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Carbon steel corrosion: a review of key surface
properties and characterization methods

Deepak Dwivedi,? Katefina Lepkova*® and Thomas Becker®

Corrosion is a subject of interest to interdisciplinary research communities, combining fields of materials science,
chemistry, physics, metallurgy and chemical engineering. In order to understand mechanisms of corrosion and
the function of corrosion inhibitors, the reactions at the interfaces between the corrosive electrolyte and a steel
surface, particularly at the initial stages of the corrosion process, need to be described. Naturally, these reactions
are strongly affected by the nature and properties of the steel surfaces. It is however seen that the majority of
recent corrosion and corrosion-inhibition investigations are limited to electrochemical testing, with ex situ
analysis of the treated steels (post-exposure analysis). The characterization of materials and their surface
properties, such as texture and morphology, are not being considered in most studies. Similarly, in situ
investigations of the initial stages of the corrosion reactions using advanced surface characterization
techniques are scarce. In this review, attention is brought to the importance of surface features of carbon
steels, such as texture and surface energy, along with defects dislocation related to mechanical processing of
carbon steels. This work is extended to a critical review of surface analytical techniques used for
characterization of carbon steels in corrosive media with particular focus on examining steel surfaces treated
with corrosion inhibitors. Further, emerging surface analysis techniques and their applicability to analyse
carbon steels in corrosive media are discussed. The importance of surface properties is commonly addressed
by surface scientists as well as researchers in other chemistry fields such as nanotechnology, fuel cells, and
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1. Introduction

The high cost of corrosion affects numerous industries,
domestic applications and public sectors worldwide and high-
lights the need for improved corrosion measures. Effective
corrosion inhibition has a high economic value as the annual
corrosion cost is estimated to reach 3-4% GDP in developed
countries." In the oil, gas and chemical industries alone,
corrosion is one of the most challenging tasks, and it is
assumed that it costs 170 billion USD per year.>* It is not only
the high cost of corrosion, but also the health and environ-
mental risks associated with potential failure of the oil and gas
equipment that drive the developments of corrosion resistant
materials and improved corrosion mitigation strategies
worldwide.

Low-cost carbon steels are used as the preferred construction
material across industries and are considered the more
economical option than the costly corrosion-resistant alloys.
Carbon steels typically contain less than 1.5% carbon content
along with the minute presence of Mn, Si, P and S. Based on the
percentage of carbon, the classification is further divided into
three forms, namely low carbon steels (<0.25% C), medium
carbon steels (0.25-0.70% C) and high carbon steels (0.70-
1.05% C). Variation of the percentage of carbon content allows
to attain different mechanical properties such as strength,
ductility, hardness, etc. Based on the steel properties, related to
carbon content, plain carbon steels are further divided into
certain grades, such as grade 1008 (0.08 wt% C), which is good
for forming and has good ductility; grade 1018 (0.18 wt% C),
useful for general application and good for welding; grade 1030
(0.30 wt% C), which has low hardenability; grade 1045 (0.45
wt% C), which has applications in power transmission and
shafting; and X-65, which is a seamless grade and weldable.

Carbon steels are used in a wide range of applications, such
as structural components, industrial pipes, and kitchen appli-
ances. With regards to applications in the oil and gas industry,
the two major forms of corrosion are carbon dioxide (CO,)

Thomas Becker studied Physics at
the University of Ulm in Germany
and obtained his PhD from the
University of Twente (The Neth-
erlands) in 2005. He joined the
Nanochemistry Research
Institute/Department of Chem-
istry at Curtin University in
Perth, Australia, in 2005 where
he manages the Scanning Probe
Microscopy Facility. His research
interests focus on sample char-
acterisation with scanning probe
microscopy techniques and confocal Raman microscopy. He is
currently involved with a number of University based research
projects from different disciplines such as corrosion research,
hydrogels, health sciences as well as with collaborations with the
industry.

This journal is © The Royal Society of Chemistry 2017

View Article Online

RSC Advances

corrosion, which is also known as sweet corrosion, and
hydrogen sulphide (H,S) corrosion, which is most commonly
known as sour corrosion.* Among these two, CO, corrosion
brought a lot of attention to researchers since 1949 because oil
wells normally contain CO,.>*

In this review, we discuss carbon steel as the most employ-
able material for construction of pipelines that supply gas and
oil.” Most of the corrosion issues occurring in the oil and gas
industries are related to pipelines and the conditions of expo-
sure of the carbon steel that define the selection of the suitable
type of carbon steel. For example, minutely added alloying
elements such as Cr and Ni in carbon steels are sometimes used
in the oil and gas sector. Based on the chemical composition
and manufacturing procedures, different properties are gained
for the steels such as texture (hot rolled texture, cold rolled
texture), defects, grain sizes, dislocation densities, etc. that
affect the limits for applications of the selected material.

Carbon steels in general are susceptible to corrosion under
the conditions at industrial operations and high levels of
corrosion inhibition are important for safe and cost-effective
operations that extent the limits of use of carbon steels alone.
In oil and gas industries, corrosion inhibition can occur natu-
rally through crude oils due to the presence of certain chemical
species such as nitrogen, sulphur, aromatic resins, etc.*® The
most utilized corrosion inhibition measure is however the use
of organic or inorganic inhibitors that protect the steel surface
by forming a protective film of a passive nature.'® Corrosion
inhibitors typically contain nitrogen, sulphur and oxygen, and
hydrophobic hydrocarbon chains in their structures. Corrosion
inhibitors adsorb on the steel surface (either through physical
or chemical adsorption) and change the surface and interface
free energies. It is postulated from earlier studies that inhibitors
alter the wettability of a surface. Physical adsorption is an
electrostatic change whereas chemical adsorption occurs
through a bond formation by sharing an electron.

As the use of inhibitors for preventing corrosion of carbon
steels is often the most economical option, it is of significant
interest to the industry to define the application limits of film-
forming corrosion inhibitors. Commercial inhibitor formula-
tions virtually never use a single molecule due to observed
synergistic effects that enhance their performance. However,
there is no clear explanation in the open literature as to how
chemical components of the corrosion inhibitor formulations
self-assemble on metal surfaces to protect synergistically
against corrosion. Most importantly, the formation of
corrosion-protective films is expected to be strongly affected by
the nature of the metallic substrate, i.e. carbon steel. It is clear
that a definition of limits and potential extension of the use of
carbon steels in different corrosive environments is only
achievable with a detailed understanding of the mechanisms of
carbon steel corrosion and its inhibition.

This review therefore focuses on the importance of texture,
surface morphology, surface energy and defects for the corro-
sion of carbon steels. We discuss in detail the methods of
analysis of carbon steel surfaces under corrosive conditions,
and in the absence and presence of corrosion inhibitors. In
particular, we assess the applicability and limitations of
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analytical methods that have been utilized on carbon steels; and
those that have been applied to other metallic substrates, but
could have potential applications for studies at carbon steel
substrates. Furthermore, the corrosion inhibitor compounds that
are presently being used by the oil and gas sector or which could
be the prominent emerging candidates for corrosion inhibition
(such as green inhibitors) are reviewed, including those specific
to internal pipeline corrosion under carbon dioxide conditions.

2. Role of texture in corrosion of
carbon steels

Surface texture, also addressed as preferred orientations, is one
of the important parameters investigated in relation to corro-
sion. Surface texture develops in alloys and metals during their
mechanical deformation such as rolling, forging, drawing, etc.
and the established preferred orientations can introduce
significant changes to the material properties, including
changes in friction and wear properties. Besides mechanical
deformation, texture development can occur also during phase
transformation, recrystallization, grain growth, etc."*** Surface
texture can also be associated with special morphology and
roughness of the surface, but this review uses the term surface
texture with relation to crystallographic orientation.

The importance of texture in corrosion investigations lies in
its relation to corrosion resistivity of the materials. It is an
established fact that the activation energy for dissolution of
a densely packed surface is higher than that of a loosely packed
surface. The opposite effect is known for surface energy; with
a dense plane having a lower surface energy than a loosely
packed surface. It is expected that dense planes dissolve at
relatively slow rates compared to the low dense (loose) planes.**
It has been established that crystals oriented towards low
surface energy (i.e. highly dense planes) can result in increase in
corrosion resistance."

Texture is also important for welded structures as crystallo-
graphic orientation and crystallite interface are strongly corre-
lated with corrosion resistance. The microstructural difference in
the weld nugget and the surrounding area, due to precipitation,
affects the texture of the steel through microstructural gradient
generation. As many failures in the industry are related to the
corrosion at welded areas, it is highly desirable to understand
and examine the texture at weldments in corrosion investiga-
tions.*®" Similarly, texture is an important parameter in surface
chemical reactions as highly textured crystal faces promote the
solid-liquid interfacial reactions.'®?® The significance of texture
in corrosion has been proven by numerous researchers. This
review focuses on establishing the role of texture in corrosion
behaviour of plain carbon steels in corrosive environments.

Kandeil et al.** offered a way to classify the surface parame-
ters such as (a) amplitude parameters (peak and valley on
surface), (b) spacing parameter (spacing between irregularities
in surface) and (c) hybrid parameters (combination of (a) and
(b)). It is an established fact that corrosion behaviour is mostly
related to the amplitude parameter.
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Bateni et al.** investigated the effect of carbon-steel texture
on the corrosion process. Under corrosive conditions, the {111}
<011> fibre texture and {001}<110> cube texture developed,
which was different to the texture developed in dry wear test, i.e.
<016><100> goss texture and {111} gamma fibre. In a corrosive
environment, NaCl behaved as a lubricant and developed
a different orientation distribution function (ODF) by reducing
the metallic contact. It is noticed that the same load (9.6 N)
applied for dry wear test and the test under corrosive media
depicted different ODF. It was stated that shear stress reduction
leads to less shear texture formation and resulted in the
disappearance of goss and brass texture in corrosion wear
situation. This is due to NaCl acting as a lubricant and reducing
frictional force. It was also observed that the weight loss rate
under corrosive wear condition was lower than the dry wear
condition because of the same lubrication formation by NaCl.

Venegas et al.*® studied the role of texture in hydrogen-
induced corrosion of pipeline steel and observed that the steel
with {111} ND fibre texture developed through warm texture
offered good resistance against hydrogen induced corrosion,
whereas {000} ND and random texture caused hydrogen
induced corrosion. This study concludes the importance of
crystallographic texture and grain boundary engineering,
showing that low angle grain boundary and {111} ND texture
provide good corrosion resistance. The role of grain boundary
was further investigated by Arafin et al.>* The authors observed
that intergranular stress corrosion cracking depends on texture
and grain boundary. High angle grain boundaries are prone to
corrosion but sometimes cracks might be getting arrested at
high angle grain boundaries. The association of the crack
boundary with {100}//RP texture in this work provides evidence
for the link between crack boundary and texture, and highlights
the importance of texture in material failure investigations.

Recently, Baik et al.*® studied sulphide stress corrosion
cracking of carbon steels with the help of strain rate measure-
ment and found strong correlation between sulphide stress
corrosion cracking and strain rate test results, which is indi-
rectly related to the surface texture. This is because the move-
ment of dislocations is easier at a certain plane of crystals,
known as dense pack plane ((111) for FCC metals with high
atomic density) in BCC iron. This is in agreement with an earlier
study showing that pit initiation occurs in sequence of (110) >
(100) > (111) whereas pit propagation takes place in the
following order (100) > (110) > (111).>*

Shkatulyak et al.?® studied the role of crystallographic texture
in corrosion of carbon steel, which were produced through hot
rolling and observed double cylindrical axial texture, i.e. <100>
and <110>. They illustrated the importance of carbon content as
well as texture for anisotropy of electro-chemical corrosion. The
study concluded that medium and high carbon content in steels
affects the structural texture and invites the anisotropy in
electrochemical corrosion. In low carbon steels, the rate of
dissolution of facets, such as {100} and {110} was different and
this highlights the importance of surface energy of crystals
(alloys or metals), which will be discussed later.?” Similarly, the
importance of mechanical processing of metals or alloys with
respect to texture, which is further related to corrosion

This journal is © The Royal Society of Chemistry 2017
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inhibition or corrosion resistance has been shown by Hallen
et al.*® Steel samples with the same morphology, but different
textures were analysed and warm rolled/recrystallized steels had
higher resistance for hydrogen induced corrosion (HIC) than
cold and hot rolled steels. This observation was linked to grain
boundary distribution and texture. Warm rolling offered {111}
ND/{112} ND fibre texture with significant amount of low angle
grain boundary which is highly resistive for HIC. HRB (hot
rolled with 50% thickness reduction, 1000 °C rolling tempera-
ture) exhibited significant fraction of low angle boundaries with
{001} ND grain orientation, which reduced the resistance of this
sample to hydrogen induced cracking and supported inter-
granular crack propagation along {001} cleavage plane. This
phenomenon illustrated the importance of texture in rolled
pipes as far as the durability and mechanical performance of
pipes are concerned, whereas CRA (cold rolled with 50%
thickness reduction, 27 °C rolling temperature) and HRA (hot
rolled with 75% thickness reduction, 1040 °C rolling tempera-
ture) showed isotropic texture, which was completely different
to that of HRB and warm rolled samples (WRA - with 75%
thickness reduction, 800 °C rolling temperature, WRB - with
75% thickness reduction, 600 °C rolling temperature).

Texture generation can be influenced by numerous factors,
such as impurities, stacking fault, inherently stored deforma-
tion energy, casting and rolling conditions, grain size and
shape, grain boundary angle, shear bending, precipitation.
Rabbe et al.*” observed cube type fibre orientation in low carbon
steels and showed that active slip system steel which got hot
rolled in the austenitic regime shows random austenitic texture
and texture gradient across the thickness, and undergoes
recrystallization due to low stacking fault energy. It has been
observed that Si and Cr affect the texture in terms of the
generation of alpha fibre.

Park et al.*® investigated corrosion of steels samples, alloyed
with Cu and Sb, under aggressive corrosion environment (16.9
vol% H,S0, and 0.35 vol% HCI at 60 °C, pH 0.3). The authors
compared corrosion properties of the steels formed by hot
rolling and cold rolling. The interesting facts revealed by this
study were that the corrosion rate of cold rolled steel was
higher than the hot rolled steel (Fig. 1). This study again
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corrosion behaviour of steels as well as alloys. This was linked
closely with the texture of steel as in cold rolled steel the
grain refinement and orientation were the key factors for
corrosion.”® It was observed that a large number of grains
were oriented with {001} along with {101} and {111} in cold
rolled steel whereas in case of hot rolled steel {111}
crystallographic orientation was found dominant along with
{101} and {001}. Lower corrosion resistance of cold rolled steel
compared to hot rolled steel is related to the high surface
energy in {100} direction as low surface energy plane offers
slow dissolution rate of atoms due to its closed atomic
packing and results in high corrosion resistance.

It has been demonstrated that deformation conditions, such
as hot rolling and cold rolling parameters affect the texture
development in steel. Rolling schedule, rolling temperature,
reheating time and temperature, etc. are some of the important
parameters to consider for texture development. Texture varies
over the entire thickness of the specimen. For example hot
rolled ultra-low carbon steels exhibit diffused texture due to the
dynamic recrystallization and phase transformation from
austenite to alpha phase. Shear texture ({225}<554>) appears at
the close vicinity of the surface, whereas a weak texture ({001}
<110>) is found towards the mid-section.*

Cold rolled low carbon steel was studied by Xu et al.’* with
four different microstructures, namely ferritic, acicular
ferritic, coarse polygonal ferritic and bainitic. All specimens
were cold rolled and annealed in the range of 853-953 K.
Polygonal ferrite exhibited string texture along {223}<110>,
similarly acicular and bainitic showed string texture along
{001}<110> and during annealing all samples exhibited
fibrous texture ({111}<wvw>) (with 70-90 reduction). This
study elucidated the importance of microstructure and
deformation condition with texture.

The deformation procedure affects corrosion such as cold
rolled steel, showing low corrosion resistance due to exter-
nally applied tension as well as due to texture. Cold defor-
mation often introduces deformation twinning and
dislocation arrays, which are accepted as one-dimensional
crystal defects. The defects generated on the surface during
cold deformations may be more important than texture for
cold rolled steels. Cold worked stainless steel (316 type)

E NV -

[ 8]

Corrosion rate,mm/y
w

—

Hot rolled steel

0
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(a) Comparison of the corrosion rates of cold and hot rolled steel by weight loss (WL), potentiodynamic polarization (PD) and electro-

chemical impedance spectroscopy (EIS) measurements; (b) comparison of weight loss measurements for cold and hot rolled steel after 6 h
immersion in 16.9 vol% H,SO,4 and 0.35 vol% HCl solution at 60 °C (pH-0.3).2° Reprinted from ref. 29 with permission of Springer. Pleiades

Publishing, Ltd., 2014.
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exhibits high diffusivity for Cr and easy carbide nucleation by
offering low free energy barrier. Earlier explanations in this
section already established the relation between the defor-
mation process with texture and corrosion resistance.**
Deformation conditions also affect stacking fault energy.
This is responsible for the change in the phase stability and
phase transformation. Volume fraction and distribution of
phases are other specific parameters that affect corrosion
properties of steels.

The importance of phases in the structure of carbon steels is
further highlighted by their effect on the inhibitor applications
for enhanced corrosion resistance. Oblonsky et al.** explained
the importance of phases in the inhibitor molecules attachment
to carbon steel, showing that octadecyldimethyl benzylammo-
nium chloride (ODBAC) attached to ferritic-pearlitic micro-
structures through physical adsorption, but did not adsorb to
the martensitic phase in the carbon steel.

Naderi et al.** studied the effect of inhibitors on differently
heat treated steels and found slightly lower corrosion in pearl-
itic steel due to the protective oxide film formation compared to
martensitic steel in 1 M HCI solution, whereas in the presence
of inhibitors N,N'-ortho-phenylen acetyle acetone imine (S1) and
4-[(3-{[1-(2-hydroxy phenyl)methylidene]amino}propyl)ethane-
midol]-1,3-benzenediol (S2), pearlitic steel exhibited better
adsorption of inhibitors than martensitic steel. This study high-
lights the importance of microstructure for corrosion inhibitor
applications and proves the significance of the substrate's micro-
structure for the corrosion inhibition phenomenon.

The effect of texture on inhibitor adsorption could be very
useful to study in the near future as Herrera et al.** have
shown that heat treatment affects texture evolution. It was
observed that cold rolling with large thickness reduction
changed the texture of steel (SAE 1050) such as gamma
<111>//ND, alpha <110>//RD and gamma prime <223>//ND,
whereas after annealing with 50 and 80% reduction,
gamma and gamma prime were completely invisible. As
explained earlier, heat treatment affects corrosion resistance
and this could be related to texture evolution and the
adsorption of inhibitors might be influenced by certain
specific textures. This highlights the need for extensive
investigations in this area in order to get deep insights into
the mechanism of corrosion inhibitor adsorption.

Kandeil et al.*® investigated the effect of surface texture on
corrosion behaviour of carbon steel and developed a regression
equation for corrosion potential and polarization potential,
correlating the corrosion rate, corrosion potential and polari-
zation potential with surface properties.

In the assessment of texture and its role in corrosion, one
needs to consider dislocation effects. Dislocations are consid-
ered as one dimensional defects in materials and are closely
related to the texture development as high dislocation density
introduced by tensile deformation causes weakening of the
crystallographic orientation. This phenomenon is closely
related to corrosion as high corrosion rates were obtained at
sites where dislocations intersect the surface.

4584 | RSC Adv., 2017, 7, 4580-4610
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3. Effects of surface energy and
morphology on corrosion of carbon
steels

In the previous section, we have described the importance of
texture for corrosion of carbon steels and also proposed the
ways through which texture could be controlled. There are
however other parameters such as microstructure, chemical
composition, defects (e.g. stacking fault energy, dislocation,
precipitates, point defects) and surface energy of crystal planes,
etc. that also affect the corrosion properties of steel. Section 2
(ref. 29 and 33) addressed the relationship of texture with
microstructure, phase composition and the relation of texture
with stacking fault and defects. Passive films contain a number
of point defects such as interstitial cations (donors) and oxygen
vacancies (donor) and/or cation vacancies (acceptor). Movement
of cations through the oxide film contribute to the formation of
a passive film and increased oxygen leads to an incompact
passive film. An interstitial cation can render a metal more
easily dissolvable, resulting in decreasing corrosion resis-
tance.>”*® Corrosion, texture and surface energy are interrelated
as shown in case of aluminium alloys, where Al (110) surface
energy was at maximum when low corrosion resistance was
observed.* Crystallographic planes with high surface energy
offer adsorption sites for atoms and thus assist with the devel-
opment of surface films. Film formation could occur due to the
effect of the surface energy or through variations in the surface
texture as shown by Perlovich et al.*’ It has been observed that
texture-induced stress results in formation of a film on the steel
substrate. A high surface energy (low atomic density) crystallo-
graphic plane offers sites for water adsorption or proton
adsorption and causes hydrogen evolution (hydrogen reaction
process), whereas a low surface energy plane (high atomic
density) presents a site for hydrogen-reduction reaction.**
Adsorption of hydrogen in a high surface energy plane causes
corrosion with dissolution of atoms in that plane. Also, the
evolution of hydrogen leads to development of pores on surface,
which is detrimental for corrosion resistance of the steel
substrate. Calculations done by Song et al.*> have proven that
adsorption of hydrogen in bec and fec iron stabilizes its {100}
facets by lowering the surface energy of {100}. Similarly, an
increase in the carbon content in grain boundary increases the
chances of cleavage fracture by increasing the surface energy.
The surface energy of pure austenite was found higher than that
of pure ferrite, whereas in the case of a hydrogen-containing
system, a decrease in surface energy was observed for both
austenite and ferritic phases (Fig. 2a). This study described the
role of chemical constituents of steel in the surface energy as
well as the durability of a steel's relation with the surface energy
as incorporation of carbon in austenitic steel widely affected its
surface energy, but had lesser effect on ferritic steel (Fig. 2b).
Surface energy can be altered by alteration of texture, as
discussed earlier, which in turn influences the corrosion resis-
tivity of the steel substrate. Another aspect of addressing surface
energy is hydrophobicity. A well-established concept of hydro-
phobicity is very important for corrosion studies of metals or

This journal is © The Royal Society of Chemistry 2017
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(a) Comparison of ferrite and austenite surface energy under hydrogen and hydrogen free condition, exhibiting hydrogen addition caused

reduction on surface energy for both ferrite and austenite; (b) computed surface energy of ferrite and austenite [under pure (metallic form) and
hydrogen, carbon containing system] exhibited lower surface energy for hydrogen containing system for ferrite and austenite than Fe and Fe-C
system.*? Reprinted with permission from ref. 42. Copyright 2013, Elsevier B. V.

alloys. It is proven that high hydrophobicity prevents liquid
from staying on the solid surface for an extended period of time
and leads to less exposure of solid surface with liquid by
decreasing the contact area between them. Therefore, it is
required to understand the surface energy and morphology
effects for corrosion studies. Hydrophobicity is related to
surface energy as high hydrophobicity requires low surface
energy.* It is however important to understand that low surface
energy alone cannot be considered as the deciding factor for
a super-hydrophobic surface. There are other factors, such as
surface morphology, including hierarchical morphology as
described earlier in this section,*** surface roughness as
increasing surface roughness causes high hydrophobic surface
generation.***

For corrosion protection, it is necessary that a steel surface
has little contact with corrosive media and a surface must have
hydrophobic characteristics that can be developed either by
increasing the roughness of a surface, which has low surface
energy or by low surface energy material coatings on a rough

(@)

(b)

82+1° 0°

@

158 + 2°

©
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Fig. 3 Contact angle measurements on (a) the bare steel, (b) the
textured steel, (c) the modified bare steel, and (d) the modified textured
steel. Modification of textured steel depicted its hydrophobic nature.*®
Reprinted with permission from ref. 49. Copyright 2015, Elsevier B. V.
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surface. However, a study by Yu et al.*® showed that super-
hydrophobic surfaces cannot always prevent corrosion.
Certain rolling characteristics should be maintained. Rolling is
a mechanical deformation process, which is a well-known
process for texture development of materials as discussed in
previous section, but its relation to surface energy in terms of
hydrophobicity has not been largely addressed.

The development of a hydrophobic surface film using film-
forming corrosion inhibitors is nowadays rather a conven-
tional way of increasing resistivity of carbon steel surfaces. An
important emerging alternative to the conventional formation
of corrosion-protective surface films is morphological modifi-
cation of the steel and the consequent development of hierar-
chical morphology generation. Zhang et al.** developed a super-
hydrophobic surface in steel by texturing with the help of
a hydrogen fluoride (HF) and a hydrogen peroxide (H,O,)
solution mixture and the super-hydrophobicity was examined
by contact angle measurements (Fig. 3), which depicts the
transformation of hydrophilic bare steel surface to hydrophobic
surface. Morphological observation through scanning electron
microscopy (Fig. 4) revealed that the surface contained islands

Fig. 4 Morphological images recorded via SEM clearly elucidate the
differences for (a) the bare steel and (b) the textured steel surface. (c
and d) Magnified images of (b).*® Reprinted with permission from ref.
49. Copyright 2015, Elsevier B. V.
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NaCl solution); (b) exhibited the effect of surface modification on polarization behaviour as polarization curves for the bare steel, the textured
steel, the modified bare steel, and the modified textured steel are found different.*® Reprinted with permission from ref. 49. Copyright 2015,

Elsevier B. V.

covered with nanoflakes that lead to the hierarchical-surface
generation, which is very important for securing hydrophobic
nature of the surface. A hierarchical surface is a surface of
multiple roughness, which is the origin for the observed
hydrophobicity of this surface (Fig. 5). After 24 hour immersion
of textured (modified) steel in 3.5% NaCl solution, the contact
angle was not significantly changed (158° to 154°) (Fig. 6a),
which suggested stability of the surface for long duration, while
Fig. 6b shows high corrosion resistance of modified steel
surface due to the “cushion” and capillarity effect. Super
hydrophobic textured steel does not allow water and Cl™ to
reach the bare steel surface.

A similar approach, involving a template and chemical
etching of the substrate was adopted by Yuan et al.> This study
is beyond the scope of this review as it dealt with iron, but is
highly significant as it establishes chemical etching as an
important technique for the development of hydrophobic
surfaces. It has been observed that the hydrophobic surface had
a hierarchical structure.*

Wu et al.** protected mild steel by a one-step electrodeposi-
tion process of a SiO, film, which was hydrophobic in nature.
Deposition was done through sol-gel process with tetra-ethoxy
silane and dodecyltriethoxysilane precursors. A rough surface
with low surface energy was achieved and this study brought
attention towards the importance of surface roughness in

4586 | RSC Adv., 2017, 7, 4580-4610

corrosion science. Atomic force microscopy is a technique
suitable for identification of the surface roughness, which is
further discussed in this review.

The importance of morphology of the protective surface layer
as well as its hydrophobicity have been established. A surface
layer with significant roughness and less surface energy that is
hierarchically structured can increase the corrosion resistivity
of the steel. The adherence of the surface film to the substrate
(an alloy or metal) also plays a significant role as low adherence
of the surface film to the steel substrate always causes high
interface energy and thus provides instability of the interface.
This highlights the importance of understanding the interface
behaviour in terms of adherence of film to the substrate, anal-
ysis of which, using atomic force microscopy, is addressed later
in this review.

Ramachandran et al® investigated corrosion resistive
properties of a super-hydrophobic surface of cast iron and
identified the relation between surface energy and electric
potential by application of the Lippmann law of electro-wetting
and Lechatelier principle. This study described the behaviour of
a hydrophobic surface in terms of corrosion potential as
a decreasing corrosion potential for hydrophobic surfaces was
observed. The methodology could be adopted for plane carbon
steels when investigating the behaviour of a hydrophobic
surface in terms of corrosion potential.

This journal is © The Royal Society of Chemistry 2017
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As far as the mechanism of corrosion prevention through
hydrophobic surface formation is concerned, it has been
documented that a super-hydrophobic surface can trap air in its
structure, due to its hierarchical nature. This leads to improved
corrosion protection of the underneath surface through
restricting the corrosive ions to strike the surface of the steel
substrate.> Similarly, corrosion prevention can be achieved
through the capillary effect due to the Laplace pressure, as
a super-hydrophobic surface (>150°) of a magnesium alloy was
shown to remain resistant to sea wate