Issue 3, 2025

A fully integrated microfluidic cartridge for rapid and ultrasensitive nucleic acid detection from oropharyngeal swabs

Abstract

Rapid and accurate molecular diagnostics are crucial for preventing the global spread of emerging infectious diseases. However, the current gold standard for nucleic acid detection, reverse transcription polymerase chain reaction (RT-PCR), relies heavily on traditional magnetic beads or silica membranes for nucleic acid extraction, resulting in several limitations, including time-consuming processes, the need for trained personnel, and complex equipment. Therefore, there is an urgent need for fully integrated nucleic acid detection technologies that are simple to operate, rapid, and highly sensitive to meet unmet clinical needs. In this study, we developed a novel, integrated microfluidic cartridge featuring a unique needle-plug/piston microvalve, which enables stable long-term reagent storage and flexible liquid handling for on-site nucleic acid analysis. Coupled with in situ tetra-primer recombinase polymerase amplification (tp-RPA), we achieved highly sensitive nucleic acid detection with a remarkable limit of detection of 20 copies per mL (0.02 copies per μL) and a short turnaround time of less than 30 minutes. To validate this assay, we tested 48 oropharyngeal swab samples. The positive detection rate reached 64.58% (31/48), significantly exceeding the approximately 50% positive detection rate of the traditional RT-PCR method. Furthermore, our assay demonstrated a 100% concordance rate with RT-PCR in detecting positive samples. Thus, we believe our microfluidic nucleic acid analysis system represents a promising approach for enabling rapid and ultrasensitive nucleic acid detection of pathogenic microorganisms in resource-limited settings and low-income areas.

Graphical abstract: A fully integrated microfluidic cartridge for rapid and ultrasensitive nucleic acid detection from oropharyngeal swabs

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
17 sept 2024
Accepted
17 dets 2024
First published
03 jaan 2025

Lab Chip, 2025,25, 454-464

A fully integrated microfluidic cartridge for rapid and ultrasensitive nucleic acid detection from oropharyngeal swabs

B. Li, B. Lin, W. Zeng, Y. Gu, Y. Zhao and P. Liu, Lab Chip, 2025, 25, 454 DOI: 10.1039/D4LC00770K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements