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Here, we report the facile synthesis of highly ordered luminescent ZnO nanowires array using low 
temperature anodic aluminium oxide (AAO) template route which can be economically produced in large 
scale quantity. The as-synthesized nanowires have diameters ranging from 60-70 nm and length ~11 µm. 
The photoluminescence spectrum reveals that the AAO/ZnO assembly has a strong green emission peak 
at 490 nm upon 406 nm excitation wavelength. Furthermore, the ZnO nanowires array-based gas sensor 10 

has been fabricated by a simple micromechanical technique and its NH3 gas sensing properties have been 
explored thoroughly. The fabricated gas sensor exhibits excellent sensitivity and fast response to NH3 gas 
at room temperature. Moreover, for 50 ppm NH3 concentration, the observed value of sensitivity is 
around 68%, while the response and recovery times are 28 and 29 seconds, respectively. The present 
synthesis technique to produce highly ordered ZnO nanowires array and fabricated gas sensor has great 15 

potential to push the low cost gas sensing nanotechnology. 

 

1. Introduction 

Among all the nanoscale materials, the metal oxide 

nanostructures are extensively studied because of their potential 20 

applications in various technological areas, such as electronics, 

lasers, electron-field emitters, optoelectronics, biological and 

chemical sensors, logic devices, nanoscale memory, coating 

systems, superconductivity and catalysis [1-10]. Recently, many 

research groups have extensively investigated the various 25 

properties of metal oxide nanonstructures of different dimensions 

(D) and they observed that only some of these possess either d0 

(TiO2, WO3, Sc2O3, V2O5, CrO3 and perovskites such as ScTiO3, 

LiNbO3) or d10 (ZnO, SnO2, Cu2O, In2O3) electronic 

configuration of cations exhibit feasible gas sensing properties 30 

[11]. Although there exist a few metal oxides with dn (0<n<10) 

configuration of cations (NiO, VO2, Cr2O3, RuO2 etc.) which are 

sensitive to the environment in their vicinity, but these are 

structurally unstable as influenced by oxidation or reduction 

processes[12]. Amid the metal oxides nanostructures, ZnO is one 35 

of the most studied semiconducting materials. It possesses 

thermodynamically highly stable wurtzite (hexagonal close 

packed) crystal structure in which lattice constants c/a ~ 1.60 

slightly deviates from the ideal value of hexagonal cell c/a = 

1.633 due to difference between electronegativity values of Zn2+ 40 

and O2- ions. ZnO exhibits almost all the unique properties 

required to make it a feasible gas sensor such as moderate direct 

band gap (3.37 eV), high mobility of conduction electrons, better 

chemical and thermal stability under ambient conditions and good 

activity in redox reactions [13,14]. Thus 0D, 1D, 2D and 3D 45 

nanostructure of ZnO have been extensively studied worldwide to 

utilize their excellent gas sensing properties in the fabrication of 

improved gas sensing devices at low cost. Moreover, the longer 

dimension of 1D ZnO nanostructures (nanotubes, nanowires and 

nanorods) make them suitable to contact with macroscopic world 50 

for electrical and many others physical measurements. Therefore, 

1D nanostructures are more appropriate for the fabrication of 

nanoelectronics devices like gas sensors, electron-field emitters 

and logic devices etc.  

In recent times, many research groups have demonstrated 55 

the excellent sensitivity, response and recovery characteristics of 

zinc oxide gas sensors fabricated with individual nanostructure 

(tube, wire and rod) [15-17]. However, the large-scale fabrication 

process of these sensors still suffers from intrinsic drawback of 

processing an individual nanostructure. To address this issue, we 60 

proposed alternative route to minimize such drawbacks by highly 

ordered template based aligned luminescent ZnO nanowires 
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The other probable reason behind the strong luminescence in 

AAO/ZnO may be higher interfacial area provided by ZnO 

nanowires to AAO. Higher surface to volume ratio leads to 

higher concentration of defects induced by AAO- template on 

the ZnO nanowire surface, as a result the recombination of Vo+ 5 

from the ZnO surface and free electrons from AAO recombine 

strongly as compared to pristine ZnO to produce strong green 

emission. 

3.3. V-I characteristic of nanowires 

When an ac electric field with magnitude 15 Vpp (peak to 10 

peak) at 0.5 MHz was applied between points “1” and “2” (Figure 

5(a)) (after putting a drop of suspension between gap of the 

electrodes) electric field (E) induces charge separation and the 

resulting polarization develops a dipole moment which aligns the 

nanowires parallel to the field lines. In case of non-uniform field 15 

distribution, the alignment force or the dielectrophoretic force 

ܨ) ∝  ଶ, where સ is the gradient vector operator) moves the|ܧ|ࢺ

polarized structure towards the region of highest field density 

[47]. ZnO nanowires array trapped between the two Cu electrodes 

due to this dielectrophoresis process is shown in Figure 5(b).  20 

The V-I characteristic of the ZnO nanowires array, 

trapped between the electrodes (Figure 5(b)) is shown in Figure 

6(a). 

 

Figure 5 (a) Schematic diagram of the chamber used for gas 25 

sensing measurements and inset shows magnified “A” region of 

one of the glass plate which consists 3 pairs of Cu electrodes and 

(b) magnified FESEM image of “B” region which shows 

nanowires array kept between one pair of the two electrodes.  

 30 

Cu-ZnO nanowires array, which is basically a metal-

semiconductor-metal (MSM) structure, shows almost symmetric 

characteristics. Such MSM structure can be considered as being 

composed of two Schottky barriers connected back to back in 

series with a semiconducting material. If a barrier at both ends of 35 

the nanowires array possesses similar good quality of contacts 

with approximately lower barrier heights, the symmetric 

characteristics shall be obtained [48]. The resistance of the 

nanowires array is of the order of 6 GΩ at 1 V, which includes 

contact resistance as well. Such high resistivity is due to ZnO 40 

being a wide bandgap semiconductor (Eg = 3.3 eV) at room 

temperature [49]. 

3.4. Gas sensing properties of nanowires 

For investigating room temperature gas sensing properties 

of the trapped ZnO nanowires array, the sensor was kept in an air 45 

tight box (volume 500 cm3). A 1000 ppm NH3 (Chemtron science 

laboratories pvt., India) was used as test gas and using the 

relation (Capacity of syringe used × ppm level mentioned 

on canister = Capacity of sensing container × required ppm level) 

different quantities of 1000 ppm NH3 were inserted into the 50 

airtight sensing box through inserting window using a micro-

syringe so as to yield a desired ppm concentration of NH3. A 

fixed bias of 0.1 V was applied across the electrodes (points “1” 

and “2” in Figure 5(a)) and the change in the resistance of the 

sensor was measured using a pico-ammeter. Before starting the 55 

measurement for every next NH3 concentration the test gas in 

sensing chamber is pumped out using a vacuum pump so that 

sensor recovers its initial resistance value. Figure 6(b) shows the 

response and recovery curves (in terms of resistance) of the ZnO 

nanowires array upon exposure to 10, 15, 25, 50, 75, 100 and 150 60 

ppm NH3 at room temperature. These curves show that the 

change in the resistance sensibly depends on the NH3 

concentration and it increases with increase in the value of NH3 

concentration. The % response (S) of this sensor for 50 ppm NH3 

is shown in Figure 6(c). The % response (S) of a sensor is defined 65 

as│(Ra-Rg)/Ra│×100, where Ra and Rg are resistances of the 

sensor in air and gas, respectively. Figure 6(c) shows that the 

response and recovery times (defined as the time required to 

reach 90% of the saturation value) of the sensor when exposed to 

50 ppm NH3 concentration are ~28 s and ~29 s, respectively. The 70 

response time of the sensor decreases with an increase in the gas 

concentration while the recovery time increases with an increase 

in gas concentration. This behavior of the sensor is shown in 

Figure 6(d).  

NH3 concentration versus % response of the sensor is 75 

shown in Figure 7. It can be seen that the % response increases 

almost linearly with increase in NH3 concentration up to75 ppm 

and above 75 ppm, % response increases slowly with the increase 

in NH3 concentration. 
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sensing characteristic of the as synthesized nanowires array a 

simple sensing system were made using a micromechanical 

technique. The sensor shows good response to NH3 atmosphere at 

room temperature. We believe that these simple and cost effective 

techniques can be extended to synthesize nanowire arrays of 5 

other metal/metal oxides too and may be helpful in studying their 

sensing properties forwards various gases at room temperature. 
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