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Immunoassays are widely performed in many fields such as biomarker discovery, proteomics, drug
development, and clinical diagnosis. There is a growing need for high sensitivity of immunoassays to detect
low abundance analytes. As a result, great effort has been made to improve the quality of surfaces, on
which the immunoassay is performed. In this review article, we summarize the recent progress in surface
modification strategies for improving the sensitivity of immunoassays. The surface modification strategies
can be categorized into two groups: antifouling coatings to reduce background noise and nanostructured
surfaces to amplify the signals. The first part of the review summarizes the common antifouling coating
techniques to prevent nonspecific binding and reduce background noise. The techniques include
hydrophilic polymer based self-assembled monomers, polymer brushes, and surface attached hydrogels,
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and omniphobicity based perfluorinated surfaces. In the second part, some common nanostructured
surfaces to amplify the specific detection signals are introduced, including nanoparticle functionalized
surfaces, two dimensional (2D) nanoarrays, and 2D nanomaterial coatings. The third part discusses the
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surface modification techniques for digital immunoassays. In the end, the challenges and the future
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1. Introduction

Immunoassays are highly selective bio-affinity testing to
detect the presence or measure the concentration of an
analyte of interest by utilizing a biorecognition agent with a
specific affinity to the target analyte." The first immunoassay
was introduced in 1959 with radioactive labels to detect
plasma insulin.” Since then, immunoassays have become an
essential method in many fields such as biomarker discovery,
proteomics, drug development, and clinical diagnosis.!
Today, approximately 66% of clinical decisions are based on
the results of in vitro diagnosis (IVD) testing in modern
clinical practice,” while more than 1/3 of the IVD testing is
based on immunoassays, especially for diagnosing infectious
diseases and cancers."”

Great efforts have been made to improve the specificity,
sensitivity, and reproducibility of immunoassays."® ' In this
review, we will focus on the sensitivity issue of
immunoassays.”"®'" The sensitivity of immunoassays could
be evaluated by the signal-to-noise ratio. The strategy of
improving the sensitivity of the immunoassay therefore
involves either amplifying the signals or reducing the
background noise. To amplify the signals, labeling the
affinity agents with enzymes is the most effective strategy,
because the enzyme label could generate many detectable
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perspectives of the surface modification techniques for immunoassays are presented.

signal molecules for a single binding event. With this
strategy, the enzyme-linked immunosorbent assay (ELISA) is
the most commonly used immunoassay technique.”® Various
nanomaterials are also developed and utilized to amplify the
signals in immunoassays."””* Nanomaterials with high
surface-to-volume ratios could conjugate to multiple labels,
such as enzymes or fluorophores. Additionally, quantum dots
or polymer dots with high fluorescence efficiency and
photostability could be directly used as optical labels."
Another signal-enhanced immunoassay is the nucleic acid-
based immunoassay.'>'® By utilizing the amplification power
of polymerase chain reaction (PCR), immuno-PCR was
introduced to detect proteins with greater sensitivity than
conventional immunoassays.">” To reduce the background
noise, the most effective strategy is decreasing the
nonspecific binding, which 1is the major source of
background noise.""'®2° The most popular practice is to use
various blocking agents to quench or block the unreacted
active site on the substrate surface after the immobilization
of the capture agents.

There are now many techniques to improve the sensitivity
of immunoassays, and the current review focuses on the
recent development of surface modification strategies to
increase the sensitivity of immunoassays (Fig. 1).
Immunoassays are typically performed on surfaces, such as
the surface of microplates, glass slides, and microbeads. The
biorecognition agent in the immunoassay is immobilized on
a surface as the probe to specifically capture the target
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Fig. 1 The scheme of the surface modification strategies for signal
amplification and background noise reduction of immunoassays.

molecule, which ranges from molecules to virus particles.
The surface's chemical and physical properties determine the
quality and quantity of the immobilized probe and affect the
specificity and sensitivity of the assay. According to the
working mechanism, the surface modification strategies can
be categorized into two groups: the antifouling coating
strategy for background noise reduction and the
nanostructured surface for signal amplification.®**>°

This review article consists of three parts. The first part
summarizes the common antifouling coating techniques to
prevent nonspecific binding and reduce background noise,
including hydrophilic polymer based self-assembled
monomers (SAMs), polymer brushes, and surface attached
hydrogels, and omniphobicity based perfluorinated surfaces.
In the second part, some common nanostructured surfaces
to amplify the specific detection signals are introduced,
including nanoparticle functionalized surfaces, two
dimensional (2D) nanoarrays, and 2D nanomaterial coatings.
The third part discusses the surface modification techniques
for digital immunoassays. In the end, the challenges and the
future perspectives of the surface modification techniques for
immunoassays are presented.

2. Antifouling coatings for
background noise reduction

Proteins with a variety of amino-acid residues and
conformation flexibility could adsorb onto nearly any surface
via non-covalent interactions, such as hydrogen bonds,
electrostatic and ionic interactions, and hydrophobic
interactions."®*>?? Researchers have developed many types of
blocking agents to prevent nonspecific binding, including
natural proteins such as skim milk powder and BSA,
synthetic polymers such as polyethylene glycol (PEG) and
poly(vinyl alcohol) (PVA), and surfactants such as Tween 20
and Triton-X100.®3* However, there is a lack of standardized
guidance to choose the suitable blocking buffer and strategy.
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As a result, the appropriate blocking strategies are mostly
chosen empirically.>>>® Unlike the blocking strategy which
aims to block the unreacted active site after capture agent
immobilization, antifouling coating aims to modify the
substrate surface to prevent nonspecific binding before the
affinity agent immobilization, followed by an additional
activated step to immobilize the capture agent to the
antifouling surface. After the capture agent immobilization,
the additional blocking or deactivation step is taken to
restore the activated surface to be antifouling.>%**%7%%

According to the molecular systems and architectures of
the coating materials, we could generally divide the
antifouling coating strategy into two classes: (1) the hydrated
layer-based antifouling coating, including forming self-
assembled monolayers (SAMs), polymer brushes, and
hydrogels; and (2) the omniphobicity based perfluorinated
surface (Table 1).

The most commonly used strategy to fabricate the
substrate surface with antifouling properties is to make the
surface strongly hydrated.?"*>*%*° The hydration layer would
form a physical and energy barrier to prevent molecule
adsorption. A wide range of molecule systems with
hydrophilic or ionic groups which can form strongly hydrated
layers have been employed to fabricate antifouling substrate
surfaces, such as PEG and its derivatives, zwitterionic
materials, peptides, polysaccharides, and other
polymers.**>"3

PEG and its derivatives are the most widely used
antifouling materials with the advantages of high water
solubility, superior biocompatibility, and non-toxicity. Since
the 1970s, PEG and its derivatives have been employed for
deposition on surfaces to endow the surfaces with antifouling
properties.>"***" However, the major drawback is that PEG
and its derivatives would be auto-oxidized when oxygen and
transition metals are present, which would make the
PEGylated surfaces unstable and lose the antifouling
properties.*>** In the past decades, because of their high
oxidative resistance and hydrolytic stability, zwitterionic
materials such as carboxybetaine (CB), sulfobetaine (SB), and
phosphorylcholine (PC) have been investigated extensively as
promising substitutes to PEG in developing antifouling
surfaces.'"?"?>  Zwitterionic polymer materials contain
equally oppositely charged moieties, and these charged
moieties could form a more stable and thicker hydration
layer on the surface via electrostatic interactions, which could
provide a comparable or even better antifouling effect than
PEGylated surfaces.**®

Practically, these coating polymers could be deposited on
surfaces either by “grafting to” or “grafting from”
methods."™*! Polymer coatings could be grafted to the
surface either by physisorption or chemisorption.*®™*°
Although the “grafting to” strategy is a more convenient
fabrication method and could provide a moderate antifouling
effect, it is difficult to graft polymer coatings with high
density and thickness due to steric hindrance between
polymer chains, which could weaken the antifouling

This journal is © The Royal Society of Chemistry 2023


https://doi.org/10.1039/d2lc00811d

Published on 13 jaanuar 2023. Downloaded on 18.02.2026 19:35:08.

Lab on a Chip

Table 1 Summary of different antifouling strategies
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Antifouling

strategies Principle Advantages

Drawbacks

Achievement

Self-assembled Hydration layer =~ Good biocompatibility; effective

monolayers based physical antifouling properties;
(SAMs) and energy convenient fabrication
barrier to procedures
prevent fouling
Polymer Same as above Good biocompatibility; effective
brushes antifouling properties on
complex biological milieu
Hydrogel Same as above Good biocompatibility; effective
coating antifouling properties on
complex biological milieu; 3D
network for high protein loading
capacity
Perfluorinated Omniphobicity ~ Effective antifouling properties;
surfaces good stability

Antifouling effect susceptible to
solvents; some SAMs susceptible to
oxidative damage or hydrolysis;
limited antifouling effects on
complex biological milieu
Antifouling effect susceptible to
solvents; some coatings
susceptible to oxidative damage or
hydrolysis; complex fabrication
procedures

a-Synuclein antibody,>® B7-H6
tumor biomarker,”® CRP,***?
glucagon,*® insulin,***° I1gG,>*
paclitaxel and cyclophosphamide,™
somatostatin®®

ALCAM, %% AFp,00:65:66 AFp1 65
BNP,*° CEA,***® COVID-19,%*
Ebola,’" E. coli,*® HBsAg,** hCG,®®
HIV,*® IL-6,°7°° Leptin,*® OPG,>’
OTA,®® PSA,°*¢ Salmonella,®®

Same as above

Limited strategy to modify limited
data for immunoassay application

SARS-COV-2 variants,®® TNFa,*°
TSH,*® ZEN®®
HER2,” 1gG,”® TSH,”® tTG”®

IL-6 and IL-10 (ref. 81-83 and 86)

ALCAM: activated leukocyte cell adhesion molecule; AFP: o-fetoprotein; AFB1: aflatoxinBl; BNP: B-type natriuretic peptide; CEA:
carcinoembryonic antigen; CRP: C-reactive protein; HBsAg: hepatitis B surface antigen; hCG: human chorionic gonadotropin; HER2: human
epidermal growth factor receptor 2; IL-6: interleukin 6; IL-10: interleukin 10; OPG: human osteoprotegerin; OTA: ochratoxin A; PSA: prostate-
specific antigen; TNFa: tumor necrosis factor o; TSH: thyroid stimulating hormone; tTG: tissue transglutaminase; ZEN: zearalenone.

properties of the polymer layer for the incomplete cover.>*>°

Alternatively, the “grafting from” strategy is a bottom-up
method, and the polymer chains are grown via surface-
initiated controlled radical polymerization from a
functionalized surface.”**' In this way, the composition,
architecture, and overall properties of the polymer brush
could be precisely controlled, so that the grafting density,
coating thickness, and hydrophilicity of the polymer can be
enhanced to present better antifouling properties.

In addition to the hydrated layer-based antifouling
coatings, omniphobic perfluoropolymers provide another
type of antifouling coating with a different working
mechanism.>** More specifically, the hydrated antifouling
surfaces exhibit fouling-resistant properties with the hydrated
water layers on top of the surfaces resisting the foulant to
attach, while the perfluorinated surface shows fouling-release
properties with minimum interaction between the foulants
and surfaces, and the attached foulants could be easily
released from the surfaces.”>>

2.1 Self-assembled monolayers (SAMs)

Self-assembled monolayers (SAMs) are highly ordered
molecular assemblies formed spontaneously on surfaces.
Whitesides and co-workers performed a systematic study on
the antifouling properties of structure-property relationships
with various SAMs, and proposed the “Whitesides rules” of
antifouling SAMs: 1) the presence of hydrophilic groups, 2)
the presence of hydrogen-bond acceptors but not hydrogen-
bond donors, 3) overall electrically neutral.*"*®>373°
Oligo(ethylene glycol)-terminated SAMs (OEG-SAM)>*®° and

This journal is © The Royal Society of Chemistry 2023

zwitterionic SAMs®' ™ are the most widely used antifouling

SAMs for immunoassays.

Recently, Castiello et al. introduced a multiplex surface
plasmon resonance (SPR) immunoassay based on PEG-based
SAMs to simultaneously quantify three human pancreatic
islet hormones: insulin, glucagon, and somatostatin.’® Their
work utilized the mixed self-assembly monolayer of thiolated
polyethylene glycol (CH;0-PEG-SH) and 16-
mercaptohexadecanoic acid (MHDA) with a molar ratio of 3:
2 as the substrate surface for the immunoassay. The thiolated
PEG served as the antifouling agent to prevent nonspecific
adsorption, while the MHDA with the carboxyl end group was
used for hormone immobilization (Fig. 2A). The antibody
functionalized spots on the SAM showed high specificity to
the corresponding hormones without notable interference
from other nonspecific proteins due to the excellent
antifouling properties, and the limit of detection (LOD) of
the hormones in multiplex mode could reach 5.81 ng mL™" (1
nM) for insulin, 13.93 ng mL™ (4 nM) for glucagon, and
402.7 ng mL™" (246 nM) for somatostatin (Fig. 2A).>® Davis
and co-workers reported a series of PEG-based SAMs to
construct ultrasensitive electrochemical and label-free
biosensors to quantify insulin,”” the a-synuclein antibody,”®
and C-reactive protein.’”®® Thiolated PEG (HS-(CH,);1-(EG)s-
OCH,-COOH) was self-assembled as the supporting substrate
surface and simultaneously provided the antifouling effect
and the antibody anchoring layer. All of these OEG-SAM
based biosensors showed picomolar sensitivity to quantify
target proteins.”’ ® For example, the biosensor for insulin
quantification exhibited a clinically relevant linear range
from 29.04 pg mL™ (5 pM) to 290.4 pn mL™" (50 nM) with an
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Fig. 2 A-i) The schematic illustration of the mixed SAM formed on the Au film. The thiolated polyethylene glycol (CH;O-PEG-SH) in the mixed
SAM served as the spacer and the antifouling agent to prevent the nonspecific adsorption, while the 16-mercaptohexadecanoic acid (MHDA) was
used for hormone immobilization. A-ii) Multiplex hormone calibration curves of the SPR sensor for insulin (blue), glucagon (red), and somatostatin
(black). Reproduced from ref. 56, Copyright 2018 American Chemical Society. B-i) The schematic illustration of the functional zwitterionic mixed
SAMs with sulfobetaine-thiol (SB-thiol) and carboxybetaine-thiol (CB-thiol). B-ii) Calibration curve for detection of the target and nontarget
secondary antibodies with the SPR biosensor. Reproduced from ref. 61, Copyright 2019 American Chemical Society.

LOD of 6.97 pg mL™" (1.2 pM) in 50% serum,”” while the
biosensor for a-synuclein antibody quantification showed a
dynamic linear range of 8.0-160 ng mL™" (0.5-10 nM) and an
LOD of 0.88 ng mL™" (55 pM).>® Furthermore, the SAM-based
biosensor can be regenerated and reused by immersion in
buffer to disassociate the antibody-antigen complex.””*®

Huang and co-workers reported a mixed zwitterionic
antifouling SAM with SB-thiols and CB-thiols for the
immunoassay in an SPR biosensor (Fig. 2B).°" They
demonstrated that the SB-thiol SAM with higher surface
hydrophilicity and packing density exhibited an overall better
antifouling effect than the CB-thiol SAM due to the ionic
association of CB moieties, while CB-thiol with a carboxylate
group was more suitable for protein immobilization.
Therefore, the zwitterionic mixed SAM with 10% CB-thiol in
mole fraction was utilized to detect the rabbit polyclonal IgG
on an SPR biosensor. This biosensor exhibited high
sensitivity with a LOD of 55.8 ng mL™ and high specificity
when the nontarget chicken polyclonal IgG was present in
the sample (Fig. 2B).*!

2.2 Polymer brushes

Although SAMs have shown good antifouling effects with
buffer solutions or diluted complex media, the low surface
density and thickness of the SAMs limit their antifouling
performance with the complex biological milieu.** Polymer

154 | Lab Chip, 2023, 23, 1151-1168

brushes provide an alternative option, which are thin
polymeric films of tightly packed polymer chains with one
end attached to a surface. Polymer brushes fabricated by the
method of “grafting from” a surface have been most
commonly used in recent years to obtain dense and thick
polymer brushes for the antifouling effect.’***

A variety of polymer brushes have been synthesized to
construct antifouling surfaces, PEG-based poly(oligo(ethylene
glycol) methyl ether methacrylate) (POEGMA), hydroxy-
containing poly(N-(2-hydroxypropyl)methacrylamide)
(PHPMA) and zwitterionic polymer brushes (PSBMA, PCBMA,
PCBAA, etc.) are most commonly used brushes to construct
antifouling surfaces for immunoassays.'">*%%%°

Chilkoti and co-workers first introduced POEGMA brushes
as antifouling surfaces to construct antibody microarrays to
quantify proteins in serum and blood with femtomolar
sensitivity.**®” Hucknall et al. invented a simple noncovalent
immobilization strategy to fabricate antibody microarrays by
inkjet printing the antibodies onto the dried POEGMA
brush.®” Then, based on the simple strategy to fabricate
antibody microarrays, Chilkoti and co-workers developed the
POEGMA brush-based self-contained immunoassay (the “D4
assay”) to convert the sandwich immunoassay to a point-of-
care test (POCT).**”! In the D4 assay chip, the POEGMA
brushes were grown from glass by surface-initiated atom
transfer radical polymerization (SI-ATRP). The capture
antibodies were then immobilized by noncontact inkjet

This journal is © The Royal Society of Chemistry 2023
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printing on the dried POEGMA brushes, while the
fluorophore-labelled detection antibodies were printed on the
hydrated brushes near the spots of the capture antibody.®®
Recently, based on the D4 assay platform, Heggestad et al.
developed a multiplexed portable COVID-19 serological assay
with the double-antigen (DA) bridging format to quantify the
antibody response to three different SARS-CoV-2 antigens
(Fig. 3). The nucleocapsid (N), spike S1 domain (S1), and the
receptor binding domain (RBD) of S1 were printed as the
stable capture antigens, and the fluorescence conjugated S1
and N-terminal domain (NTD) of N were printed nearby on
the trehalose pad as the dissolvable detection antigens. When
a sample is dispensed, the detection antigens would be re-
dissolved in the sample solution. The antibodies in the
sample specifically bind to the capture and detection
antigens and form the sandwich complex with the
fluorescence signals (Fig. 3A). The authors validated the DA-
D4 assay platform with two formats, open format DA-D4
(Fig. 3B and E) and microfluidic DA-D4 (Fig. 3C, F, and G).
With the homemade fluorescence detector D4Scope (Fig. 3D),
the microfluidic DA-D4 could quantify the SARS-CoV-2
antibodies in 60 min.”®
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Fig. 3 A) Schematic illustration of the DA-D4 assay. B and C)
Photographs of (B) the open format DA-D4 assay with 24 individual
assays and (C) microfluidic DA-D4. SI: Sample inlet; WB: wash buffer;
TC: timing channel; WP: wicking pad. D) D4Scope and the schematic
illustration of the optical path of D4Scope. E and F) Dose-response
curves to the SARS-CoV-2 antibody from € the open format DA-D4
assay and (F) microfluidic DA-D4 with antibody spiked undiluted
human serum. G) Fluorescence images with concentration of the
SARS-CoV-2 antibody from the microfluidic DA-D4 assay with
D4Scope. Reproduced from ref. 70, Copyright 2021 American
Association for the Advancement of Science.
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Li and co-workers fabricated a series of ultrasensitive
copolymer brush-based immunoassays by copolymerizing
the glycidyl methacrylate (GMA) monomer with
oligo(ethylene glycol) methacrylate (OEGMA).”>7* GMA in
the POEGMA-co-GMA brush would provide anchor sites to
immobilize proteins and enhance the loading stability and
capacity.”> Recently, Hu et al. fabricated a hierarchically
nanostructured substrate for an ultrasensitive immunoassay
by growing the POEGMA-co-GMA brush on a zinc oxide
(znO) nanorod array (Fig. 4A-i).”* The capture antibodies
could be immobilized on the copolymer brushes with high
stability and density due to the GMA moiety while
preventing the nonspecific binding because of the PEG
chains. Furthermore, the underlying ZnO nanorods could
largely amplify the fluorescence signals. To validate this
hybrid substrate for the sensitive immunoassay, the cancer
biomarker CEA in human serum was quantified and the
LOD could reach as low as 100 fg mL™ (Fig. 4A-ii).”*

Jiang and co-workers systematically studied the
antifouling properties of some zwitterionic polymer brushes
and developed a series of zwitterionic brush based
biosensors.***%7>7¢ Brault et al. reported a pCB brush based
SPR imaging sensor for multiplexed profiling of protein
targets (Fig. 4B).”® The pCB brushes were grafted from a gold
substrate via SI-ATRP. Then, the antibody against the
activated leukocyte cell adhesion molecule (anti-ALCAM), the
antibody against thyroid stimulating hormone (anti-TSH),
and the antibody against f-human chorionic gonadotropin
(anti-hCG) were spotted on the pCB brushes via microcontact
printing with the conventional coupling chemistry (Fig. 4B-i).
The authors found that the functionalization and detection
performance of such a substrate increased with the pH and
antibody concentration, and the pCB brushes exhibited an
excellent antifouling effect both before and after antibody
immobilization. The LOD of this pCB platform to quantify
ALCAM in undiluted human plasma was 1 ng mL™"
(Fig.  4B-ii).”° Homola and co-workers presented
another SPR biosensor based on antifouling pCBAA polymer
brushes to detect bacterial pathogens in crude food samples.””
The pCBAA brushes were grown on a gold substrate via SI-
ATRP and then the capture antibodies were immobilized on
the brushes with NHS/EDC coupling chemistry. The bacterial
pathogen detection included three steps: bacteria were
captured by the immobilized anti-bacteria antibodies (I),
followed by labelling with biotinylated secondary antibodies
(I) and conjugating with streptavidin-coated spherical gold
nanoparticles (III) (Fig. 4C-i). The LOD was 57 colony-forming
unit (CFU) mL™" in cucumber and 17 CFU mL™ in hamburger
for E. coli O 157:H7, while 7.4 x 10> CFU mL " and 11.7 x 10°
CFU mL™ for Salmonella (Fig. 4C-ii).”

2.3 Hydrogel coating

Coating surfaces by a hydrogel layer is an effective strategy to
achieve protein resistance in biologically complex fluids.
Hydrogels are crosslinked hydrophilic polymer networks that

Lab Chip, 2023, 23, 1151-1168 | 1155
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Fig. 4 A-i) Schematic illustration of the fabrication of the ZNO@POEGMA-co-GMA substrate with the antifouling and fluorescence enhancement
properties; A-ii) Dose responses of CEA quantification with the immunoassay on the ZnO@POEGMA-co-GMA substrate. Reproduced from ref. 74,
Copyright 2015 Wiley. B-i) Schematic illustration of the immobilization strategy on pCB brushes. B-ii) Dose responsive curve for ALCAM spiked in
undiluted human plasma. Reproduced from ref. 76, Copyright 2013 American Chemical Society. C-i) Schematic illustration of the three-step assay
to detect bacterial pathogens in crude food samples. C-ii) Calibration curves of E. coli O 157:H7 and Salmonella sp. in cucumber and in hamburger.

Reproduced from ref. 77, Copyright 2016 Elsevier.

can absorb large amounts of water. With the intrinsic
biological inert and antifouling properties, hydrogels have
been widely used for biosensors.”*®® Similar to the SAMs
and polymer brushes, the PEG and zwitterionic based
hydrogels are commonly used for immunoassays.®'*°

Yang and co-workers reported a crosslinked cylinder gel
array based 3D immunoassay with an antifouling polymer
brush as a background (Fig. 5A).%' First, poly(ethylene glycol)
methyl methacrylate (PEGMMA) polymer brushes were
grafted onto the surface to construct an antifouling
background, and then the functional cylinder arrays with
reactive epoxy groups were crosslinking copolymerized with
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glycidyl methacrylate (GMA) and polyethylene glycol
diacrylate (PEGDA). The abundant reactive epoxy groups in
the cylinder arrays could efficiently immobilize antibodies
with high capacity. Then, the functionalized 3D cylinder gel
arrays on the antifouling PEG brushes could serve as the
immunoassay substrate to quantify protein targets (Fig. 5A-i).
The authors demonstrated that this gel on the polymer brush
substrate could detect and quantify the IgG in human plasma
(Fig. 5A-ii-iv).*" Recently, by utilizing the C-H-insertion
reaction-based strategy, Scherag et al. developed a blocking-
free and substrate-independent serological microarray
immunoassay based on a surface-attached hydrogel.®® This

This journal is © The Royal Society of Chemistry 2023
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antifouling hydrogel based blocking-free microarray showed
2.5-fold higher sensitivity than the BSA-blocked surface.®
Recently, Wang et al. introduced antifouling zwitterionic
peptide hydrogel based electrochemical biosensors for ultra-
sensitive quantification of human epidermal growth factor
receptor 2 (HER2) in human blood (Fig. 5B).*° In their work,
the antifouling peptide hydrogel was fabricated on the
conducting polymer poly(3,4-ethylene  dioxythiophene)
(PEDOT) film. The PEDOT film served as a stable and
conducting substrate for signal transduce. The peptide
hydrogel consisted of the short peptide of Phe-Glu-Lys-Phe
functionalized with a fluorene methoxycarbonyl group (Fmoc-
FEKF) and the hydrophilicity of the hydrogel provided the
antifouling properties. The anti-HER2 antibodies were

This journal is © The Royal Society of Chemistry 2023

interference protein of IgG, CEA, IgM, AFP, and HSA, and a mixed solution (mix). Reproduced from ref. 85,

immobilized on the peptide hydrogels with the EDC/NHS
coupling chemistry for HER2 detection (Fig. 5B-i). This
peptide hydrogel based biosensor exhibited high sensitivity
and selectivity and quantified HER2 with a large linear range
from 0.1 ng mL™" to 1.0 pg mL™" and the LOD of 45 pg mL™"
(Fig. 5B-ii and iii).®

2.4 Perfluorinated surfaces

Unlike the antifouling hydration layer, the perfluorinated
surface is both hydrophobic and oleophobic, making it inert
to most compounds. The perfluorinated coating can be
produced by the combination of oxygen plasma and
perfluorosilane or by CYTOF™ treatment.® 28303187 The
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perfluorinated surfaces is antifouling due to the low affinity
interactions between most molecules and the surface. We
expect the perfluorinated coating to be stable for the same
reason. In contrast, the hydrophilic material-based coating
strategies, including the SAMs, polymer brushes, and
hydrogel coating, utilize the hydration layer as the physical
and energy barrier to prevent fouling. The hydration layer-
based coatings are sensitive to the aqueous solvent, which
could alter the antifouling behaviour of the coatings.
Furthermore, some hydration layer-based coatings may
detach and degraft from the surfaces due to the hydrolysis of
siloxane, amide, or ester bonds, or cleavage of Au-S in the
hydration layer. Additionally, some hydrophilic polymers,
such as PEG and peptide-based materials, would suffer from
oxidative damage.'"*’** Fluorine-based coatings have been
used as antifouling materials for many years in industry
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surfaces were not
25-28

modification, the perfluorinated
considered as the substrate for sensing until recently.

The situation of perfluorinated surfaces changed with the
introduction of polydopamine (PDA) as a versatile polymer
for surface modification.®®°° Due to their unique properties
such as extraordinary adhesiveness even to the
perfluoropolymer surface, excellent biocompatibility and
convenient synthesis and coating conditions, PDA coatings
are widely used in many chemical and biomedical
applications,?*72991:92

Recently, our group developed a series of perfluorinated
ultralow  background  substrates  for
immunoassays.>>® First, a PDA microspot array was
formed on a perfluorinated surface by incubating the
perfluorinated dopamine solution with
microfluidic polymerization of the

surface-based

surface in
technologies. The

applications.”**® However, due to the difficulty of dopamine to form the PDA spots involves the oxidation of
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