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Abstract:   

Recent experiments have reported that the surface stress of soft elastic solids can increase rapidly with surface 
strain.   For example, when a small hard sphere in adhesive contact with a soft silicone gel is slowly retracted 
from its rest position, it was found that the retraction force versus displacement relation cannot be explained either 
by the Johnson-Kendall-Roberts (JKR) theory or a recent indentation theory based on an isotropic surface stress 
that is independent of surface strain. In this paper, we address this problem using a finite element method to 
simulate the retraction process.   Our numerical model does not have the restrictions of the aforementioned 
theories; that is, it can handle large nonlinear elastic deformation as well as a surface-strain-dependent surface 
stress.   Our simulation is in good agreement with experimental force versus displacement data with no fitting 
parameters.   Therefore, our results lend further support to the claim that significant strain-dependent surface 
stresses can occur in simple soft elastic gels.   However, significant challenges remain in the reconciliation of 
theory and experiments, particularly regarding the geometry of the contact and substrate deformation.

1 Introduction

The importance of surface energy in surface science is well established. However, a closely related but 
physically different quantity, surface stress, is often neglected for solids. Its effects are felt over a characteristic 
length scale, the elastocapillary length, σ/E, where E is the Young modulus and σ the magnitude of the surface 
stress. For conventional stiff materials (metals and ceramics) its value is generally immeasurably small.1–4 
However, elastomers, gels, biomaterials, and materials commonly used in biomimetics are often very soft in 
comparison. For these solids, the elastocapillary length can be tens of microns or larger.  This brings about a wide 
range of interesting mechanical phenomena and properties.  For example, surface stresses can flatten or round off 
solid surfaces by deformation.5–8   Soft gel surfaces can resist indention by surface stresses rather than by bulk 
elasticity.9–11  The Hertz and Johnson-Kendall-Roberts (JKR) theories for adhesionless and adhesive contact,12 
respectively, which are widely used to interpret indentation data, are no longer applicable for soft solids and have 
to be reformulated.10,11,13–16  The contact angle in partial wetting is no longer governed by Young’s equation – it 
depends on the surface stress of the solid substrate as well as its elasticity.14,17–20 The deflection of thin films of 
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relative stiff materials can be substantially affected by surface stress of the film and it is possible to exploit this 
phenomenon to measure solid surface stress.21–25  Composites with liquid inclusions can be stiffened by interfacial 
tension.26  

However, the intensely investigated role of surface stress addresses only the simplest constitutive behavior that 
a soft solid surface can have.  The majority of work reported so far for soft solids takes the influence of the surface 
to be represented by an isotropic, homogeneous, and strain-independent residual stress.3  This is a natural 
approach since most of the soft solids used in these experiments are gels and elastomers with a large solvent 
component, which leads to the expectation that the surface stress would behave similar to that of liquids.  
However, it has long been theorized that solid surface stress can be strain-dependent.27–29  Indeed, Gurtin and 
Murdoch30 raised the question of whether solid surfaces possess elasticity (surface Lame’ constants) in addition 
to a residual surface stress and this has recently been demonstrated experimentally.25,31,32  However, there is still 
some controversy on certain aspects of these findings since the surface elastic constants measured in these 
experiments are surprisingly high.   For example, Xu et al.31 reported that the surface bulk modulus of silicone 
gel is about six times the surface tension at zero surface strain.  

Of particular interest to us are the recent experiments by Jensen et al.32 which lend further support to this 
extraordinarily high strain-dependent surface stress of silicone gels.  To put this into perspective, let us begin by 
reviewing their experiments and approach to data interpretation.  The experiment begins by moving a hard sphere 
(silica bead) into contact with a silicone gel substrate at the vertical position , as shown in Fig. 1(a), where 0D

 is the vertical distance between the bottom of the sphere and the undeformed position of the silicone gel D
surface.  Due to adhesion, a tension force, , is required to hold the sphere at .  The sphere is then retracted 0F 0D

slowly (Fig. 1(b)) until final detachment between the sphere and gel.  During retraction, the force on the load cell
increases.   During most of the experiment, the contact line shrinks little until some critical displacement, after F

which the contact line retracts rapidly and detachment occurs.   The dynamics during the detachment was recently 
studied by Berman et al.33; here we focus on the force-displacement relation before detachment.  

Two theories were proposed to explain the force-displacement (F vs D) data from initial contact through final 
detachment: the extended JKR theory of Maugis34 and a standard capillary theory based on a constant surface-
strain-independent isotropic surface stress.13  Specifically, the force versus D relations predicted by these theories 
are:

,   (1)
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where  is Young’s modulus of the gel,  is the Poisson’s ratio,  is the radius of the sphere,  is the contact E  R a
radius, and  is the magnitude of the surface stress.  From their experiments, =5.6 kPa, , and  ranges  E 0.48  R
from about 9 to 20 µm,  is taken to be 20 mN/m, and the initial contact radius  is obtained from  0a a

experiments.  Thus, the elasto-capillary number  lies between 0.18 to 0.4.    However, both theories failed 0 / R
to explain experimental data.  

The failure of these theories is not difficult to understand.  Maugis’s theory does not account for the fact that 
surface stresses can resist deformation.  In addition, it is not valid for large deformation.  Here we note that the 
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maximum displacement in the experiments can easily exceed the radius of the sphere, so linear elasticity theory 
is not expected to work.  Although Maugis used an exact sphere indenter profile instead of a paraboloid, his 
analysis is still based on approximating the indenter as an elastic half space, and small strain linear elasticity 
theory is used throughout his analysis.  Hence, the errors under large deformation are expected to be of the same 
order as the JKR theory.   Indeed, Lin et al.35 have shown that, in the absence of surface stresses, the JKR theory 
is more accurate than Maugis’s theory for indentation depth less than the radius of the sphere.  Beyond that, both 
JKR and Maugis theories both break down.  

The capillary theory fails because it is based on the assumption that surface stresses is a constant, independent 
of surface strain; it does not account for substrate elasticity – the gel is treated as a simple fluid with no shear 
modulus.  However, recent experiments25,31,32 on the same and similar gel systems showed that surface stresses 
increase rapidly with surface strain, i.e., using a constant surface stress in eq. (2) will underestimate the force, 
which is indeed the case.    

Jensen et al.32 observed that the silicone meniscus below the sphere resembles a liquid capillary bridge that 
can be fitted by an axisymmetric surface with a constant mean curvature starting from the contact line (red curve 
in Fig. 1(b)).  They quantified the size of this constant mean curvature region, , by measuring the arc length S
along the surface profile from the contact line to the place where it deviates from the experimental data.  They 
found that  grows exponentially with the imposed displacement , and used as a measure of the S D S
elastocapillary length, with the magnitude of the surface stress at a given displacement D assumed to be given by

, (3)   0 0/   D S D S

where  is the value of at  or at D = 0.  Next, they replaced the constant surface tension  in eq. (2) by 0S S 0F 

in eq. (3) and assumed that the elastic and surface stress contribution to the external force is given by (1)   D

and (2) respectively.  By adding these two contributions they were able to explain their force versus displacement 
data.  The increase in the magnitude of the surface stress with surface strain is found to be consistent with Xu et 
al.31  

The obvious difficulties with this approach are:

(i)  There is no rigorous justification for (3);  

(ii)  Superposition is not valid for large deformation, thus the force contributions from elasticity and surface stress 
(whether strain-independent or strain-dependent) may not be simply summed;

(iii)  The assumption of strain-dependent surface stress is inconsistent with capillary theory, that is, eq. (2) is valid 
only if the surface stress is a constant.  Indeed, consider the curve in the r-z plane of an axisymmetric surface 
(solid blue line in Fig. 2). We parametrize this curve by its arc length s, and denote the unit tangent, binormal and 
normal vectors by ,  and  respectively. The surface stress, assumed to be isotropic (but not  st  sb  sn

necessarily to be strain-independent), takes the form , where  is the true surface stress tensor,    ssσ 1 σ   s

is the magnitude of surface stress which depends on , and  is surface identity tensor in the deformed s s1
configuration.  Static equilibrium yields29,30,36,37

, (4)     bulk bulk,

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where  is two times the mean curvature of the surface, and  and  are the traction components of   s bulk nn
bulk nt

the traction vector  of the bulk material right underneath the surface.   and     bulk bulk  bulk nn nts sn tT bulk nn
bulk nt

are also known as the Laplace pressure and Marangoni stress.  However, even if  is a constant,  varies   s   s

from position to position since it is strain-dependent.  Hence,  cannot be constant and  by eq (4), bulk nn
bulk 0 nt

which obviously violates the hydrostatic state of stress demanded by capillary theory.   In short, the change in 
surface stress along s must be balanced by shear stress exerted by the bulk, and hence a hydrostatic state of stress 
is impossible.  

Fig. 1. Schematic of the experiment and problem statement. The dotted line indicates the position of the undeformed gel surface.

Fig. 2. Schematics of an axisymmetric surface. n, t and b are the unit normal, tangent and binormal vectors to the blue curve in the r-z 
plane of an axisymmetric surface.

2 Finite element model (FEM)

Given the above difficulties, we decided to simulate the experiment using a finite element model which allows 
for large deformation and strain-dependent surface stress.  Specifically, we simulated the surface mechanical 
behavior using a strain-dependent surface stress model, i.e.,

 (5) 0 1     ssB Jσ 1
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where  is the magnitude of surface stress at zero surface strain, B is the surface bulk modulus,  is the 0 sJ
determinant of the surface deformation gradient tensor which is the ratio of the surface area of a material element 
in the current and reference configurations.  This constitutive model has been implemented as a new axisymmetric 
surface element in a FE program (ABAQUS®), and the details are provided in the Supplementary Material.  Note 
that our surface model eq. (5) does not include shear effects which was recently discovered by Xu et al.25  Since 
our problem is axisymmetric, the shear surface strain is identically zero; however, the surface stress state can now 
be bi-axial.   We will discuss this possibility in the discussion.  

The nonlinear elasticity of the substrate is assumed to be governed by a neo-Hookean incompressible solid 
with strain energy density function

, (6) 1 3
2


 W I

where  is the trace of the right Cauchy-Green deformation tensor and  is the small strain shear modulus. Due 1I 
to incompressibility .   In our simulations, the material properties of the bulk and surface are given by / 3  E
Jensen et al, i.e., kPa, .  The surface bulk modulus B in all simulations is taken to be 5.6E 0 20 mN/m 

, as reported by Xu et al.31 for a similar gel.   In this sense, there is no fitting parameter.  06B

Our axisymmetric finite element model is shown schematically in Fig. 3 and implemented in the commercial 
FEM software, ABAQUS®.  In our model, the silica sphere is modeled as an analytical rigid sphere.  Also, the 
new user-defined strain-dependent axisymmetric surface elements are attached to the surface to model the 
constitutive model given by (5).

Fig. 3. Schematic of axisymmetric finite element model. The silica bead is modeled as a rigid sphere (solid black line) with radius R, 
and the elastic substrate is approximated by a sufficiently large square (shaded region) with neo-Hookean material.

Simulations are carried out using rigid sphere radii R (from about 9 microns to 22 microns) as employed in the 
experiments. The cross-section of the neo-Hookean substrate is approximated by a square with the length of 2000 
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microns (nearly 100 times the largest R).   We verified that increasing the size of the square does not affect the 
FE results.  On the boundaries of the axisymmetric axis (left edge) and right edge, no radial displacement (in r-
direction) or shear traction is allowed; on the bottom edge, the vertical displacement (in z-direction) and shear 
traction are both zero; on the top boundary, the new user-defined surface elements (UEL) are used to model 
surface stress. On the rigid sphere, a normal displacement is prescribed in the z-direction while the radial 
displacement is fixed to be zero. The surface stress on the rigid body is ignored.

To simulate adhesive contact, we utilize the following loading scheme devised by Xu et al.10 The system 
consisting of the rigid sphere and the neo-Hookean half-space is loaded in four steps, as illustrated in Fig. 4: (1) 
surface stress is applied incrementally to the surface elements until it reaches . Note in this step, there is no 0
deformation anywhere; (2) A vertical imposed displacement is applied incrementally on the rigid sphere to push 
it down into the half-space,  resulting in a finite contact radius a0.  During this process, we enforce full-0D
friction contact.  That is, there is no slip. (3) The vertical displacement then is gradually reduced to zero ( ) 0D
with the contact radius held fixed; the final stage of this step corresponds to the initial state shown in Fig. 1(a). 
(4) We then increase the vertical displacement on the sphere gradually ( ) with the contact radius fixed at a0 0D
which corresponds to Fig. 1(b). We repeat this procedure with different sphere radii R.

Fig. 4. Four-step load scheme in FEA. The strain-dependent surface elements (solid blue line) are attached to the surface of substrate 
(shaded region). (a) No deformation occurs and surface stress is incrementally applied to the value of ; (b) rigid sphere (solid black 0
line) is pushed into the substrate creating a finite contact region, with radius ao; (c) the contact radius is fixed at ao while the rigid sphere 
is pulled back to the position D=0, corresponding to the initial stage of the experiments; (d) rigid sphere is pulled upwards to D>0 to 
simulate the experiments.

The initial contact radius a0 used in our simulations for different sphere radius is obtained from the 
supplementary information in Jensen et al.   Here we note that, in experiments, the contact line slips a small 
amount as the sphere moves upwards.   Jensen et al.32 (SI) shows that when D = R, the initial contact radius 
decreases by about 10%.   Let us denote the contact radius and displacement by  and  just before rapid ca cD

shrinkage occurs, typically when F reaches its maximum value.  In general,  and  depend on the radius of ca cD
sphere and can be estimated from the supplementary information in Jensen et al.32  To ensure accurate 
representation of experiments, in all simulations, step 4 is modified by allowing slippage of the contact line.  
Specifically, the contact radius a at each imposed displacement is estimated by linear interpolation between  0a

and .ca
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3 Results

3.1 Initial force F0 versus sphere radius R

Due to adhesion, an external tensile force  is required to hold the sphere at D = 0.   In Fig. 5, we plot 0F 0F

against sphere radius R.  The experimental data of Jensen et al.32 are plotted as symbols.  The  predicted using 0F
the extended JKR theory by Maugis (eq. (1)) and capillary theory (eq. (2)) are also plotted in the same figure for 
comparison.  In addition, we also plot the analytic solution by Hui et al.13 for the indentation problem of a rigid 
sphere into an elastic substrate with surface stress and adhesion (see the Electronic Supplementary Information 
for details).  It should be noted that this solution is based on small deformation and more importantly, a constant 
surface stress, hence it will underestimate the force at a given displacement if the surface stress increases with 
surface strain.  The procedures used to obtain this result are given in the Electronic Supplementary Information.  
Fig. 5 shows that the FE results impressively match the experimental data without any fitting parameters, while 
predictions by eqs. (1), (2) and Hui et al’s theory all underestimate the force.

Fig. 5. Initial contact force F0 plotted versus sphere radius R. Predictions based on the extended JKR theory by Maugis, capillary theory 
and analytic solution by Hui et al are plotted as solid blue, dashed orange and dotted green lines, respectively. Experimental results by 
are plotted as black circles, and the finite element results are plotted as red squares.

3.2 External force F versus displacement D

An additional check is to compare measured and computed force-displacement relationships.  Experimental 
data using different sphere radii: 11.8, 15.1, 18.4 and 21.7 μm are compared with our FE results in Fig. 6.  Fig. 6 
shows good agreement between the experiments and our simulations.   Deviation from experiments starts to occur 
near the maximum force, which corresponds to rapid shrinkage of the contact line followed by detachment.  The 
FE results show that, to a good approximation, there is a linear relationship between the force and displacement 
before instability occurs, which is consistent with experiments.
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Fig. 6. External force F plotted versus sphere displacement D for different sphere radius. Finite element results are plotted as symbols, 
and the experimental results are plotted as dashed lines. The linear interpretations of FEM results (solid lines) suggest a linear 
relationship between indenter displacement and force.   

3.3 Stress distribution in bulk elasticity on the surface and surface stress distribution

We use our simulation to estimate the contribution to the external force from surface stress and from elasticity, 
which is difficult to measure in experiments. The components of true stress in the substrate in the r-z plane are 
denoted by ,  and .   These stresses are evaluated on the substrate surface, both inside and outside the  rr  zz  rz

contact region.   Results are shown in Fig. 7 and Fig. 8 for the case of a sphere with radius of 11.8μm.  Fig. 7 
shows that the stresses  and  reach their peaks at the contact line, dropping rapidly over a short distance  rr  zz

near the contact line, and finally decay to a small value. The shear stress  is almost zero and negligible in the  rz

contact region.   As the displacement increases,  increases while  remains very small in the contact region.    zz  rz

It is interesting to note that part of the contact always remains under compressive stress despite the fact that D > 
0.   However, comparison of Fig. 7a and b shows that this region of compression decreases with increasing D, as 
expected.    In our simulations, we found that for sufficiently large D, the contact region will be under tension.  

The bulk elasticity contribution to the retraction force is determined by integrating the normal true traction in 
the bulk over the contact region, 

 (7) elastic     z rz r zz zA A
F t dA n n dA

where  is the component of traction in the z-direction, and  and  are the components of the unit normal zt rn zn
vector to contact region in the r- and z-directions, respectively.  As shown in Fig. 8, the external force is borne 
almost entirely by the surface stress in the beginning of the experiment, where the applied force is relatively small.  
For this case, elasticity’s contribution to resisting deformation is small.   This result is consistent with the theory, 
for sufficiently small spheres, the force due to surface stress and the applied force are in static equilibrium – they 
form a Neumann triangle of forces.   However, as the sphere displacement D increases, bulk elasticity comes into 
play, and the ratio of the contributions from bulk elasticity to surface stress increases.  One should expect that 
elasticity will play a stronger role for larger spheres.   Theoretical results based on a constant isotropic surface 
stress model13,15,16,38 suggest that whether or not elasticity dominates depends on a single dimensionless parameter 
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 where  is the work of adhesion between the sphere and the substrate.    A small  
   

0
1/32/3 9 / 4


 


adR W

adW 

corresponds to the JKR limit where elasticity dominates.  This limit corresponds to small surface tension, large 
spheres or stiff substrates.   In the experiments of Jensen et al.32 the maximum sphere radius is 21.7 μm.  In the 
Electronic Supplementary Information, we compute the contribution of elasticity to the retraction force for this 
case and do find a small increase in the contribution due to elasticity.   However, it is important to note that the 
use of  relies on a constant surface stress, whereas in our case the surface hardens substantially, so surface stress 
indeed dominates elasticity in these experiments.    

Fig. 7. Stress components plotted versus radial distance using a 11.8-μm-radius sphere (a) D=0 μm; (b) D=8 μm. Stress components of 
, and  are plotted as solid blue, orange and green lines respectively. The vertical black dashed lines indicate the contact radii  rr  zz  rz

at given imposed sphere displacements.  In both (a) and (b), the region inside the contact is to the left of the vertical dotted line.

Fig. 8. Contribution to the total external force from surface stress (orange stacked area) and from elasticity (green stacked area) versus 
sphere displacement, using an 11.8-μm-radius sphere. Ratio of the contributions from bulk elasticity to surface stress increases as the 
sphere displacement increases and resistance from bulk elasticity is no longer negligible.
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Finally, we plot the magnitude of surface stress versus the arc length measured from the contact line, i.e.,  0s
in Fig. 9.   It demonstrates that the surface stress increases dramatically as the contact line is approached.

Fig. 9. Surface stress versus arc length measured from the contact line using a 11.8-µm-radius sphere. Solid blue, orange and green lines 
represent different cases with sphere displacements D=0, 4 and 8 µm respectively, and dashed black line represents the surface stress at 
no stretch for comparison.

4 Discussion 

Our model based on the eq. (5) does remarkably well for capturing the relation between force and displacement 
observed in experiments.    This result lends support to the very large surface strain stiffening effect observed by 
Xu et al.25,31  However, we notice a discrepancy between the experimental surface profiles (dashed blue line) and 
FE simulation (solid orange line), as shown in Fig. 10.   In the experiments, the contact line is almost tangent to 
the sphere, suggesting total wetting.  Also, in the simulations we do not have a region of constant mean curvature 
near the contact line which is observed in experiments.   

A possible way to capture this local total wetting phenomenon is to use a different model which involves bi-
material and bi-surface-stress behaviors. In this model, which we labeled as FE 2, the bulk material near the 
contact line is assumed to be fluid like, with a very small Young modulus,  (see Fig. 11 for a schematic).  Also, cE

the surface stress in this region is assumed to be isotropic and insensitive to surface strain and has magnitude .  0
Away from this region, the surface stress is modeled by eq. (5) and the bulk property is modeled by (6).   We then 
simulate the retraction process using this new model.  In the simulation, the  in both regions are identical and 0

is the same as FE 1 (the model we have used throughout this work), while the modulus is used as an adjustable cE
parameter to fit the experimental surface profile.  This fit (FE 2) is plotted in Fig. 10. The fitted surface profile 
(solid green line) agrees reasonably well with experiment where there is a region of constant mean curvature 
region (dashed red lines).  However, this model will underestimate the force versus displacement, as shown in the 
Electronic Supplementary Information. In other words, the force predicted by a model with fluid like behavior 
near the contact line is inconsistent with the experimental data. Although model FE1 struggles to reproduce the 
experimental surface geometry, it does a much better job reproducing the forces of soft adhesion than other 
models. Significant further work will be required to reconcile the difference in geometry.
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Fig. 10. Surface profiles for a 17.4-μm-radius sphere extracted from experimental data (dashed line) and finite element results (solid 
orange and green lines for FE model 1 and FE model 2, respectively). The experimental surface profile indicates the totally wetting 
phenomenon near the contact line. Constant total curvature fits (dashed red lines) are overlaid on the surface profiles.

Fig. 11. Bi-material and bi-surface-stress finite element model. The light gray region represents the near-field structure with an extremely 
low Young’s modulus; and surface stress is constant inside the dotted region and is strain dependent outside.

There is another possibility: the absence of a constant mean curvature region near the contact line can be due 
to a surface stress that is non-isotropic, as reported recently.25,31    We also carried out simulations using a surface 
stress model of the form where the surface energy density function W allows for surface shear.   The surface 
moduli in these calculations are chosen so that when the surface is subjected to an equiaxial state of stress, the 
surface stresses are consistent with the isotropic surface model in eq. (5).   As mentioned earlier, axi-symmetry 
in this problem disallows surface shear strain/stress but does allow a bi-axial surface stress state.   However, the 
surface profiles in these simulations do not show a region of constant mean curvature and are practically identical 
to the surface profiles obtained using the isotropic surface model eq. (5).   Details of these simulations can be 
found in the Electronic Supplementary Information.  
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An anonymous reviewer suggested that perhaps strain hardening of the gel can contribute to this discrepancy.  
This reviewer has observed that the stress state in Fig.7b is close to be hydrostatic, with magnitude about 4 times 
the Young’s modulus of the gel.  However, in an incompressible solid, hydrostatic stress has no effect on 
deformation - the maximum principal stretch ratio in our simulations at the contact line is actually quite moderate, 
less than 2.7 for the case of D = 8 microns; therefore, one expects the neo-Hookean model should give a reasonable 
representation of the material behavior in this regime.  This is certainly the case for elastomerd (see Fig. 2 of 
Boyce and Arruda39) where the neo-Hookean model gives a good approximation to the nominal stress versus 
stretch behavior for extension ratios less than 3.  Indeed, a typical elastomer subjected to simple tension will strain 
softens slightly at a stretch ratio of around 2.5, then hardens at stretch ratio of 5 to 6 – well beyond the maximum 
stretch we observed in our simulations.  As a further check, we carried out one simulation (sphere radius R=11.8, 
sphere displacement D = 8 microns) using a constitutive model (Yeoh solid) that allows for strain hardening.  The 
strain energy density function W of the Yeoh solid is 

 , (8) 
3

1
1

3 k
k

k
W C I



 

where the ’s are material parameters with units of stress,  is the trace of the right Cauchy-Green tensor and k controls kC 1I
the amount of strain hardening.  In this model  where  is the small strain shear modulus.  It should be noted 1 / 2C  
that the neo-Hookean model is a special case of the Yeoh model with . We use the same small strain shear 2 3 0C C 

modulus and surface model in this simulation, and set , .   The choice of these parameters 2 1/ 0.005C C   2 3/ 0.0001C C 
and details are given in the Electronic Supplementary Information.  As expected, we do not find any difference between 
the surface profiles as well as the stress distribution at the contact line.    Therefore, we believe that strain hardening is not 
the reason why the meniscus shape could not be captured.

The experiments and theory both indicate that force is linearly related to the displacement during retraction as long as the 
contact is fixed.   This has to be the case for small deformation and a linear elastic material since the geometry is fixed.   
Indeed, for JKR theory, the relationship between force F and displacement D at fixed contact radius a is given by

(9) 0
0 8


 

F FD D
a

where  and  are the initial displacement and force, respectively.   The quantity  is the compliance of 0D 0F 1/ 8a
a rigid cylindrical punch of radius a bonded to an infinite block of incompressible elastic substrate.   For an 
incompressible elastic substrate with a constant isotropic surface stress, eq. (9) is modified to

. (10)   0
0 0

/ 2
8

  


  
a

D D F F
a

The dimensionless function  depends only on the Elasto-capillary number and is given by (3.20a) in Hui et al.13   
What is surprising is that this linear relation remains valid for large deformation as demonstrated by Liu et al.9   
For our case the solution is more complicated, since the compliance also depend on the ratio of stiffening 
coefficient B and  .    We have not been able to obtain a simple expression for this compliance.   Nevertheless, 0

our finite element method can be used to determine this relation for any given B and .   In experiments, the 0

elastic modulus, the contact radius, the displacement and force can be readily obtained.   Thus, B and  can be 0
determined by matching simulation results to force versus displacement data.

  

5 Conclusions

Page 12 of 15Soft Matter



We have shown that strain-dependent surface stresses can provide a dominant contribution to the force-
displacement curve of a rigid spherical contact on a compliant substrate.  These findings corroborate the 
interpretation of recent experiments by Jensen et al.32 and raise a number of important issues and opportunities.  
From an applications perspective, they suggest an exciting new design space for engineering soft adhesive 
contacts with tunable surface stresses. They also indicate that new design rules may be needed for these materials.  
In particular, the simple linear force-displacement relationship observed in both the experiments and our 
simulations calls for a parametric study to reveal the dependence of the contact stiffness on material properties 
and contact geometry. 

In the shorter term, significant challenges remain in the reconciliation of theory and simple experiments, 
especially regarding the geometry of the contact and substrate deformation. It is natural to hypothesize that the 
capillary-bridge shape of the contact zone could actually be comprised of solvent extracted from the gel, but other 
previous observations contradict this hypothesis. Phase separation of solvent around an adhesive contact in the 
same material system was thoroughly investigated in Jensen et al.40  There, the volume of phase-separated solvent 
was found to increase with the volume of indentation, suggesting that there should be no phase separation under 
net tension, investigated here.  Further, the dynamics of the failure of the adhesive contacts in this same system 
was recently described in Berman et al.33  In that study, the failure of the contact and the relaxation of the substrate 
was found to be distinctly solid-like, with no suggestion of a role for phase-separated fluid in a stretched adhesive 
contact.

It is possible that the discrepancy between the observed and calculated substrate surface deformations may 
arise from ambiguities in the contact conditions at the sphere-substrate interface. For one, there are no 
experimental measurements of how the substrate deforms during the establishment of contact that could be 
compared to the numerical protocol shown in Fig. 4.  Additionally, the existing calculation does not impose a 
boundary condition for the contact angle at the three-phase contact line. While such a boundary condition has 
been suggested by several works,11,41,42 its form is not established, and consequently the simulations lack an 
appropriate contact line condition. Both of these considerations will be the subject of further experimental and 
theoretical study.
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