graphene Planar —~7.857° 0.2477° 12077°  0.1427° 0 0.34,* 0.34277
Pe/mmm’™®  —7.977% 0.2467 0.1427° ) 0.3357°

Silicene Buckled —4.57% 0.3877° 116.27% 0.228”° 0.046"7° 0.42,%* 0.466 0.246%
P3m1* -3.917° 0.388”7° 116,97 0.2277 0.0417° 0.60% 0.340%

Germanene Buckled —3.247° 0.4067° 112.673 0.2447° 0.0697° 0.422,%* 0.491 0.255%
P3m1 —2.93% 0.406%* 112.3% 0.244% 0.069%

Stanene  Buckled -3.31% 0.4647° 110.473 0.2847° 0.0957° 0.434,%* 0.529 0.294%
P3m1%® —2.737° 0.467% 111.3%* 0.283% 0.085%

Plumbene Buckled —2.28% 0.4937489 0.299% 0.093% 0.404,>* 0.497
P3m17* 0.493%° 0.302%° 0.101%°

Sic Planar 5.97'12 0.309'2 1202 0.179™*2 0 0.380%* 0.221%¢
Pom2'? 6.94'* 0.307'° 0.177'*% 0.366""

GeC Planar —6.62™° 0.323° 120'*° 0.187*° 0 0.381%* 0.369"°
P6m2 4.65'8 0.322"° 0.186*°

SnC Planar 5.82'1° 0.366'%* 0.211"22 0.001"22 0.387%*
Pom2*?* 2.76'%2 0.349"%* 120" 0.202'** 0

SiGe Buckled 4.81""° 0.395'% 114.5'"°  0.232'%* 0.058'%% 0.421,>* 0.479 0.249'%
P3m1 2.56'%3 0.396'** 0.231™% 0.055*%

SnSi Buckled 3.61'%° 0.421"° 113.3"°  0.252'% 0.067*% 0.427,%* 0.493
P3m1'?® 2.28"%2 0.429'?* 0.258"*2 0.073"*?

SnGe Buckled 3.79'%° 0.427"° 112.3"°  0.257'*° 0.073% 0.428,%* 0.501
P3m1'*® 2.231%2 0.435'%2 0.263'22 0.080'??

additional insight into the characteristics of hypercoordination.
It is well known that the group-IV compounds follow the
established octet rule. The used cohesive energy of SiC
(—5.97 eV per atom) has been calculated, while those of GeC
(—5.57 eV per atom) and SnC (—4.54 eV per atom) are based on
the correlation with other group-IvV and binary group IV data,
because for the two latter compounds much larger and lower
values can be found in the literature, as discussed below. As
visible in Fig. 10(a), the planar sp>bonded carbides and weakly
buckled group-IV elements show a related inverse behavior, as
observed for the mean bond lengths of the hypercoordinated
compounds. Only the heaviest elements Sn and Pb show a
tendency to lower cohesive energies. Obviously, quasi-planar
hypercoordinated motifs can be effectively incorporated into
monolayer structures by introducing efficient coordination
patterns between the motifs. This conclusion is supported by a
comparison of hexagonal siligraphene SiC, with a binding
energy of —6.46 eV per atom®® and silagraphene SiC, with
tetracoordinate silicon (ptSi) motifs at —6.04 eV per atom,
containing rings with four and six atoms.®® Of course, when
the interconnects do not reflect the steric requirements of the
motifs with their specified shapes, the overall stability of the
whole network will decrease.

The dependence of the Young’s moduli or in-plane stiffnesses
on bond lengths is plotted in Fig. 10(b) for the quasi-planar
hypercoordinated monolayers (see Table 3). For comparison, the
stiffnesses of the hexagonal monolayers of graphene, BC;, binary
group IV, and elemental group-IV monolayers are included. By
excepting the BeC monolayer, all hypercoordinated monolayers
follow roughly the inverse dependence of the stiffness of
group-IV monolayers if the range of bond lengths found for each
compound is considered. The in-plane stiffness of 146 N m*
presented for BeC seems not to be consistent with the much
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lower values, which can be derived from the given elastic
constants, nor with the short chemical bonds presented in the
publication.> In any case, the established correlation suggests a
much larger in-plane stiffness.

It is important to note the enormous sensitivity of in-plane
stiffness on bond length. The stiffness decreases drastically by a
factor of about ten for a change of the mean bond length by less
than a factor of two. One of the main reasons for this drastic
decay is the reduction of orbital overlap by the increasing size
of atoms that leads to the loss of planarity in group-IV mono-
layers and the hypercoordinated compounds. The existence
of longer interconnecting bonds between the motifs in the
nonuniform 2D networks has an additional influence on the
in-plane moduli. In many cases the weaker interconnects
reduce the overall mechanical performance to some extent,
however, not drastically for the linear in-plane stiffness.

Unfortunately, information on nonlinear mechanical
properties such as fracture strength and ultimate strain of
monolayers with hypercoordinated motifs is widely missing.
This is a fundamental issue, since nonuniform networks with
short and long bonds are prone to easier bond rupture. While
the linear mechanical behavior of hypercoordinated compounds
seems to follow broadly that of regular bonded monolayers,
nonlinear properties, such as the ultimate strength, may respond
sensitively on the nonuniformity. Since local bond rupture affects
the strength of the whole network, the longest bonds with their
weaker bond energy will control the overall stability.

Group IV monolayers

Elemental monolayers. Carbon atoms have the ground-state
electronic configuration (1s*2s”2p,'2p,'2p,’) with four electrons
in their outer valence shell. In the promoted state they can not
only form four o bonds by sp* hybridization but also three planar

This journal is © The Royal Society of Chemistry 2021
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o bonds by sp® hybridization and an out-of-plane © bond by
interaction of the remaining 2p, orbitals. The tetragonal sp®
hybrids create ideal bonding strength in 3D space (diamond),
while the sp® hybrids allow the strongest bonding in the plane.
The planar hexagonal structure, formed by overlap of the three
2sp” orbitals and the 2p, orbital with those of three neighbors,
consists of three strong ¢ bonds and one © bond and is called
graphene. In this configuration, all in-plane bonding states are
full and the antibonding states above the Fermi level are empty.
Fig. 11 presents two schemes, one with the electron configuration
and one with the sp”> and n orbitals of the C—=C double bond.
This double bond has the shortest bond length and largest bond
energy with the highest density of bonding electrons between the
two nuclei in a hexagonal network. It is noteworthy that the
honeycomb structure used by bees is the optimum way to divide
a surface into equal areas with the smallest total perimeter.
Interestingly, graphene is labeled as a zero-gap semiconductor
(‘semimetal’), because its m valence and w* conduction
bands contact at the Dirac points at the Fermi level.””! To open
a band gap, the in-plane lattice symmetry must be broken.
Mechanical deformation is an appealing means to manipulate
the electronic structure by strain. However, the strain
necessary for opening a sizable band gap in graphene is still
controversial.”*

Since Si, Ge, Sn, and Pb belong to the same group as carbon,
they have four valence electrons with the electron configuration
(ns’np?). However, as known from chemical experience, these
elements prefer sp® hybridization with tetrahedrally bonded
atoms. According to DFT calculations, only buckled monolayers
are dynamically stable, because buckling allows in this
case better interaction of p,-p, orbitals.”> The main reason
for buckling is the increasing atom size, which destabilizes
n-bonding and stabilizes o-backbonds. Fig. 12(a) displays the
top and side views and Fig. 12(b) a perspective view of a buckled
network. For example, the standard van der Waals diameter
increases substantially from d,, = 0.34 nm to 0.420 nm from
carbon to silicon.> Due to the larger distance between Si
atoms, interaction of the p, orbitals is diminished and their
mixing with s orbitals creates partial sp® character, which
enhances overlap and thus stability. The smaller difference
between 3s and 3p sublevels in comparison to graphene favors
this mixing process. Note that in stable low-buckled silicene,
o-n orbital mixing is closer to sp> than to sp® hybridization
with a small buckling effect of 0.041 nm.”

>
>

Energy

NN
2s  2px 2py 2_pz
il
Is

Fig. 11 Scheme of electron configuration and the corresponding sp?
hybrids and = orbitals of the carbon double bond.
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Fig. 12 (a) Structure of hexagonal buckled monolayer with top and front
view. The red dashed line shows the unit cell. Note that only in planar
graphene the structure has sixfold rotational and two mirror plane
symmetries. (b) Perspective view along the zigzag direction of the
hexagonal buckled monolayer.

For the larger Ge atoms, © bonding is further weakened and
the contribution of sp® orbitals and thus buckling increases.
This change in the bonding character is clearly visible in the
bond angle, which decreases from 120° in graphene to 116.9° in
silicene, 112.6° in germanene, and 110.4° in stanene, which is
near the bond angle of sp* hybridization of 109.5°.”* With the
further increasing atom size of Sn and Pb, interaction between
n orbitals is further reduced and leads to dominant sp’
hybridization in the mixed sp®-sp® hybrids of plumbene.”*
Larger buckling allows a better overlap between ¢ and =
orbitals and stabilizes the network, whereas s—p mixing reduces
with increasing atomic number, since in higher homologues s
orbitals lower their energy with respect to p orbitals.

The relevant structural data of graphene,”””>”°
Silicene,72'73’75’80’82 germanene’73,75,83—85 Stanene,73,75,83,84,86,87
74,88-90

and plumbene are presented in Table 4. In Fig. 13(a) we
characterize the bonding behavior of the elemental group IV
monolayers by plotting the cohesive energy as a function of the
bond length. Graphene is the champion, with the shortest bond
and the largest cohesive energy (larger than diamond) and largest
dissociation energy of a single C—C bond. A comparison of the
bond lengths of graphene (0.142 nm) and diamond (0.154 nm)
underlines the high stability of planar sp> hybridization. However,
due to the much longer bonds of the elemental 2D networks of Si,
Ge, Sn, and Pb, the cohesive energy decreases dramatically. Note
that bonding power is now no longer completely confined to the
plane. Remarkably, the bond length of mixed hybridization of
silicene, at 0.228 nm, is much larger than that of graphene but
still slightly smaller than the bond length of the 3D Si diamond
structure (0.235 nm). Continuing down the group, the further
increasing influence of sp® hybrids causes the bond length of
germanene to increase to 0.244 nm, agreeing with that of bulk
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1nh00113b

Open Access Article. Published on 08 irailak 2021. Downloaded on 2024/09/13 22:49:43.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Nanoscale Horizons Review
g | graphene Group IV a) 400F cC Group IV b) 40
| N0 strongestbond — o mhee _ _ Biehestsirengi _ _ _
% s \ch @ elem. planar ) I E-modul -
% 6F - I 6' SgC A elem. buckled %300 B ol %‘;us LY 1302
2 =1 SiC . Obinary planar | o =] elamen 2
»s5k 8 ! I SiGe = gl ¢ binary IV-IV 3
B & a Abinbuckled | 3 < Yy a
g4) & GeC SnG 2200} & Strength 102
o ML = 4'\ AX ) 8 % I 3SiC A elemental IV é
23]l 4 | SipPayl o Sl % GeC : =3
Z3F ) L - o | @ 8 ¢ binary IV-IV
5 O AGe~~AaA g I N\snC 2
chY B SnC iGe Sn~A S 100 ¢ J10Z
S | SnSi Pb > I NSi e g
ip ! ' SA%“A o Sn L
i : : ; » , OU%spsi Ay
0.15 0.20 0.25 0.30 0.35 0.15 0.20 0.25 0.30 0.35
Bond length (nm) Bond length (nm)

Fig. 13

(a) Plot of cohesive energy versus bond length of elemental and binary group IV monolayers in comparison to graphene. (b) Young's modulus

and ultimate strength of elemental and binary group IV monolayers versus bond length in comparison to graphene.

germanium of 0.245 nm. The large increase of bond length from
graphene to silicene causes a drastic reduction of the cohesive
energy from —7.85 to —3.91 eV per atom.” This effect slows down
for the heavier elements, which show an asymptotic inverse
dependence of cohesive energy with modest changes of binding
energy at longer bond lengths, similar to the Young’s modulus
and strength (see Fig. 13(b)).

The energy level scheme presented in Fig. 14 illustrates the
transition of atomic s and p orbitals to atomic hybrids and
bonding orbitals that are responsible for the formation of bands
and eventually a band gap in an extended covalently bonded 2D
network. Of interest is the bonding-antibonding splitting 2B that
results from the energetic stabilization by the bonding orbitals
2% 1n nonpolar materials
such as elemental monolayers, splitting B is identical with the
strength of orbital overlap V, which varies strongly with the bond
length as V ~ 1/d?. Consequently, the energy of covalent bonding
declines strongly with the inversely related bond length. In
Fig. 13(a) this widely unknown dependence is shown for the

and determines the binding energy.

cohesive energy of the elemental and binary group IV monolayers.

CB
5 E (X-X)* ‘
5]
g T
2B Ee
A\ 4
E (X-X)\
VB

Reaction progress

Fig. 14 Energy levels of hybridized s and p orbitals, reacting to molecular
bonding and antibonding levels with level broadening and band formation
of a monolayer.
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38,91-94 95,96

The mechanical properties of graphene, silicene,
germanene,®°® stanene,*>°® and plumbene®” are displayed in
Table 5. The plot of the Young’s moduli and ultimate strengths
as a function of bond length offers insight into the linear and
nonlinear mechanical behavior of the elemental group IV
monolayers (see Fig. 13(b)). This plot reveals a drastic change
of mechanical performance from graphene to silicene. The
enormous loss of bonding energy from C to Si causes a large
decrease of both intrinsic stiffness and ultimate strength,
which controls failure. The heavier homologues of Si with their
minor increase of atom size experience a much smaller
weakening of stiffness and strength, mostly following Griffith’s
rule. While graphene is the stiffest 2D material, surviving the
largest critical stress, these properties weaken enormously down
the group, for instance by a factor of about five for buckled
silicene. Since mechanical performance declines further from
silicene to plumbene, mechanical stability becomes a crucial
issue for the heaviest compounds. For example, low stiffness
values give rise to rippling and wrinkling of the monolayer
structure, with detrimental influence on the electronic properties,
and permits easy incorporation of impurities.

Graphene is the building block for forming bilayers and few-
layer assemblies with new properties up to about ten layers,
where the electronic structure approaches the 3D limit of
graphite.”® The interlayer interaction energy (sometimes called
exfoliation energy) and the stacking order are crucial quantities
controlling the stability and the chemical and physical properties
of multilayers. The reported interlayer binding energies
vary in a large range between —22 and —85 meV per atom for
graphite® and between —18 and —70 meV per atom for
AB-stacked bilayers of graphene.'® This large range of values
is due to the approximations used in the theoretical treatment
of soft layered materials with weak interlayer and strong
in-plane forces. Several recent publications have confirmed
the early results of a low interlayer interaction energy of about
—25 meV per atom'*" and interlayer spacing of 0.335 nm’® for
graphene.

This journal is © The Royal Society of Chemistry 2021
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Table 5 Structure, Young's modulus, Poisson’s ratio, ultimate strength, ultimate strain, and method employed to study elemental and binary group IV

monolayers
Young’s modulus Ultimate strength Ultimate

Monolayer Structure Eacy By (Nm™1) Poisson’s ratio vae, vy, Gacy Oz (N M) strain e, &, Method

Graphene Planar 333”1 0.14-0.21°* 40, 37 0.31% AD initio
3408 0.165>% 4278 0.25%8 Experiment

Silicene Low buckled 62, 59%° 0.29, 0.33% 7.2, 6.0%° 0.18, 0.19%¢ DFT-PBE
63, 60%° 7.1, 5.7%° 0.18, 0.089°°

Germanene Low buckled 44, 43°° 0.29, 0.35%° 4.7, 4.1°° 0.20, 0.21°¢ DFT-PBE
42, 36%° 5.7, 6.0%° 0.16, 0.18%°

Stanene Low buckled 25, 24%° 0.36, 0.42°¢ 2.6, 2.2°¢ 0.17, 0.18%¢ DFT-PBE
2280 0.40%° 2.6, 2.3% 0.15, 0.20%° DFT-GGA

Plumbene Buckled 8% Ab initio

Sic Planar 160" 0.314'* 16.5, 16.7'* 0.20, 0.25"* DFTPBE
173, 180"’ 0.308 17.6, 20.5"%7 0.17, 023'%

GeC Planar 144%° 0.28*° 12.7, 12.8'*° 0.18, 019™*° DFT-PBE
1408 0.318 13.9, 10.5'*®

SnC Planar og't® 0.41™% DFT-LDA

SiGe Buckled 57,115 59128 0.32,** 0.31"%# 1-1.5'* 0.16" PBE, LDA

SnSi Buckled 40,115 42128 0.37,'%% 0.35"%8 DFT-LDA

SnGe Buckled 35,115 33128 0.38,*° 0.36'%# DFT-LDA

In silicene partial sp*-type bonding intensifies the interlayer
interaction between bilayers and multilayers and thus reduces
the interlayer separation. The calculated interlayer spacings of
bilayers with AA and AB stacking are 0.246 nm and 0.253 nm,
respectively (see Fig. 15).5' For free-standing few-layer sheets,
interlayer spacings of 0.34 nm were measured by HRTM and
SAED in layered silicene sheets.’” Calculations of interlayer
separations point to configurations where the spacing of multi-
layers decreases, because the still existing weak in-plane w
bonds are replaced by covalent-type interlayer bonds to further
minimize the total energy.'®® Similarly, it could be shown
theoretically that under external pressure the interlayer spacing
of buckled silicene, germanene, and stanene bilayers
approaches the intralayer bond length with a flat honeycomb
network.®? Interestingly, the dynamically stable and chemically
inert flat phases of bilayer germanene and stanene are
topologically nontrivial.*?

In germanene an even larger contribution of sp® orbitals to
bonding intensifies the interlayer interaction in bi- and multi-layers.

A SN

|
|
G
|

Fig. 15 The stacking orders AA, AB, and AC of bilayers of buckled
hexagonal monolayers. This figure defines the buckling effect Az, the
interlayer spacing ds, and the distance between adjacent layers din.

This journal is © The Royal Society of Chemistry 2021

Interestingly, under structural optimization the buckled phase
converts into the most s