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Metal halide perovskites (MHPs) have emerged as versatile, cutting-edge materials in the field of energy
conversion and storage, expanding their influence well beyond photovoltaics to transform technologies
such as lithium-ion batteries (LIBs), supercapacitors (SCs), and photo-induced energy storage systems.
Initially renowned for their remarkable performance in solar cells, MHPs are now attracting significant
attention in energy storage applications due to their outstanding properties, including high ionic
conductivity (107° to 10™* S cm™), long charge-carrier diffusion lengths, tunable band gaps, large
surface areas, and structurally flexible lattices. Both lead-based and lead-free variants have demonstrated
considerable promise, particularly as electrode materials and in the fabrication of stable artificial solid
electrolyte interphases (ASEls). In addition, the strong light absorption capabilities of halide perovskites
have opened pathways toward photo-rechargeable devices, where perovskite solar cells (PSCs) are
integrated directly with energy storage systems to enable sustainable and efficient photo-charging. This
review provides a concise overview of recent progress in the synthesis and compositional engineering of
MHPs, examining how structural and chemical tuning governs their optoelectronic and physicochemical
properties. It further explores the emerging applications of perovskite materials in diverse energy storage

devices, emphasizing the role of composition in optimizing electrochemical performance. Special
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Accepted 14th September 2025 attention is given to the integration of PSCs with storage systems as a promising avenue for next-

generation multifunctional energy technologies. Finally, the review outlines future opportunities and the
key challenges that must be addressed to fully realize the potential of MHPs in high-performance,
durable, and scalable energy storage solutions.
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established itself as the benchmark due to its superior energy

1. Introduction : e
density (100-265 Wh kg °) compared to any other battery

In recent years, the demand for renewable energy sources has
increased due to rising pollution from fossil fuels and the
ongoing energy crisis. Solar energy is recognized as the most
abundant clean alternative to conventional energy generation
methods. However, due to their variable availability, the fourth
technological revolution calls for innovative energy storage
solutions like batteries and supercapacitors (SCs) to enhance
the use of electricity generated from these renewable sources.*?
Currently, lithium-ion batteries (LIBs) represent the most
advanced and preferred technology for energy storage solutions
in the market. The development of LIB technology began in the
late 1980s and early 1990s, and its recognition culminated in
the award of the Nobel Prize in 2019. Since then, it has
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technology currently available.® Given their significantly high
energy and power density, LIBs have attracted a great deal of
interest for their use in portable electronics, but also in battery
electric vehicles (BEVs).* Nonetheless, LIB technology faces
certain drawbacks, for instance, capacity deterioration, safety
concerns, and inadequate cycle stability.>® Given the current
limitations, existing LIB technology is unable to achieve the
ultimate goal of decarbonizing the world and necessitates
additional research. In contrast, SCs offer superior cycle life and
high power capability by storing energy through the reversible
adsorption of ionic species on highly porous electrodes.
However, their widespread adoption is constrained by
a comparatively lower energy density, which limits their use in
applications requiring long-duration energy storage.” To
address the limitations associated with LIBs and SCs, the
development of next-generation LIB technologies offering
enhanced longevity, faster charging, improved safety, and cost-
effectiveness critically depends on advancements in key battery
components, including electrodes, electrolytes, and interfaces.
Similarly, achieving higher energy density in SCs requires
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significant innovation in material design and device architec-
ture. Therefore, researchers are constantly exploring next-
generation materials to replace traditional electrode materials.
One of the emerging groups of active materials in this field is
inorganic and organic-inorganic metal halide perovskites
(MHPs), with the general formula ABX;, where A represents
a small organic or inorganic cation, B is a divalent metal ion,
and X is a halogen anion. MHPs are a specific family of crys-
talline materials featuring a soft crystal lattice with excellent
structural and compositional tunability.?

Over the past decade, MHP materials and their wide-ranging
applications have experienced remarkable growth. Their excep-
tional optoelectronic properties, combined with the ability to
control photogenerated ions and electronic charges simulta-
neously, make them an outstanding material for numerous
technological uses. MHPs first gained prominence as the foun-
dation for a new era in photovoltaics, with perovskite solar cells
(PSCs) rapidly transforming the renewable energy landscape.>™*
These cutting-edge devices offer simpler fabrication methods,
lower production costs, and the potential to surpass silicon-based
efficiencies, thanks to their high light absorption coefficients
across a broad spectrum. As a result, PSCs not only have the
capacity to complement the existing photovoltaic (PV) market but
also to challenge the long-standing dominance of crystalline
silicon cells, paving the way for new manufacturing paradigms.**
Among the diverse family of ABX; perovskites, methylammonium
lead iodide (MAPbI;) and formamidinium lead iodide (FAPbI;),
along with their mixed cation or mixed halide forms, are proto-
type mono-cationic materials for the absorber layer in PSCs."*™

ABX;-type perovskite

(a) BX4 octahedral

Corner-sharing BXg

D
A-site cations insertion

© B=Pb,sn,Ge,.. () A=MAFACs,..

@ X=1,ClBr
(c) 307 —@- Testedin lab
©- Certified under non-QSS

25 - @- Certified under QSS growth
PCE =215%
NIMS & SFIT

Inorganic charge extraction layers
-1cm’ PSC
PCE =16.2%

n
(=}
1

U.N-L

as passivators
PCE = 21.0%

Efficiency (%)
7]

(b)

Front electrod

Peking U. & U. Oxford & U. Surrey
Solution-processed secondary

Quaternary ammonium halides

View Article Online

Review

The real boom started after the application of these MHPs as
active material in solar cells, starting at a power conversion effi-
ciency (PCE) ~3.8% in 2009 (MAPbI; in dye-sensitized architec-
ture).® Since then, intensive material innovation and device
engineering have pushed efficiencies beyond 26%, particularly
through A-site and X-site compositional engineering strategies.
For example, the integration of multiple cations in FAPbI;-based
systems like triple cation Cs,(MAg7FAq g3)1—x)Pb(lo.s3BT0.17)s
perovskite in meso-architecture has led to PCE values of ~21.1%
in 2016, and more recently, the efficiencies exceeded 26% in
a small-area unit cell.'®* The efficiency progress of PSCs and
standard device architectures® is shown in Fig. 1. A particularly
promising direction in this field is the development of flexible
PSCs, which have achieved PCEs exceeding 25% (certified at
24.90%), surpassing other flexible solar cell technologies.”
Thanks to their high power-to-weight ratio, flexible PSCs are well
suited for use in mobile and space energy systems, as well as in
portable functional devices.** Despite these impressive perfor-
mance gains, the commercialization of perovskite-based devices
is still hindered by insufficient long-term operational stability.>>”
Device instability arises from degradation of both the active and
buffer layers, which is linked to intrinsic properties of MHPs,
such as lattice disorder, ion migration, and trap-state formation.
These degradation processes can be triggered or accelerated by
environmental factors (moisture, oxygen) and external stressors,
including light exposure, heat, and electric fields. Over the past
decade, significant progress has been made in improving PSC
stability through various strategies.”**® However, stability remains
a key challenge requiring continued investigation. Furthermore,
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(a) Representation of the ABX3 perovskite building principle, (b) typical architectures of PSC devices, (c) the efficiency gain of PSCs??
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scaling-up PSCs to large-area devices presents additional diffi-
culties, particularly in achieving high-quality, uniform perovskite
films at industrially relevant scales, meaning that the perfor-
mance of large-area PSC modules still falls short of commercial-
ization requirements. The tunable optical and electronic
properties of MHPs, combined with rapid progress in their
compositional engineering, have positioned them as promising
candidates for a wide range of optoelectronic applications. As
a result, their potential has quickly expanded beyond PVs, with
high-performance light-emitting diodes (LEDs) leading the way.
Perovskite-based LEDs have already achieved electrolumines-
cence external quantum efficiencies exceeding 25% for red and
green emissions, while maintaining exceptional color purity.'>**3
Beyond LEDs, MHPs show strong promise for other advanced
devices, including lasers, field-effect transistors, photodetectors,
and photocatalysts.>*** More recently, their unique properties
have been explored in next-generation memory devices*>® and
even artificial synapses for neuromorphic computing.’”

Not surprisingly, MHPs have also paved their way for a new
class of energy storage devices where solar PV systems have been
integrated with batteries such as LIBs,*® Zn metal batteries,* Na-
metal batteries,* LIBs,*" and also SCs.** This can be attributed to
the same properties that make them ideal for PV devices. The
initial use of hybrid MHPs (MAPbBr; and MAPbDI;), synthesized
through hydrothermal methods as anodes in LIBs, was docu-
mented by Xia et al.** Since that time, various studies have been
carried out, including the creation of new MHPs for their use as
anodes in LIBs***® and their adoption as artificial solid electro-
lyte interphases (ASEI).*”*® Moreover, their integration in SCs has
also gained considerable attention because of exciting properties
such as electronic confinement, structural flexibility, attractive
performance, and stability.” For example, recently Riaz and
coworkers showed that the CsSnBr;/PANI-based electrode
exhibits good cyclic stability (91.6%). They further confirmed the
high energy density and power density (37.5 Wh kg™, 1275.4 W
kg ') of these electrodes at 3.4 A g *.%°

It is no coincidence that new review articles appear regularly
in these booming research areas.**'>>>>5> We aim to provide an
original and valuable expert perspective that delivers a concise
yet comprehensive overview of recent advances in the prepara-
tion and compositional engineering of MHP materials in
different forms, with particular emphasis on the factors influ-
encing their optoelectronic and physicochemical properties. It
offers a focused perspective on the promising yet still underex-
plored potential of these materials in energy storage systems.
The discussion covers both all-inorganic and hybrid organic-
inorganic MHPs, emphasizing their electrochemical perfor-
mance across different device configurations. Key topics include
the use of perovskites as anode materials for LIBs and SCs, the
design of ASEIs on lithium metal, and a detailed examination of
lithium storage mechanisms in perovskite-based anodes. Recent
developments in photo-induced LIBs and SCs are also reviewed.
In addition, the article highlights the critical physicochemical
properties that underpin the versatility and high performance of
MHPs, linking these characteristics to their functional behaviour
in energy storage applications. The review concludes with an
outlook on future research directions and the remaining
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challenges that must be addressed to unlock the full potential of
MHPs in next-generation energy storage technologies.

2. Fundamental properties of MHP
materials

MHPs offer distinct advantages over conventional inorganic
semiconductors, particularly their exceptional chemical and
structural tunability combined with favorable carrier dynamics
and transport properties. By tailoring parameters such as stoi-
chiometry, dimensionality, and nanostructure, key material
characteristics, including bandgap energy, crystallinity, and
chemical stability, can be precisely engineered. A defining
feature of perovskites is ion-migration: although often regarded
as a drawback that contributes to performance losses and
instability in optoelectronic devices, it can also be strategically
exploited to enable novel functionalities in halide-perovskite-
based electronics.*® Consequently, detailed investigations of
their crystal structures and elemental compositions are essen-
tial to fully understand and optimize the unique electro-
chemical behavior of different halide-perovskites and to
identify the most suitable candidates for use as active materials
in diverse devices, including LIBs and SCs. This section focuses
on the fundamental attributes of MHPs that govern their
chemical and optoelectronic properties, incorporating recent
progress toward addressing stability challenges that impact
device performance. Additionally, various synthesis strategies
for MHPs will be discussed, given their decisive influence on the
physicochemical characteristics of the resulting materials.
Finally, special attention will be given to the interactions
between MHPs and Li-ions, which play a critical role in their
application within lithium-based energy storage systems.

2.1. Compositional engineering and phase transitions of
MHPs

As mentioned previously, the typical three-dimensional (3D)
MHPs share the basic chemical formula ABXj;, where ‘A’ is
a monovalent cation (such as Cs*, CH;NH;" or MA, HC(NH,),"
or FA etc.), ‘B’ is a divalent transition metal cation (generally
Sn’, Pb", etc.), and ‘X’ is a monovalent halide anion (Cl~, Br~,
"), forming corner-sharing [BX,]*~ octahedra cavities contain-
ing the ‘A’ cations as shown in Fig. 2a.* This family of materials
can be further divided into two groups according to the nature
of the A-site cation: all-inorganic halide perovskites incorpo-
rating inorganic cations and organic-inorganic halide perov-
skites (or so-called hybrid halide perovskites) incorporating
charge-compensating amine cations. For achieving structural
stability in the 3D network, the ionic radii of the cations and
anions should follow the empirically derived Goldschmidt
tolerance factor (¢) and octahedral factor (u).>* Both tolerance
and octahedral factor predict the perovskite crystal stability
with variations in metal cations and halide anions. The
following equation can describe the tolerance factor:

VA+rX

= 7\/5(@ - (1)
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Fig. 2

(a) Schematic illustration of the typical ABXs structure of MHPs. (b) Formability of 3D MHPs as a function of size of A-site cation. (c) ABX3

structure evolution with A-site cation alloying®® Copyright 2020, Adv. Funct. Mater.

where r, and rx are the ionic radii of the A-site cation and X-site
halide anion, and rg is the Shannon ionic radius of the B-site
cation, respectively, in the ABX; perovskite halide compounds.
The octahedral factor can be expressed by the following
equation:*

s
=B 2
p= (2)

A stable 3D perovskite structure at room temperature and
ambient pressure is generally achieved when the ¢ and u fall
within the ranges 0.813 < ¢ < 1.107 and 0.442 < u < 0.895,
respectively,”® and a highly symmetric cubic structure charac-
teristic of MHPs is typically stabilized only within a narrower
tolerance factor range of 0.9 < ¢ < 1.” Deviation from this range
results in distortion of the cubic lattice, leading to lower
symmetry structures. The size of the A-site cation plays a crucial
role in dictating the structural stability of perovskites. Since the
A-site cations reside within the [BX,]*~ framework, a cation that
is lower than the ideal size causes tilting of the BX, octahedra.
This tilting induces structural distortion, giving rise to lower
symmetry phases such as tetragonal or orthorhombic forms.
Moreover, if the size of the A-site cation is larger than the ideal
size, two-dimensional (2D) structures like Ruddlesden-Popper
(RP) phase and Dion-Jacobson (D]) phase will be formed
(Fig. 2b).*® Moreover, when A-site cations are alloyed by small or
oversized cations, various crystal structures will be formed,
including one-dimensional (1D) structures (Fig. 2¢).>>*

2.2. Factors guiding chemical and physical properties of
MHPs

The physicochemical properties of MHPs are critical determi-
nants of their functionality in energy storage devices. For
example, in traditional LIBs, MHPs with intermediate band

38756 | J Mater. Chem. A, 2025, 13, 38753-38789

gaps (such as CsPbBrj;) function effectively as stable electrodes
owing to their favorable ion-electron conductivity, while their
ability to tolerate defects reduces capacity loss.® For photo-
induced LIBs, MHPs with narrow band gaps (like MAPbI;)
perform exceptionally as materials for light absorption, where
their high carrier mobility facilitates effective conversion of
solar energy to charge, and ambipolar transport allows for
concurrent Li-ion storage.® These advantageous properties
stem from the intrinsic electronic structure of MHPs, which
grants them high optical absorption, long carrier diffusion
lengths, and tunable energy levels. The electronic and opto-
electronic properties of MHPs can be influenced by a combina-
tion of intrinsic material factors and external stimuli, which in
turn determine their performance in these energy storage
devices. The key factors are specified more precisely below.
2.2.1 Compositional factors. The physicochemical proper-
ties of MHP materials originate from their unique inorganic
lattice and the intricate interactions between the inorganic
framework and organic components.®* Consequently, structural
modification of MHPs achieved by introducing specific cations
or anions at various sites within the parent ABX; perovskite
structure has become a widely adopted strategy to tailor their
fundamental physical and chemical characteristics. Initially,
the prevailing belief was that the role of the A-site cation was to
maintain the overall charge neutrality. However, more recent
studies have demonstrated that the versatility of the A-site
cation indirectly affects the structure-property—performance.®
In contrast, the electronic properties of MHPs are more directly
governed by the composition of the B- and X-site ions.*** For
example, in MPbX;, the deeper region of valence band minima
(VBM) consists mainly of p orbitals of the ‘X’ ions and a small
contribution from the overlapping of s orbitals of the ‘B’ ions.
The edge of VBM consists of anti-bonding states of the s orbitals
of ‘B’ ions and p orbitals of ‘X’ ions. Therefore, when different

This journal is © The Royal Society of Chemistry 2025
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halides are used with different electronegativity, the position of
the VBM edge changes, hence the bandgap changes. On the
other hand, the conduction band minima (CBM) are mainly
determined by the antibonding overlap between the p orbitals
of ‘B’ site ions and a small contribution of the p orbitals of ‘X’
site ions.*® In the case of tin-based perovskites (ASnXj;), the
interactions between the A-site cation and the [SnX;]™ sublattice
are more complex. Predicting the properties of these materials
requires consideration of additional factors such as redox
stability and defect chemistry.®”*® The featured electronic
structure of MHPs is different from that of conventional semi-
conductor materials, i.e., gallium arsenide (GaAs), with their
band gaps forming in between bonding and antibonding
orbitals.® A detailed discussion on the influence of A-, B-, and X-
site doping on the physicochemical properties of MHPs is
provided in the subsequent sections.

2.2.1.1 ‘A’ cation. The A-site cation in MHPs plays an indi-
rect but essential role in influencing their electronic properties.
By altering the lattice volume and introducing structural
distortions to the ideal cubic ABX; framework, the A-site cation
leads to the formation of various non-cubic phases. Although
these structural changes have only a limited impact on the
electronic band structure, they are critical for understanding
and optimizing the optoelectronic performance of MHPs.*>7 A
highly symmetric cubic structure tends to exhibit reduced band
gaps due to improved packing symmetry. However, as the A-site
cation size increases beyond this optimal range (¢ > 1), the
resulting lattice expansion and structural deformation lead to
bandgap widening.”* This structural deformation primarily
affects ionization energy (IE), while volumetric/lattice expan-
sion has a more pronounced influence on electron affinity (EA).
The ionic nature of MHPs makes them susceptible to ion
migration, particularly under external electric fields or illumi-
nation. Such migration can create crystal defects that degrade
device performance through current-voltage hysteresis, phase
segregation, and chemical corrosion. A-site engineering has
emerged as an effective strategy to mitigate these challenges.
For instance, partial substitution of A-site cations with over-
sized organic ions like guanidinium (Gua®) introduces stabi-
lizing hydrogen bonds with the [PbX¢]*~ lattice,” suppressing
lattice dynamics and enhancing device stability and perfor-
mance.” Additionally, A-site doping can stabilize desirable
perovskite phases and address long-standing issues in long-
term operational stability, a key barrier to commercialization.”

The size of the A-site cation also constrains the formation
and stability of the [BX¢]*~ framework. To date, five monovalent
cations are known to form 3D lead-halide perovskites: MA,”
FA” and Cs' cations’™ and the more recently reported azir-
idinium (Az)”” and methylhydrazinium (MHy).”® Of these, o-
MAPDX;, a-AzPbX;, a-FAPbX;, and a-CsPbX; can form perov-
skite structures across all halide compositions. However, o-
FAPDI; and «-CsPbl; are metastable and tend to transform into
the non-perovskite yellow 3-phases under ambient conditions.”
MHyPbCl; and MHyPbBr; form B-site distorted perovskite
structures,’® while MHyPbI; crystallizes in a perovskitoid phase
similar to 3-CsPbl;.** To improve stability and tailor the mate-
rial properties, these A-site cations can be mixed to form alloyed

This journal is © The Royal Society of Chemistry 2025
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perovskites, as mentioned previously. Moreover, certain large
organic cations can be partially incorporated into the 3D
perovskite lattice to enhance their optoelectronic performance.
Examples include imidazolium (IM'; GC;HsN,"),%  di-
methylammonium (DMA'; CH;NHCH;')* ethylammonium
(CH3;CH,NH;"; EA),® guanidinium (C(NH,);'; Gua),” and acet-
amidinium (CH;C(NH,),"; Aca).** All mentioned materials
exhibit temperature-dependent phase transitions; therefore,
this needs to be taken into account during device design.

In parallel, the development of 2D perovskites using even
larger organic cations as spacer ligands has gained considerable
interest. These materials consist of inorganic [BXs]* ™ octahedral
sheets separated by bulky organic layers, leading to a general
composition of (L,BX,)(ABX;3), 1, where ‘L’ represents the
organic spacer. Commonly used ligands include butylamm-
onium (BA) and phenylethylammonium (PEA), which impart
hydrophobicity and thus enhance moisture resistance. These
2D perovskites exhibit strong photoluminescence, attributed to
their quantum well-like electronic structures. However,
a significant limitation of these materials in optoelectronic
applications is the structural heterogeneity resulting from the
coexistence of domains with varying inorganic layer thick-
nesses. Additionally, their anisotropic charge transport prop-
erties further restrict their applicability. The structural diversity
and design strategies for 2D perovskites will be discussed in
detail in the following section of this review.

2.2.1.2 ‘B’ cation. In MHPs, the B-site is typically occupied
by divalent metal cations such as Ge**, Sn**, and Pb>*, which
possess fully or partially filled 4s, 5s, and 6s valence orbitals,
respectively. These ns” lone-pair electrons contribute signifi-
cantly to the upper region of the VB, playing a crucial role in
determining the VBM and, consequently, the electronic struc-
ture of MHPs. The stereochemical activity of these lone pairs
strongly influences the electronic properties, and an increase in
atomic radius (from Ge to Sn to Pb) has been shown to corre-
spond with a widening of the bandgap. This trend is attributed
to the changes in the energy level and activity of the lone-pair
states. In 2D MHPs, reduced structural dimensionality allows
for a broader range of off-center displacements of the B-site
metal cation. As a result, the stereochemical activity of the ns®
lone-pair electrons is more pronounced in 2D Ge-, Sn-, and Pb-
based perovskites.®® Goesten and Hoffmann conducted an in-
depth analysis of the impact of substituting Pb** with Sn>" or
Ge®", along with halide variation, on the bandgap of CsPbBr;.*
Complementarily, Nishat et al. proposed that a reduction in the
B-site cation's atomic radius increases the nuclear electrostatic
attraction on valence electrons, thereby raising the IE and EA.**
This stronger binding of valence electrons can lower both the
bandgap and bonding energy. Thus, a decrease in atomic radius
may result in narrower band gaps, in contrast to trends driven
by lone-pair effects. Moreover, the stability of the B-site divalent
oxidation state decreases across the series Ge < Sn < Pb,
reflecting  increasing  electronegativity. For  example,
substituting Pb>* with Sn>* results in a significant reduction in
IE and a moderate decrease in EA. More recently, Liang et al.
demonstrated that B-site substitution with lanthanide or

alkaline-earth metal ions enhances lattice cohesion and
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increases I migration barriers, offering a more effective stabi-
lization strategy than A-site or X-site doping.*® Beyond divalent
substitution, MHP structures can also be tailored through the
incorporation of trivalent B** cations (e.g., Bi*', Sb*") or
a combination of monovalent (B*) and trivalent (B*") cations. In
the former case, the classic ABX; structure is no longer main-
tained due to charge imbalance, resulting in new stoichiome-
tries such as A;B,Xo. These structures lack the corner-sharing
BX¢ octahedral connectivity, leading to significantly altered
optoelectronic properties. In the latter case, double perovskites
of the type Cs,B(1)B(u1)X, are formed, preserving the perovskite
framework while enabling broader compositional versatility.
The trivalent B-site in such double perovskites is often occupied
by p-block elements like Bi**#® TI*** Sb*"® and In*"*°
though examples incorporating d- and f-block elements also
exist.’* The monovalent B() cation can include Li", Na', Ag",
TI', Cu’, or Au’. Among these, Cu", TI", and Au" are rarely used
due to their strong reducing capabilities, which can destabilize
common B*' species.® Halide substitution in these systems
frequently results in phase segregation. Cl-based perovskites
exhibit high structural stability, whereas bromide analogues are
typically metastable, and iodide-based compounds are often
synthetically inaccessible.”>*® An alternative structural strategy
involves vacancy-ordered perovskites, particularly for tetrava-
lent B-site ions. Representative examples include Cs,TiXs *” and
Cs,SnX,”® where charge balance is maintained by introducing
ordered vacancies, offering unique optoelectronic properties
while preserving structural stability.

2.2.1.3 ‘X’ anion. The composition of the halide (X-site) in
MHPs plays a pivotal role in determining the feasibility of
perovskite lattice formation. It enables fine-tuning of key
physicochemical properties, including bandgap energy and
photoluminescence characteristics (shown in Fig. 3).” For
instance, APDbCl; perovskites exhibit a wide bandgap of
approximately 3.0 eV, resulting in white coloration and lumi-
nescence in the 400-450 nm range. In comparison, APbBr;
analogues possess a narrower bandgap (~2.2 eV) with emission
centered around 500-550 nm, whereas APbI; counterparts
exhibit the narrowest bandgap (~1.5 eV), corresponding to
emission in the near-infrared range of 800-850 nm. Mixed-
halide compositions exhibit intermediate band gaps and
emission profiles, which are approximately proportional to
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their halide content. This compositional flexibility enables the
rational design of perovskite materials tailored for specific
optoelectronic applications.’ Substitution at the halide site
also significantly impacts the electronic structure, particularly
the IE and EA of the material. This can be theoretically analysed
by examining the trend in halide anion properties, such as
increasing atomic radius and lone-pair electron energy levels
along the series Cl~ (3s*) — Br~ (4s”) — I~ (5s°). The CBM is
primarily governed by the B-site cation p-orbital energy levels,
which tend to shift downward as the atomic radius of the halide
increases. This trend can be attributed to the quantum
confinement effect: as the B-X bond length increases from CI to
I, the electron localization on the B-site is reduced, leading to
a lowering of the CBM energy. Simultaneously, the VBM shifts
upward across the same series, primarily due to the decreasing
electronegativity of the halide ions (C1> Br > I). These combined
effects of halide substitution enable precise control over the
electronic band structure of ABX; perovskites, further
enhancing their suitability for a wide range of optoelectronic
applications.™*

2.2.2 Phase transition and external factors. MHPs, owing to
their inherently ionic lattice structures, exhibit significant ion
migration, dynamic lattice behavior, and a pronounced sensi-
tivity to external stimuli such as temperature, pressure, and
redox conditions. These characteristics render both hybrid
organic-inorganic and all-inorganic MHPs highly responsive to
their environment and often undergo structural phase transi-
tions. Polymorphism is one of the most notable consequences
of this structural flexibility, which profoundly influences the
electronic structure and, consequently, the optoelectronic
properties of MHP.'**"'* Structural features considered in the A-
site cation engineering and temperature- and pressure-induced
phase transitions in selected hybrid organic-inorganic MHPs
are shown in Fig. 4. The diversity in crystal structures and
associated phase transition temperatures for both lead-based
and lead-free MHPs is summarized in Table 1. In general, 3D
MHPs adopt a high-symmetry cubic structure at elevated
temperatures and undergo sequential phase transitions from
cubic to tetragonal to orthorhombic upon cooling. For instance,
Hansen et al.'®® Employed high-resolution powder neutron
diffraction to study the temperature-dependent phase transi-
tions in MAPbI;. The authors observed transitions from the -
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Influence of the X-site halogen atom on optical properties of MHP: (a—c) luminescence and absorbance of CsPbXz materials®® Copyright
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to the B-phase and from the B- to the a-phase at 165 Kand 327 K,
respectively. Interestingly, recent ab initio quantum dynamics
simulations for pristine MAPbI; demonstrated that the struc-
tural deformations induced by thermal fluctuations and phase
transitions are on the same order as deformations induced by
defects.'” Cs-based halide perovskites offer higher structural

This journal is © The Royal Society of Chemistry 2025

stability than their organic analogues; they are also susceptible
to structural phase transitions under the influence of external
factors. For example, CsPbl; perovskite exhibits four poly-
morphs with temperature-induced transitions (Fig. 5a).*®®
Remarkably, the black phase a-CsPbl; perovskite exhibits poor
structural stability at room temperature and spontaneously
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Table 1 Different crystal systems (lead-based and lead-free) of commonly used MHPs in LIBs, their phase transition temperature, and space

group
Compound Crystal system Space group (polytype) Temperature (K) References
MASnNI; Tetragonal Pm3m (3C/ar) 293 75
I4cm (3C/B) 200
MASNCl, Cubic Pm3m (3C/a) 478 114
Rhombohedral R3m 350
Monoclinic Plc1 318
MASNBr; Tetragonal P4amm (3C/B) 115
MAPbBr; Cubic Pm3m (3C/a) 298 116
Tetragonal IA/mem (3C/P) 220 117
Pa/mmm (3C/B) 150-155 118
Orthorhombic Pna2, 118
MAPDCI, Cubic Pm3m (3C/a) 200 116
Tetragonal P4/mmm (3C/B) 173-179 118
Orthorhombic P222, <173 118
FAPDI, Cubic Pm3m (3C/a) 420 75
Hexagonal P65 (2H/3) 270 75
Trigonal P3 (2H/3) 150 75
FAPDBr; Cubic Pm3m (3C/a) 275 119
Tetragonal P4/mbm (3C/B) 175
Orthorhombic Pnma (d) 100
FASnI; Cubic Pm3m (3C/a) 275 119
Tetragonal P4/mbm (3C/B) 175
Orthorhombic Pnma (3C/y) 100
FASnBr; Cubic Pm3m (3C/a) 275 120
Tetragonal P4/mbm (3C/B) 175
Orthorhombic Pnma (3C/y) 100
CsPbl, Cubic Pm3m (3C/a) 593 75
Orthorhombic Pnma (d) 293 121
CsPbBr; Cubic Pm3m (3C/a) 433 122
CsSnl; Cubic Pm3m (3C/a) 500 123
Tetragonal P4/mbm (3C/B) 380
Orthorhombic Pnma (3C/y) 300
CsSnBr; Cubic Pm3m (3C/a) 298 124
CsSnCl; Cubic Pm3m (3C/a) 413 114
CsGely Cubic Pm3m (3C/a) 533 125
CsGeBr; Cubic Pm3m (3C/a) 538 125

transforms to the yellow, photoinactive, non-perovskite 8-
phase. Moreover, as shown in Fig. 5b, these distinct phases
exhibit markedly different optoelectronic characteristics,
including variations in band gap, photoluminescence quantum
yield, charge carrier mobility, and carrier lifetime.'” Moreover,
the impact of high pressure has also been extensively utilized to
deepen the understanding of structure-property relationships
of MHPs."® For example, Kong et al."“"** investigated high-
pressure-induced phase transitions in MAPbBr;. This material
experiences a cubic—cubic phase transition from Pm3m (3C) to
Im3 (3R) at approximately 0.5 GPa, which was attributed to the
distortion of the PbBr; polyhedron (Fig. 5c). The authors also
indicated that the narrowest band gap (Fig. 5d), along with the
longest carrier lifetime (Fig. 5e), is also observed near the phase-
transition pressure of approximately 0.5-0.6 GPa. Their results
have highlighted the effectiveness of using pressure to modu-
late crystal structures, which results in a favorable enhance-
ment of material properties. Additionally, the effect of phase
changes on electronic and optical properties of three perovskite
phases of CsSnl;, as well as their non-perovskite structure, was

38760 | J Mater. Chem. A, 2025, 13, 38753-38789

studied by D. D. Nematov et al.'** The authors showed that the
absorption (Fig. 5f) and photoconductivity (Fig. 5g) of CsSnl;
are enhanced in the infrared and visible light ranges as it
transitions from the low-temperature phase to the high-
temperature phase. In contrast, the stable yellow phase of
CsSnlz, known as the d-phase, only absorbs short-wavelength
light. The high levels of absorption and optical conductivity
suggest that all CsSnl; crystals, which have a perovskite struc-
ture, possess excellent spectral characteristics suitable for
photovoltaic applications.

In general, most perovskite and perovskitoid materials
undergo no more than five distinct phase transitions before
decomposing at elevated temperatures due to the volatility of A-
site constituents or amorphization under high pressure.'*>*>**7
Notably, d-AcaPbl; (Fig. 4) represents a unique case with the
most extensive polymorphism reported among MHPs, exhibit-
ing at least nine distinguishable polymorphs. Of these, four
occur under varying temperature conditions at ambient pres-
sure, while five emerge under high-pressure conditions at room
temperature. All identified phases are variations of distorted 2H

This journal is © The Royal Society of Chemistry 2025
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(a) Variable-temperature phase transitions among the CsPbls polytypes,i©® (b) illustration of variation of bandgap with the phase transition

of CsPblz crystalt®® Copyright 2018, ACS Nano. (c) Pb—Br inorganic frameworks of MAPbBrz for low-pressure Pm3m and high pressure Im3
phases. The high-pressure phase in MAPbBrz exhibits the characteristic elongation of the lead—halide octahedral, together with smaller lead—
halide—lead bond angles. (d and e) Demonstration of the band-gap narrowing and carrier-lifetime prolongation in MAPbBr3 at mild pressures,
respectively.** Copyright 2016, Proc. Natl. Acad. Sci. U. S. A. (f) and (g) Calculated absorption coefficient and optical conductivity of a-, B-, y-, and
d-phases of CsSnlz as a function of photon energy in the X direction.**®* Copyright 2025, J. Electron. Mater.

polytypes. Interestingly, &-AcaPbl; also undergoes partial
amorphization under high pressure, followed by recrystalliza-
tion due to Pb atom displacement along the c-axis.'** Beyond
polymorphism, ABX; perovskites can also exhibit polytypism,
which is a specific form of polymorphism characterized by
variations in the stacking sequence of otherwise identical
layers.*® Polytypes combine crystal sub-units of «/3C and &/2H
phases and are commonly observed in systems incorporating
oversized A-site cations, such as Aca,'®™ DMA,** as well as in
mixed FA perovskites.' For example, hybrid organic-inorganic
lead halides can form polytypes within various crystal systems,
including hexagonal (2H, 4H, 6H or 8H), cubic (3C), and

This journal is © The Royal Society of Chemistry 2025

rhombohedral (3R, 9R).*>**® Gratia et al."*® noted that hexagonal
polytypes emerge as transitional products on the surface of thin
films of mixed-ion perovskites during the annealing process,
unveiling a crystallization polytypic sequence of 2H-4H-6H-3C.
The perovskite structure can be cut into layers by the addition of
elongated organic BA or PEA cations, leading to the formation
of 2D perovskite phases.**

2.2.3 Dimensionality. By leveraging the diverse structures
and compositions of MHPs, the dimensionality of MHPs can be
precisely adjusted, ranging from 3D to various low-dimensional
forms such as quasi-2D, 2D, 1D, and zero-dimensional (0D)
configurations. There are two types of low-dimensionalities, one

J. Mater. Chem. A, 2025, 13, 38753-38789 | 38761
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InfoMat, and (c) is the corresponding density of states versus the energy E4™* Copyright 2021, Small. (d) Photoluminescence (PL) spectra of
FAPbIs nano-crystals (NCs) with different sizes. (e) Bandgap energies versus the edge length of FAPbls NCs**2 Copyright 2021, Small. (f) PL of
exfoliated monolayers for 2D layered BA,(MA),_1Pb,ls,,1 Ruddlesden—Popper perovskites of n = 1 to 4 homologues***> Copyright 2018, Nat.
Mater. (g) The bandgap of PEA,A; sPb, sBrg s (A = MA and Cs) perovskites with different numbers of layers*® Copyright 2018, Nat. Commun.

is the “structure-level” and “material-level”.**® The “structure-
level” low-dimensional aspect highlights the different
morphologies and typically refers to nanostructures like nano-
sheets, nanowires, and nanocrystals (NCs) (Fig. 6a). In contrast,
the “material-level” low-dimensional aspect of perovskite
focuses on the fundamental structure where the [BXg]'™ octa-
hedra are interspersed with large dielectric spacer molecules,
resulting in a bulk formation of atom-level 0D clusters, 1D
quantum wires, or 2D quantum wells (QWs) (Fig. 6b). The
crystalline perovskite nanostructures with reduced dimension-
ality show distinctive optoelectronic properties with quantum-
confined effect compared with their bulk counterparts
(Fig. 6¢)."** Due to this phenomenon, the bandgap energy of
low-dimensional perovskites is greater than that of their bulk
forms. This is accompanied by a variation in the geometric size
of perovskite nanostructures, which further alters the bandgap.
As depicted in Fig. 6d, the photoluminescence emission wave-
lengths were systematically adjusted through the gradual
decrease in the size of FAPbI; NCs."*> Consequently, the calcu-
lated bandgap energy rose from 1.5 eV in bulk material to more
than 1.7 eV for perovskite NCs with an edge length of approxi-
mately 8 nm (Fig. 6e). In addition to the hybrid perovskite NCs,
inorganic perovskite NCs and quantum dots (QDs) also exhibit
bandgap energies dependent on size or diameter, such as
CsPbl; and CsPbBr;.****** This size effect can also be antici-
pated in 1D perovskite nanowires (NWs), where the diameter
determines the bandgap energy and emission wavelength
independent of the length."** Furthermore, in 2D perovskites,
the octahedral layers are situated between the organic spacers.
These organic compounds provide extra functionality, such as

38762 | J Mater. Chem. A, 2025, 13, 38753-38789

a tunable quantum well structure that can be modified by
varying the length and type of the organic chain. Fig. 6f presents
the photoluminescence spectra of 2D BA,(MA), 1Pb,I3,:q
perovskites, which depend on the number of layers, demon-
strating a significant wavelength tuning range from approxi-
mately 520 nm to 650 nm (~130 nm difference, corresponding
to a shift of about ~0.47 €V)."** A comparable layer-dependent
pattern was observed in 2D perovskites composed of three
cations that include both organic (PEA, MA) and inorganic (Cs)
components (Fig. 6g), revealing a consistent decrease in
bandgap energy as the number of layers increases, with an
energy difference of up to ~0.6 eV between single-unit-cell and
five-unit-cell crystals.'*®

2.3. Preparation of MHPs and MHP-based batteries and
supercapacitors

2.3.1 Preparation of MHPs. Preparation methods of MHPs,
alongside the chemical composition, are one of the key factors
influencing the physicochemical properties of the title mate-
rials. To date, numerous techniques for obtaining MHPs in the
form of bulk materials,’®” nanocrystalline,*"***** single-crystal
materials,’ and thin film*'® have been reported. These
processes have been applied, and they can be categorized as
occurring in liquid, gas, and solid phases. Selected methods for
the preparation of perovskite materials are presented in Fig. 7.
Solution-based synthesis of bulk or single-crystal MHPs
remains one of the most widely employed methods for
preparing perovskite materials (Fig. 7a, ¢ and d); however, it is
constrained by the limited availability of suitable solvents. In
most cases, highly ionic perovskite precursors are dissolved in

This journal is © The Royal Society of Chemistry 2025
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toxic solvents such as dimethylformamide (DMF), often in
combination with an antisolvent to promote crystallization.
Other solvents capable of dissolving perovskite precursors,
including N,N-dimethylacetamide and N-methyl-2-pyrrolidone,
are also recognized as toxic.® Although the less hazardous
dimethyl sulfoxide (DMSO) can effectively dissolve metal
halides. However, due to its high boiling point, DMSO is diffi-
cult to dispose of and poses challenges for large-scale
processing.™*

Furthermore, the solution-based approaches for the prep-
aration of MHPs may be considered as relatively versatile, they

This journal is © The Royal Society of Chemistry 2025

are also limited by substrate solubility and long-term stability.
In 2015, the Lewinski group made a groundbreaking discovery,
describing a new pathway for the production of perovskite
materials through a mechanochemical process (Fig. 7b),
involving solvent-free grinding of substrate powders in a ball
mill.*** This solvent-free synthetic approach is very attractive to
curtail the chemical waste generation and simplify the prepa-
ration process. The solid-state mechanochemical preparation
of MHPs enables the production of high-purity material in
a short time and with low energy input, facilitating the use of
precursors that are difficult to dissolve, such as CsCI'** or
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AgCL.** Hence, the mechanochemical synthesis offers a highly
flexible platform for doping engineering at different atomic
sites.”” Subsequently, the MHPs derived from mechano-
chemical synthesis were successfully used for the fabrication
of PSC, which contributed to an approximately 10% relative
improvement in cell efficiency and operational characteristics
compared to devices based on analogous solution-derived
perovskite materials, and resolved the issue of the long-term
storage of perovskite materials.***'** Later on, the solution of
PSC properties was attributed to the lower density of trap states
within materials, due to the higher quality of MHP grains on
the surface."” Mechanochemical synthesis offers several
advantages, including precise control over stoichiometry,
improved reproducibility, enhanced stability, and higher
phase purity in the resulting mechano-perovskite materials. It
also enables more feasible large-scale production.™® Although
this method is fast, efficient, and environmentally friendly,
relying on energy generated through grinding, shearing, and
compression, the underlying mechanisms remain relatively
poorly understood.

In the process of preparing perovskite thin films for various
devices, deposition,'****”**® and patterning™ are often key steps.
Regarding wet methods, a further complication arises from the
solvent-mediated growth of polycrystalline perovskite thin
films, which can be carried out through either a one-step or two-
step deposition approach. The one-step coating usually involves
pre-mixed perovskite solution (e.g., PbI, and MAI) followed by
anti-solvent dripping, and the two-step sequential procedure,**®
one of the main methods used for depositing perovskite films
for various applications,’® which involves deposition of an
inorganic layer before converting the film to perovskite by
reacting with organic solution (Fig. 7e and f, respectively). By
altering synthesis conditions, different nucleation and growth
behaviors occur, which in turn directly shape the microscopic
morphology of perovskite films, then change their optical and
electrical properties.”®* These dominant deposition techniques
typically use DMF-based precursor solutions, which remain the
dominant deposition technique, yet they face the same envi-
ronmental and health concerns associated with
solvents.”™ DMSO, while a safer alternative, is highly hygro-
scopic, often resulting in poor film crystallinity and the
formation of numerous point defects."*' Moreover, PSCs fabri-
cated using DMSO-mediated synthesis generally exhibit lower
efficiencies than those produced with DMF.**%*%'** Conse-
quently, solvent engineering to achieve high-quality perovskite
films remains a major challenge." To overcome the cost and
scalability issues associated with the low-humidity require-
ments for device fabrication, studies are now investigating high-
humidity conditions. The goal is to better understand perov-
skite crystal growth and to develop more robust, stable perov-
skite films."”

The solvent-mediated growth of polycrystalline MHP thin
films suffers from critical limitations, including sensitivity to
processing conditions, poor control over solvent-mediated
crystallization, low reproducibility between laboratories, and
restrictions on film size. To address these drawbacks, vacuum
evaporation has emerged as a rapidly advancing solvent-free

toxic
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fabrication route (Fig. 7g).'***” This method enables uniform
deposition of precursors and precise control over film thick-
ness. Nevertheless, the power conversion efficiencies of
vacuum-evaporated PSCs still lag behind those of high-quality
solution-processed  devices.”®'®  Recently, a  hybrid
evaporation-solution approach has been proposed as a prom-
ising alternative (Fig. 7h). This technique involves evaporating
metal halide precursors onto a substrate, followed by spin-
coating an organic halide precursor solution to complete film
formation.™”'**®* This hybrid strategy combines the advan-
tages of both techniques, offering improved film quality and
greater processing flexibility, and may represent a viable route
toward scalable, high-performance perovskite device
fabrication.

2.3.2 Preparation of MHP-based batteries and super-
capacitors. An in-depth understanding of the crystal structure
and elemental composition of MHPs is crucial to explain the
unique electrochemical behaviours observed in various MHP-
based LIBs.** This disparity underscores the importance of
examining the influence of chemical composition on Li-ion
storage properties. It is also important to note that both MHP-
based batteries and SCs are fabricated by ISO standards. Typi-
cally, the electrode fabrication involves preparing a slurry
composed of the active material (MHPs), a binder (poly-
vinylidene fluoride, PVDF), and a conductive additive (e.g., hard
carbon) in a particular weight ratio (most commonly 80:10:
10). This mixture is dissolved usually in N-methyl-2-pyrrolidone
(NMP) and cast to form the anode. While this method is widely
regarded as the “gold standard” in LIB manufacturing, initially
developed for chemically robust materials such as oxides, it
poses challenges when applied to MHPs. The soft crystal lattice
of MHPs is prone to dissolution in polar organic solvents, which
can compromise the phase integrity during processing. The
MHP solubility is also intentionally used in solution-based
methods for producing perovskite solar cells, where solvent
mixtures such as DMF : DMSO enable the formation of uniform
thin films. Although this property does not preclude the use of
MHPs in LIBs, it necessitates careful control over processing
conditions to preserve phase purity. As a result, alternative
fabrication routes such as solid-state approaches, including
mechanochemical synthesis, are being explored to address
these challenges and enhance the stability of MHP-based elec-
trodes during device fabrication.'®'%

One of the biggest challenges in current perovskite pro-
cessing is the need for extremely dry and inert conditions. This
is because MHPs are quite sensitive to moisture and oxygen.
The fact that we can't carry out solid-state processing in regular
environments really drives up both the initial and ongoing
costs, especially when it comes to large-scale production of
active materials. The use of gloveboxes, dry rooms, and
specialized equipment for controlled atmospheres adds
significantly to these expenses. This financial hurdle high-
lights the importance of future research not just in enhancing
material stability, but also in creating moisture-tolerant MHP
compositions and scalable fabrication methods that can work
in normal conditions. At the moment, there aren't any thor-
ough studies looking into the socio-economic factors of using
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta04267d

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 16 septiembre 2025. Downloaded on 02/02/2026 10:35:53.

(cc)

Review

MHPs in LIBs. This is mainly because the use of MHPs in LIBs
is still in its early stages of development, which is making it
tough to accurately assess material and processing costs.
However, similar to the early forecasts for perovskite solar
cells, there's hope that MHP-based LIBs could become cost-
effective as technology advances. This optimism stems from
the relatively low cost of precursors, like lead salts, and the
possibility of low-temperature processing.'**'*> While MHPs
aren't quite ready to be used as commercial anode materials
yet, their unique characteristics, such as mixed ionic-elec-
tronic conductivity, the ability to tune their composition, and
high dielectric constants, point to a promising future in energy
storage technologies.

(2)

; (b)

View Article Online
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2.4. Mechanism of lithium interaction with MHPs

The LIB utilizing MHPs (MAPbBr; and MAPbDI;) as an anode was
first reported in 2015 by Xia et al.** The authors described good
electrochemical performance for MAPbBr; with a first discharge
capacity of 331.8 mAh g at a current density of 200 mA g,
which is six times of the maximum theoretical capacity (55.96
mAh g™ ") if it is assumed that one Li-ion could intercalate per
formula unit. This significant difference in electrochemical
performance suggests a conversion reaction or another effect
that is at play, since six Li-ions per formula unit would other-
wise be required.'*® Despite these impressive performance
metrics, the key mechanism by which Li-ion is intercalated in
MHPs remains unknown. Initially, two mechanisms were
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Schematic illustration of conversion and intercalation mechanism occurring in organic—inorganic MHPs¢¢ Copyright 2017, ACS Energy Lett. (d)
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proposed for Li uptake in perovskites, which are indicated
below:

(1) Intercalation mechanism: Vicente et al.'®” suggested that
there is topotactic Li" insertion into perovskites without severe
structural alterations, as shown in Fig. 8a. The XPS analysis
indicated that no Li-Pb alloying reactions occur (Fig. 8b).
However, it was unclear which species are reduced because of Li
intercalation, given that the Pb and Br electronic structures
remain mostly unchanged.

(2) Conversion mechanism: in the same year, using electro-
chemical and powder X-ray diffraction techniques, combined
with DFT, Dawson et al., proposed that both intercalation and
conversion reaction occurs during the charge/discharge cycle.
The authors indicated that for all three hybrid perovskites,
MAPDX; (X = Cl, Br, I), the energy for conversion reactions is
more favorable than the intercalation reactions. Some main
features of their results are indicated below."'*

(a) There are two possible sites for Li-ion insertion in
MAPDbX; (X = I/Br/Cl), octahedral and tetrahedral. Also, the site
preference depends on both material and Li-ion concentration.

(b) At low Li-ion concentrations, insertion into MAPbI;
becomes more favorable because it is easier to insert Li into
larger MAPDI;, causing less distortion in Pbls octahedra.

(c) Upon full Li intercalation (x = 1.0), the PbX, octahedra
displays structural distortion in all three materials, with
MAPDbBr; and MAPDCI; exhibiting the greatest structural
distortion. This may indicate the presence of conversion (to
lithium halides (LiX) and Pb metal) or decomposition reactions
upon full Li-ion interaction.

(d) The Li-ion conversion process is more energetically
favorable than the Li-ion intercalation.

In 2019, Vicente et al.'*® conducted another study to under-
stand the Li uptake mechanism in MAPbBr; using operando-
XRD analysis in conjunction with galvanostatic lithiation
(discharge) and delithiation (charge) steps (Fig. 8c and d). The
authors identified three reaction stages (lithiated phase,
conversion, and alloying) associated with varying Li-ion molar
content. However, the mechanism of phase transition during
the subsequent cycles was not established. For all-inorganic
halide perovskites, ex situ XRD patterns of the CsPbCl; elec-
trode indicated that the preferred mechanism for Li-ion storage
in the initial discharge cycle is through conversion reactions
rather than Li-ion intercalation.*® As a result, the disputed and
vague findings from the ex situ characterizations obscure the
understanding of the structural changes of halide perovskites
throughout the lithiation and delithiation process. Recently, X.-
H. Wu et al** utilized in situ X-ray diffraction (XRD) and
electrochemical impedance spectroscopy (EIS), along with ex
situ characterizations, to explore the intricate mechanisms of
lithium storage and release in CsPbBrj, including the phase
transition that occurs during the first three cycles. The findings
indicate that at full discharge, CsPbBr; breaks down into CsBr,
LiBr, Pb, and Li,,Pbs phases via intercalation-conversion-
alloying reactions, followed by the regeneration of CsPbBrj
during the charging process (Fig. 8e).

However, several studies have reported different Li-ion
transport mechanisms and SEI formation (shown in Table 2);

This journal is © The Royal Society of Chemistry 2025
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the precise mechanistic pathways are still a bit of a mystery in
this field. This uncertainty largely stems from the intricate
structural changes that MHPs undergo during cycling, the
diverse range of perovskite compositions (such as lead-based,
tin-based, and double perovskites), and the absence of
systematic in situ characterization under realistic battery
conditions. Therefore, this field of research requires further
investigation.

3. MHPs in LIBs

Due to the limited theoretical capacity, the risk of short circuits
from dendrite formation, and the inadequate ability to sustain
continuous high current discharge, currently available graphite
anode materials present significant challenges. Consequently,
there is a growing need for alternative anode materials that offer
higher theoretical capacities, improved cycle stability, and
greater cost efficiency.’”®"* In this context, MHPs have recently
gained attention as potential anode materials for LIBs. Several
researchers have investigated different MHP compositions to
develop high-performance anodes capable of replacing
conventional graphite-based systems. Beyond their application
as anode materials, MHPs have also been employed as ASEI
layers on Li-metal anodes (LMAs) to mitigate detrimental side
reactions with liquid electrolytes. This section aims to provide
a comprehensive overview of the application of various MHPs in
LIBs, focusing on their roles as both active anode materials and
protective interfacial layers.

3.1. MHP-based anodes in LIBs

3.1.1. 3D MHP-based anodes. As mentioned earlier, the
first use of 3D MHPs as anode materials was proposed by Xia
et al.** In 2015, where hydrothermally synthesized MAPbBr; and
MAPbDI; microcrystals displayed a first discharge capacity of
nearly 330 mAh g* and 50 mAh g~ ' at 200 mA g ' current
density (Fig. 9a). Moreover, the cycle stability of MAPbBr; shows
prominent improvement as compared to MAPbI; (Fig. 9b).
While the specific reasons for the enhanced performance of
MAPDBr; based batteries remain unclear, this study suggests
that halide perovskites hold promising potential for lithium
storage applications. Several years later, research also indicates
that the charge/discharge capacity can be enhanced when I is
replaced with Br (MAPbBr3), as illustrated in Fig. 9c. However,
an incomplete substitution of Br~ (MAPDbIBr,) leads to
a decrease in charge/discharge capacity, as the lattice parameter
shifts from tetragonal MAPDI; to cubic MAPbBr;. This suggests
that perovskites with varying halogens exhibit different specific
capacities, primarily due to two factors: (1) the influence of
halogens on the crystal structures, as we covered in part 3.1, and
(2) the competition between the lower atomic mass of Br~ and
the larger lattice parameter of I™. The effect of crystal
morphology on the electrochemical performance of MAPbBr;
was investigated by Q. Wang et al.'’® In the study, they compared
five different microcrystal sizes (~2.9 mm, ~2.4 mm, ~1.9 mm,
~1.5 mm, and ~1.2 mm) and concluded that 1.2 mm-sized
MAPDbBr; composite electrodes exhibit unexpectedly high
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Fig. 9 Electrochemical properties of the LIBs based of MAPbBr; and MAPbIs: (a) charge/discharge curves, (b) cycle stability** Copyright 2015,
Chem. Commun. (c) Charge/discharge curves of MAPbls, MAPbIBr,, and MAPbBr3 *¢° Copyright 2018, Inorg. Chem. (d) The cycling performance
of CPB/o-CNT electrode at 0.1 A g~* divided into three regions** Copyright 2025, Energy Storage Mater. (e) SEM image of cubic CsPbCls.
CsPbClz—graphite-based dual-ion batteries (f) galvanostatic CD curves at various current densities and (g) discharge capacity retention over 40
CD cycles at a current rate of 100 mA g~ Copyright 2020, Phys. Rev. Appl.*s

cycling stability for more than 1000 cycles when tested as LIB
anodes compared to other-sized samples due to high crystal
quality and improved electrical conductivity.

As compared to organometallic halide perovskites, all-
inorganic halide perovskites showed better stability, ultrahigh
photoluminescence quantum yield, etc. In this regard, Jiang
et al. proposed all inorganic CsPbBr; as an active material for
the LIB anode in 2017 with a first charging capacity of 94.8 mAh
g " and the cyclic life of 32 rounds at 60 uA cm™ 2.7 In another
report, the electrochemical performance and storage capacity
were further enhanced by incorporating carbon nanotubes
(CNTs), resulting in improved stability and rate capability due
to the pseudo-capacitive effect.'’” Moreover, X.-H. Wu et al.**
displays “negative fading” effect and a significant increase in
capacity in CsPbBr;@CNT based electrodes. This electrode
delivered a specific capacity of 630 mAh g~ " at 0.1 Ag ™" after 200

38768 | J Mater. Chem. A, 2025, 13, 38753-38789

cycles (Fig. 9d). In addition to bromide, cubic CsPbCl; (Fig. 9e)
has been developed as an anode for LIB and dual-ion batteries.
The findings indicate that the half-cell LIB exhibited specific
discharge capacities of 612.3, 508.7, 362.4, and 275.2 mAh g ' at
varying current densities of 50, 100, 200, and 250 mA g%,
respectively (Fig. 9f), along with an average coulombic efficiency
of 88%. Moreover, the combination of a 3D perovskite anode
with a graphitic cathode provided insights into dual-ion
batteries operating within a voltage range of 0-4.0 V, aver-
aging 2.53 V, as illustrated in Fig. 9g. The summary of the
performance of different MHPs used in LIBs is summarized in
Table 3.

3.1.2 Low-dimensional MHPs-based anodes. In contrast to
3D perovskites, lower-dimensional variants are favored for
improved lithium storage due to the greater space present in
their layered architecture. These low-dimensional perovskites

This journal is © The Royal Society of Chemistry 2025
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can enhance capacity and provide better reversibility than their
3D counterparts. The effect of dimensionality on electrochemical
properties was first investigated in 2017 by Tathavadekar et al.'”>
They discovered that lowering the dimensionality of perovskites
was effective in improving the lithium storage. They used 1D
CsHoI;NOPD, 2D (C4HoNHj3),Pbl,, and 3D MAPbI; perovskites
and revealed that the first discharge capacity for 1D and 2D
perovskites is nearly 4 times higher than the 3D perovskite,
making them potential active materials for anodes in LIBs
(Fig. 10a). Similar results have been reported by Hong Kong
et al'® in 2022, they fabricated three different dimensional
perovskites as anodes in the Li-ion battery. Among the anodes,
the 1D C4H,(N,PbBrs-based one offers the best performance,
providing a stable capacity value of 598.0 mAh g™ " (Fig. 10b-d).
The reason for this is that 2D and 1D perovskites have a greater
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spacing between crystal planes than close-packed 3D structures,
which allows more Li-ions to intercalate. As a type of low-
dimensional material, RP perovskites possess a quasi-2D struc-
ture, which allows for the optimization of energy storage capacity
through the arrangement of layers. De Volder et al.*** examined
the electrochemical capacity and cyclic stability of a series of
(BA),(MA),,_1Pb,X3,+1 as anodes for LIBs by adjusting the n
values (Fig. 10e and f). It is evident from Fig. 10g that the sample
with n = 4 exhibited the best performance in terms of battery
capacity, while a noticeable decline in capacity was observed as
per units increased. And the spacer layers that facilitate ion
diffusion and provide structural constraint. Recently, Maity et al.
compared the electrochemical performance of 3D MHP
(CsMAPDIBr) and the 2D-3D hybrid MHP (CsMABPAPbIBr) as
shown in Fig. 10h."* They demonstrated that the mixed
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(a) Cyclic stability for 1-2-3 D hybrid perovskite at a current density of 100 mA g~

in the potential window of 2.5-0.01 V 72 Copyright

2017, J. Mater. Chem. A Galvanostatic charge—discharge profiles of first three cycles of (b—d) 1D, 2D and 3D perovskite at a current density of
100 mA g~! between 0.01 and 2.50 V #¢ Copyright 2022, J. Energy Chem. (e) Quasi 2D (BA)»(MA),_1M X341 (n = 1) perovskite structure with
individual layers of PbX, intercalated between two BA organic chains. (f) n = 2-layered perovskite structure. (g) Gravimetric charge—discharge
capacities of the bromide-based layered perovskite (BA)>(MA),_1Pb,Brs,.; from n = 1-n = 4 and the respective bulk MAPbBrs perovskite
(equivalent in structure to n = =) as a function of cycle number from cycle 11-100; the first 10 cycles are highlighted inset. Specific charge
capacities are shown shaded and specific discharge capacities block colour. A current density of 30 mA g™t and a potential window of 2.85-0.1 V
are used®®® Copyright 2021, Mater. Adv. (h) Schematic structure of 2D—3D hybrid PSK (CsMABPAPDbIBr), showing the interactions between Br(Pr)
NH.-HBr and the unit cell of the PSK (perovskite). (i) GCD plots acquired intermittently during cycling at 20 mA g™, (j) capacity/CE variation with
cycling* Copyright 2025, ACS Appl. Energy Mater.
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dimensionality furnishes more accessible sites for Li-ions
compared to the control 3D MHP (CsMAPDIBr), thereby
increasing both capacity and rate capability. Li-ion cells utilizing
the 2D-3D hybrid MHP-CNTs composite demonstrated an
outstanding discharge capacity of 221 mAh g ', an energy
density of 508 Wh kg ", and 84% of capacity retention after 100
cycles, marking a significant enhancement compared to 3D
MHP-CNTs (Fig. 10i and j). Due to the environmental issues
associated with Pb-based perovskites stemming from the recog-
nized toxicity of lead, it is crucial to establish stable lead-free
perovskite alternatives for LIBs. Research focused on lead-free
perovskite materials and their photoelectric applications has
shown that lead-free perovskites featuring intricate crystal
structures are capable of accommodating defects and interca-
lated ions, which could lead to effective Li-ion storage.'*"'*
Pandey et al.'® reported that the 2D (MA),CuBr, and 3D Cs,-
CuBr, possess a reversible capacity of ~480mAh g~ ' and 420
mAh g, respectively. In their study, it was observed that 2D
material capacity increased gradually with subsequent charge-
discharge cycles, achieving 630 mAh g~ at 140 cycles. The reason
for this observation stems from the slow percolation of electro-
Iyte into the electrode as well as the appearance of Li-ion inter-
calation sites in response to cycling. Similarly, Yang and co-
workers introduced lead-free all-inorganic double perovskite
Cs,NaBiClg **® and Cs,NaErClg ° as anode material for LIB. It was
revealed that Cs,NaBiCl¢-based battery properties are not bene-
ficial, especially poor battery cycle stability, which limits their
practical use. Nevertheless, Cs,NaErClg as a negative electrode
material showed high cycle stability, with a specific capacity of
120 mAh g~ " after 500 cycles at a current density of 300 mA g~*
with a Coulomb efficiency of nearly 100%. Recently, a new class
of low-dimensional lead-free Cs;Bi,Cly was synthesized by Jia
et al.'¥ The authors demonstrated that the initial discharge
specific capacity can be enhanced from 263.39 mAh g™ to 467
mAh g~' and stabilized to values from 89.32 mAh g™' to 125.3
mAh g~ after 100 cycles, with a coulombic efficiency of more
than 99%, and stabilized at 117.08 mAh g~ ' after 500 cycles.
Recently, Wu et al.*® presented a layered perovskite Liy(C,H;-
NOs5S),CuCl, (LTCC). The LTCC anode can achieve a remarkable
specific capacity of 861 mAh g~ " at 0.1 A g~ " after 100 cycles.
Moreover, it retains a high discharge capacity of 548 mAh g *
over 550 cycles at 1.0 A g, exhibiting outstanding cycling
stability among perovskite-type anode materials for LIBs.
However, compared to traditional 3D perovskites, there is
a limited number of studies on low-dimensional, lead-free, and
non-perovskite MHPs in LIBs. Nevertheless, emerging research
in this area highlights significant potential for future exploration
and development. The quantitative comparison of energy density
and cycle life of different MHPs in LIBs is given in Table 4.

3.2. MHPs as ASEI

The major issue with Li-metal batteries (LMBs) is the self-
derived unstable SEI, which possesses low Li* conductivity,
low mechanical modulus, and inhomogeneous composition,
which makes it difficult to achieve smooth and stable
deposition/stripping of Li

metal anode.” Due to an
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inhomogeneous SEI, a non-uniform Li deposition will result,
which facilitates the formation of Li dendrites. Li dendrites are
capable of piercing low mechanical modulus SEI, leading to the
formation of new SEIs derived from Li metal reactions with
electrolytes. During Li stripping, Li dendrites are likely to isolate
from the Li bulk and turn into “dead” Li, resulting in low
coulombic efficiency. After repeated cycling, the dendrites may
grow to several hundred microns and penetrate the separators,
causing short circuits and safety hazards." In this regard,
researchers are exploring various strategies for inhibiting
dendrite growth: (a) Li-alloy anodes,"® (b) solid-state electro-
lyte,"” (c) structured anodes,* (d) ASEL* (e) electrolyte addi-
tives,"® and (f) interface modifications.>** Among them, one of
the most effective approaches to inhibit dendrite problems has
been reported to be regulating Li-ion distribution via the
application of an artificial protective layer on the electrode
surface, which reduces current density and strengthens the
electrode/electrolyte interface stability.”** So far, a variety of
protective materials, including inorganics, polymers, and
hybrids, have been applied to LMAs through various deposition
methods, such as solid gas reactions, atomic layer deposition,
or wet chemical emulsion coating.>*>>**

Choosing the materials for ASEI coating depends on the
preparation conditions of thin films on LMAs, as well as the
properties of the materials, such as stability against electrolytes,
electron insulation, high Li-ion conduction, and flexibility
confirm the changes in the volume of the lithium anode.*”
Currently used materials for SEI are capable of effectively
separating LMAs from electrolytes and preventing spontaneous
side reactions. However, structural stability and high ion
conductivity are incompatible, which makes Li plating/
stripping tough, further restricting LMB capacity and long-
term performance. It is therefore highly desirable to develop
ASEI materials that have good structural stability and Li-ion
conductivity.”*®

Due to its adjustable 3D framework structure and bandgap,
MHPs can achieve Li-ion conduction and electronic insulation,
which is expected to become a promising candidate for con-
structing a high-performance SEI layer. In 2020, an interfacial
layer composed of solution-processed MASnCl; and MAPbCI;
perovskites was developed by Yin et al* as a new type of
interfacial layer for the LMA through a solid-state transfer
process. They demonstrated through galvanostatic Li plating
and stripping that MSC-Li cell can be cycled for more than
800 h, much longer than the 100 h cycling life of the cell using
bare Li (Fig. 11a). They also evaluated the electrochemical
performance of Li TisO;, (LTO)/perovskite coated Li metal
batteries at a high rate of 5C to demonstrate the efficiency of
perovskite protection in LMBs. It was shown that the bare Li
metal anodes exhibit a drastic capacity decay, with a capacity of
28.3 mAh g~ at the 400th cycle. In contrast, the cells using
MASNCl; and MAPbCIl; coated LMA show stable cycling for
more than 500 cycles with a low capacity decay rate of 0.07% per
cycle (Fig. 11b). It was concluded that the metal chloride
perovskite protection layer can ensure stable cycling of LMBs
under strict conditions. Furthermore, based on DFT calcula-
tions, the researchers proposed a Li-ion transport gradient layer

This journal is © The Royal Society of Chemistry 2025
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Fig. 11 (a) Galvanostatic voltage curves (top) of bare Li and MSC-Li tested with a current density of 1 mA cm~2 for 1 mAh cm™
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MPC-Li as anode. (c) Schematic illustration of the mechanism of Li-ions' intercalation into perovskite lattice, the formation of perovskite-alloy
gradient Li-ion conductor, and the deposition process*” Copyright 2020, Nat. Commun. (d) Voltage profiles of pristine Li and Li: CsPbls
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Voltage—time curves of Li/Li and Li@Li-CsPbCls/Li@Li—CsPbCls symmetric cells with an areal capacity of 1 mAh cm™2 at a current density of 1 mA
cm™2. (f) Long-term cycling stabilities of Li/LiFePO, cells with bare Li and Li@ Li@Li-CsPbCls anodes at a current density of 3C* Copyright 2024,
Energy Adv. (g) Schematic illustration of Li plating on KNiFs perovskite SEI through octahedral structure and on bare Li?*® Copyright 2022,

Chem. Eng. J.

model that illustrated the shielding mechanism for dense
deposition of Li-metal using perovskite thin films, shown in
Fig. 11c.

Step 1: only Li-ions absorption within the perovskite frame-
work, leaving solvent molecules outside the perovskite
framework.

Step 2: intercalation and migration of Li-ions into the highly
symmetric perovskite framework.

Step 3: electrochemical conversion reaction at the interface
of the perovskite layer and the substrate.

Step 4: formation of both the insulating LiCl layer and the Li-
M alloy layer. A Li-M layer will facilitate homogeneous Li
deposition. Nevertheless, the generated LiCl can insulate elec-
trons, preventing the perovskite from further conversion reac-
tions, ensuring that the perovskite remains stable in its top
state.

In the same year, Kaisar et al.**® fabricated 3-CsPbl; as an
electrochemical intercalation layer through an inexpensive and
facile spray-coating method that stabilizes Li electrodes for
LMBs. DFT calculations confirmed the Li-ion intercalation into
the 3-CsPbl; framework, forming Li:CsPbl;. Electrochemical
testing of a Li:CsPbl; symmetric cell revealed dendrite-free

This journal is © The Royal Society of Chemistry 2025

plating after 1000 h at a current density of 1 mA cm > and

discharge capacity of 1 mAh cm ™ (Fig. 11d). In this new and
simple method, derogatory dendrites are avoided, thereby
enabling the preparation of LMAs for practical application in
high-density LMBs. Recently, Liu et al. developed lithium-doped
CsPbCl; ASEIL They demonstrated that Li-CsPbCl; not only
successfully inhibits the formation of lithium dendrites but also
promotes the movement of Li-ions at the interface and
encourages the ultra-dense and even deposition of Li, creating
a beneficial setting for stable Li electroplating/stripping and
greatly enhancing the electrochemical performance of LMBs
(Fig. 11e and f). However, hybrid perovskites such as MAPbCl;
and MASnCl; are prone to decomposition when exposed to
photo-, thermal-, or moisture-stresses.>”**® Furthermore, the
cubic phase of CsPbl; is thermodynamically unstable at room
temperature, which may result in a blocking of Li-ion transfer
channels.”” In addition to that, lead-based perovskites are
highly toxic, which makes them unsuitable for LMBs. Therefore,
perovskite materials that are non-toxic and have a high mois-
ture- and thermal stability would be better suited to Li-metal
SEL In this regard, Y. Zhang et al.>** developed air-stable fluo-
ride perovskite (KNiF;), which is applied as an SEI layer to
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induce uniform Li-ion deposition for an air-stable and dendrite-
free LMA. In their study, they demonstrated that symmetric
cells protected by KNiF; SEI maintain high cycling stability over
a period of 3000 hours at a capacity of 4 mAh cm™ 2 When
coupled with commercial LiFePO, cathodes (LFP, 13.3 mg
cm %), LFP||Li-KNiF; batteries show promoted cycling stability
and rate capability, much better than the bare Li. Even though
MHPs are capable of improving cycling performance, rate
capability, and stability. Moreover, they also reveal the protec-
tion mechanism of the perovskite SEI through DFT calculation.
They demonstrated that Li-ion migrated along the octahedral
structure of the perovskite while maintaining the 3D cubic
framework without decomposition or phase transition

(Fig. 11g).

4. MHPs-based photo-induced LIBs

It is essential to integrate energy storage systems with photo-
voltaic technology to efficiently and widely utilize solar energy.
Conventional photo-rechargeable batteries are made up of
a photovoltaic cell and a storage battery, which are separate
systems linked by an external wire (Fig. 12a).® Nevertheless,
this type of system is known for its high expense, size, and
various other issues.”” To address this problem, integrated
photovoltaic rechargeable batteries were developed that, unlike

View Article Online
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non-integrated systems, merge solar energy collection and
storage into one device, potentially resulting in more efficient
and streamlined solutions.*'* These integrated systems can be
implemented in two configurations:**

(a) Three-electrode system: this type of system includes
a photoelectrode for light conversion, a counter electrode for
storing energy, and a common electrode (as a positive or
negative electrode) between the photovoltaic cell and the battery
(Fig. 12b).

(b) Two-electrode system: the positive electrode has an
integrated function, ie., both photoconversion and energy
storage (Fig. 12c¢).

In this section, we will be discussing the configuration and
working principle of photo-induced batteries, followed by the
role of MHPs in photo-induced LIBs.

4.1. Working principle

The fundamental operating principle of a photo-battery
remains largely consistent, regardless of the type or configura-
tion of the device. When illuminated, the photo-active electrode
produces electron-hole pairs as a result of the photovoltaic
effect. The electrons and holes generated play a role in the
reactions that take place during the charge and discharge cycle.
During the charging process (Fig. 12b), a link is formed between
the external circuit and both the anode and photoelectrode.

e 2
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Fig. 12 Working principle of the photo-assisted energy storage device

(a) conventional three electrode system?' reproduced with permission

2024, Adv. Funct. Mater., (b and c) the charging and discharging process of a two-electrode device. (d and e) The charging and discharging
process of a three-electrode device®! reproduced with permission 2024, Nano Energy.
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When the photoelectrode material is exposed to light, it gets
excited, generating high-energy photoelectrons that jump from
the VB of the semiconductor to the CB. Concurrently, positive
holes are created in the VB of the material. As these holes
migrate to the outer layer of the active material on the
photoelectrode/cathode side, an oxidation reaction takes place.
In this reaction, the reduction product from the photoelectrode
(Cgr) transforms into the oxidation product (Cp), as demon-
strated by the following equation:

Cr+h" > C, (3)

At the same time, the photoelectrons originating from the VB
of the semiconductor will move through the external circuit
toward the anode and interact with the migrating metal ions
M"™ from the cathode side. This interaction leads to a reduction
reaction that restores the metal M, as depicted in the following
equation:

M +e > M (4)

As a result, the battery device converts electrical energy into
chemical energy, which is subsequently stored.

During the discharge process (Fig. 12c), a link is formed
between the photoelectrode and the anode to enable integration
with the external load. Photoelectrons that are excited on the
surface of the semiconductor engage in a reduction reaction
with the charging product (Co) from the photoelectrode,
resulting in the production of the discharge product (Cg), as
indicated in eqn (5). At the same time, the photo-holes interact
with the electrons released from the oxidation reaction taking
place on the anode side, leading to their recombination, as
illustrated by the eqn (6):

Co +e — CR (5)
M — M"™ +e” (6)

In this procedure, chemical energy is converted into elec-
trical energy and discharged to supply power to the external
load. In more intricate three-electrode systems, the photo-
assisted charging mode frequently entails a multi-step reac-
tion occurring at the shared electrode side. This reaction
involves additional holes to oxidize the shuttle mediator, as
shown in eqn (7)

Mred + h+ MO (7)

Then M will oxidize the reduction product (Cg) as shown in
eqn (8)

MO + CR - Co + Mred (8)

Solar energy is stored as chemical energy in the form of C, at
the photoelectrode and the M™? at the counter electrode.
During the discharge process (Fig. 12e), the M™? is oxidized,
and electrons are transferred from the external circuit to the
shared electrode. Simultaneously, the C, reduced back to its

This journal is © The Royal Society of Chemistry 2025
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reduced state. This completed the charge-discharge cycle of the
integrated three-electrode photo-rechargeable battery.

4.2. Role of MHPs in photo-induced batteries

Perovskite halides have become significant in the domains of
photovoltaics and energy storage, and they are now being
explored as photoactive materials for photo-batteries. This is
due to the same characteristics that make them suitable for
photovoltaic technologies and batteries: an adjustable bandgap,
high mobility of charge carriers, a low rate of non-radiative
recombination, an extensive absorption spectrum, long charge
diffusion lengths, and minor effective masses of carriers, as
previously mentioned. Connecting a LIB directly to a solar cell
allows for self-charging capabilities. Solar cells are capable of
converting solar energy into electrical energy, which can then be
stored in LIBs for later use. In a study by Dai et al.,** a PSC was
directly linked to four individual MAPbI; packs with a LIB,
achieving a notable overall conversion and storage efficiency of
7.80% along with outstanding cycling stability. Nevertheless,
external photo-rechargeable batteries have several drawbacks,
including the tendency to incur ohmic loss during energy
transfer between solar cells and storage batteries, as well as
their bulky size and high expense, which do not align with the
evolving needs of portable electronic devices. As a result, inte-
grated photo-rechargeable batteries have increasingly emerged
as a focal point for research. In this regard, Ahmad et al.*"
explored the application of 2D lead-based perovskites, specifi-
cally (PEA),Pbl, (PEA = C¢HoC,H,NH;) (Fig. 13a and b), as
a photo-active electrode material for LIBs. The battery utilizing
the iodide perovskite achieved a specific capacity of up to 100
mAh g~ at a current rate of 30 mA g~ . Incorporating reduced
graphene oxide (rGO) as a conductive additive enabled it to
demonstrate photo-charging when illuminated, without
needing an external load, across a voltage range of 1.4-3.0 V.
This was then succeeded by a 25-hour discharge period with
a 21.5 kQ resistor acting as the load, thus allowing the device to
operate as a genuine photo-battery. When the voltage range was
lowered to below 1.4 V, the perovskite experienced irreversible
degradation due to the reduction of Pb>" to Pb°. Additionally,
the battery provided a higher voltage output when discharged in
light compared to darkness. With a 21.5 kQ resistor as the load,
Ahmad et al. recorded a photo-conversion efficiency of 0.034%.
Additionally, He et al**® proposed a hypothesis involving
polarons to clarify the process of photo-rechargeability in the
(PEA),PbI, perovskite system. Importantly, the movement of the
Li-ion is indicated to occur following the formation of a hole
polaron, which is believed to reflect the photo-charging activity
that triggers the one-way flow of Li-ions on the surface of the
electrode. This illustrates that MHPs are viable electrode
materials and can function as the active layer for photo-
charging in photo-rechargeable perovskite batteries. Due to
toxicity issues related to Pb-based MHPs, lead-free MHPS also
gained a lot of attention in photo-induced batteries. Tewari
et al.>** created a photo-rechargeable LIB utilizing a lead-free,
fully inorganic perovskite material known as Cs;Bi,I, for the
photo-electrode (Fig. 13c and d). In their experiments, the
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battery initially exhibited a discharge capacity of 413 mAh g "

a current of 50 mA g~ '. Nevertheless, after several cycles, the
performance deteriorated due to the transformation of bismuth
in the perovskite from Bi** to metallic Bi®, which influenced the
material's structure and functionality. To investigate its photo-
charging characteristics, they fabricated the photo-electrode on
either FTO-coated glass or porous carbon felt and assessed the
battery under light conditions. They discovered that the perov-
skite was the key component facilitating the light-induced
charging process. Upon exposure to light with energy
surpassing the bandgap of the perovskite, electrons were
excited and traversed a layer of PCBM to reach the current
collector, resulting in an accumulation of positive charges
(holes) within the perovskite. These holes caused Li-ions to be
repelled back into the electrolyte, aiding in the Dbattery's
charging process.”'>*'> However, further investigation is needed
to understand the fate of these photo-generated electrons fully
(Table 5).

As noted by Paolella et al., during electrical charging, these
electrons could flow through the external circuit to the opposite
electrode, where they reduce Li-ions to Li-metal. In scenarios
lacking an external circuit, the electrons might interact with the
battery's electrolyte (ethylene carbonate/dimethyl carbonate),
generating reactive oxygen species that ultimately contribute to
the formation of the SEI on Li-metal.?*® Furthermore, Tewari
and Shivarudraiah®* discharged the battery to 0.9 V and then

38776 | J Mater. Chem. A, 2025, 13, 38753-38789

photo-charged it up to approximately 2.5 V under light without
any external load. They measured a photo-conversion efficiency
of 0.43% during the initial cycle, but this efficiency declined to
about 0.1% in subsequent cycles. Despite the existing limita-
tions, their findings indicate that Cs;Bi,ls perovskites have
significant potential for photo-rechargeable batteries, and
future enhancements in efficiency may stem from a better
comprehension of how light-driven charge separation and
transport function in these systems. Yin and colleagues have
recently developed a photo-rechargeable LIB utilizing
a bismuth-based hybrid perovskite known as (MA);Bi,lo,
commonly called MBI, as the light-sensitive electrode.**” Their
research demonstrated that this material enhances charge
separation when exposed to light, facilitating better Li-ion
mobility in the battery and improving its overall performance.
Investigations using ex situ XRD indicated that Li-ion storage
within MBI occurs through a combination of two mechanisms:
the insertion of Li-ion into the structure and a chemical
conversion reaction. When the battery was evaluated under
light conditions, its discharge capacity increased from 236 mAh
¢~ " in darkness to 282.4 mAh g™, marking a 19.7% enhance-
ment at a current rate of 50 mA g~ (Fig. 13e). This improvement
was attributed to the light-generated electrons and holes in
MBI, which accelerated charge movement and the flow of Li-
ions. This not only increased the battery's capacity but also
lowered the charge flow resistance. From the perspective of

This journal is © The Royal Society of Chemistry 2025
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energy efficiency, the battery exhibited better performance in
light conditions. It required 0.1 V less for charging, leading to
a 6% reduction in energy input, and delivered 0.1 V more during
discharge, resulting in an 11.8% increase in energy output
(Fig. 13f). In summary, this research indicates that MBI-based
batteries could pave the way for the next generation of energy
storage solutions devices that are efficient, environmentally
friendly, and well-suited for portable electronics powered by
light.

5. Perovskites in supercapacitors and
photo-induced supercapacitors

The integration of perovskite materials into SCs has garnered
considerable attention, given the ongoing efforts to improve
energy density, efficiency, and charge storage for bridging the
performance differences between standard capacitors and
batteries, since they deliver high power density with quick
charge-discharge rates. Nonetheless, traditional SCs typically
struggle with energy density and stability, while different
structures of perovskite materials can enhance their electro-
chemical performance. In SCs, the spotlight is on identifying
the mechanisms by which perovskites affect charge storage and
transfer processes and investigating their operational efficiency
and cyclic stability.”””**® Studies demonstrate that ionic and
electronic conductivity are essential for supercapacitor perfor-
mance. In addition, the properties of MHP-based materials can
be enhanced by simply making modifications in the crystal
structure. Outcomes suggest that perovskite-based super-
capacitors significantly increased specific capacitance, reaching
over 200 F g, compared to the 60-120 F g™ seen in typical
carbon-based materials, which stems from the high surface area
and superior ionic conductivity of perovskite materials, which
allow for more effective ion transport and charge storage.?*® The
perovskite SCs performed well over time, retaining over 90% of
their initial capacitance after 5.000 charge-discharge cycles.”*®
NCs combined with reduced graphene oxide (rGO) have deliv-
ered a specific capacitance 178 times better than rGO electrodes
on their own.”* Furthermore, cycle life tests lasting over 10.000
cycles with minimal capacity fade strengthen the case for
perovskite-based SCs in practical applications, which closely
aligns with the stability problems in other advanced mate-
rials.”®*> In general, the room temperature laser-triggered tech-
nique selected for the conjugation of the two components
presents a distinct avenue for the cost-effective and large-scale
synthesis of precisely tailored perovskite-2D conjugates.>**
However, limitations of perovskites' usage in SCs are due to
their inherent instability and sensitivity to moisture and heat
changes. These contentious issues must be systematically
addressed to hint at a factual potential for commercial appli-
cations in high-performance energy storage. Furthermore, these
devices maintain robust capacitance retention, generally above
80% following numerous cycles, suggesting good operational
stability. The data suggest that perovskite materials integrated
with carbon composites in hybrid electrode designs can create
synergistic effects, improving both electron and ion transport,
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and thus, performance, and reinforcing the potential benefits of
perovskite-based approaches. This can be attributed to the
synergy of the EDLC and pseudo capacitance originating from
the different components. In particular, they showed a specific
capacitance value of 106 F g~ " with excellent stability, remain-
ing 97.2% after 100 continuous intercalation/deintercalation
scans. This route allows one to create NCs with various
morphologies and chemical phases, along with multiple 2D
materials, to discover the optimal combinations.**° Different 2D
materials with large electrolyte contact areas and numerous
energy storage active sites may serve as alternatives to the low
capacitance NH;-functionalized rGO for enhancing the capaci-
tance of the conjugated systems.”' For example, layered
perovskites are associated with better ion transport dynamics,
giving them distinct advantages over materials like manganese
oxides and carbon-based electrodes.***

When these results focus on nanostructured materials, the
performance improvement appears noticeably. These conclu-
sions are also consistent with studies that highlight how scal-
able synthesis methods have been key in reaching these
performance levels with perovskites. Nevertheless, it is also
important to note the challenges, particularly concerning the
environmental impact and the operational stability of perov-
skite materials over longer periods. The fine-tuning of the
anionic species in the perovskite framework has noticeably

View Article Online
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improved ionic conductivity, which helps charge move better
within the SC.*** For example, changing the lead content in
lead-based perovskites leads to different electrochemical
behaviors and stabilities.® Similarly, the incorporation of
dopants can effectively tweak the bandgap of perovskite mate-
rials, increasing their performance in SC applications. More-
looking at various perovskite formulations,
dimensional perovskites tend to have better capacitance and
energy density than their 3D counterparts.”®' The insights could
lead to new perovskite composites that further enhance their
electrochemical properties, keeping them relevant in the area of
energy storage.”** Sol-gel and hydrothermal methods, for
example, give different structures that boost ion conductivity
and surface area-both vital for storing charge effectively in
SCs.”®* The synthesis method of perovskites may lead to the
conclusion that using hydrothermal methods can deliver better
electrical performance, with more capacitance and better
stability.*”® Adding other elements and materials during
production is also essential for the construction of perovskites
for supercapacitors.**® For example, perovskites mixed with
conducting polymers can work together to improve both elec-
trical conductivity and mechanical stability. This helps to solve
some significant problems when using perovskites in energy
storage. Perovskite materials, especially the organic-inorganic
type like MAPDI;, are showing power conversion and absorbing
light.*** In general, light intensity and wavelength play a crucial
role in getting the most out of perovskites. If light intensity
changes, it can significantly enhance charge separation and the
speed at which electrons move. Some perovskite structures,
such as thin microbelts, convert light into energy, particularly
when exposed to visible light. SC energy storage largely depends
on what happens electrostatically and electrochemically at the
electrode material interface. Photo-induced SCs are based on
solar cells for photoelectricity energy conversion and SCs for
energy storage. Liu and co-workers have incorporated an all-
solid-state photo-charging capacitor based on MAPbI; and SCs
(polyaniline (PANI)/carbon nano tube (CNT)), where the CNT
bridge was devoted to preventing water from the aqueous gel
electrolytes (Fig. 14). Indeed, the CNT bridge could be a path for
holes to transport between the two electrodes.*”

The MHP-based PSCs achieve excellent charging perfor-
mance, recording energy, with efficient storage mechanisms,

over, lower-

Table 6 The MHP-based electrodes in electrochemical supercapacitors and photo-induced supercapacitors

Perovskites in electrodes Specific capacitance [mF cm™?] Energy density Capacitance retention Reference
MAPbBr; 507 [Fg '] Power density 764 W kg " — 239
MAPDBr; 98.36 [F g '] — 93% after 2000 cycles 240
2D BA,PbBr, 148.25 [F g '] — 98% after 2000 cycles 240
Quasi-2D BA,MAPb,Br; 138.35 [F g ] — 96% after 2000 cycles 240
CsPbBr, o1y 1 150 — — 241
MAPDI; 432 34.2 Wh kg71 — 242
CsPbl; 7.23 — 65.5% after 1000 cycles 243
MAPDI; 422 — 70% after 500 cycles 237
CdS-MAPI; 372 23.8 96.6% after 4000 cycles 244
MBI 350 2.98 pF cm™> 94.79% after 5000 cycles 245

38778 | J Mater. Chem. A, 2025, 13, 38753-38789

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta04267d

Open Access Article. Published on 16 septiembre 2025. Downloaded on 02/02/2026 10:35:53.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

and power densities of 30.71 Wh kg™' and 1875 Wh kg '.2%”
Especially when applied in portable electronics, PSCs may have
to operate under complex illumination conditions, such as
fluctuating sunlight. By creating high-performance super-
capacitors, nanostructured electrode materials have outlined
tremendous electrochemical characteristics. The improvements
in performance and lifespan could be achieved by optimizing
the integration of perovskite materials into existing energy
storage systems, particularly for energy-harvesting applications,
which emphasize the need for scalable and affordable solutions
(Table 6). The implications of this research are quite significant,
both from a theoretical and a practical point of view, and help to
understand the charge storage and transport mechanisms
within perovskite materials.**®

In summary, the improved electrochemical performance of
SCs using perovskite materials is directly linked to their distinct
structural and compositional benefits, pointing to a clear path
for the advancement of energy storage solutions. Perovskites
continue to be explored for use in supercapacitors, yet several
challenges have surfaced that keep them from being fully used
in actual applications. Though the creation of perovskite
materials has shown promise, like better electrochemical
performance and energy density, some key problems still need
to be taken into account. For instance, how stable are perovskite
SCs when the environment changes, like with different
humidity or temperatures. While they seem to cycle better than
older electrode materials, they can still be destroyed over
time.>*®

Furthermore, empirical data reveal that perovskite films
often have defects and grain boundaries despite improvements
in material design, which can harm charge mobility and
performance.”® Prior research supports this, suggesting that
refining synthetic techniques is key to reducing defects and
improving the electrochemical stability of perovskite systems.
Thus, research into perovskite materials for SCs keeps enrich-
ing the academic world but also points out the many
complexities that must be addressed to reach their full poten-
tial. Future research should closely match real-world applica-
tions, ensuring that the knowledge gained leads to real progress
in sustainable energy technologies.**

On the other hand, research toward perovskites' photo-
induced functionalities demonstrates how light-induced
impacts could enhance energy storage mechanisms in super-
capacitors by synergistic interactions between light absorption
and the charge storage qualities of perovskite materials.*** The
oxygen vacancies in the perovskite are deemed to remain the
charge storage region of the pseudo capacitance. Charge storage
of oxygen intercalation and energy densities of perovskite
supercapacitors will be enhanced by expanding the vacancies of
oxygen.

Mechanisms of photo-induced charge generation and
understanding how perovskites generate charge when exposed
to light are super important for boosting. Basically, when
perovskites absorb light, electrons jump from one energy level
(the VB) to a higher one (the CB), and this creates electron-hole
pairs. How long these charge carriers stick around depends on
the material's band gap, how crystalline it is, and its interface
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properties. For the best energy storage, there is a need for good
charge separation and transport, which lets you capture and
release energy in a more dynamic way. Getting a handle on
these complex mechanisms is key to using perovskites in energy
devices. As we keep researching, tweaking the design and
makeup of perovskite materials might solve current problems
and help them become more useful in photo-induced SCs.

6. Conclusion and future perspective

MHPs have come a long way from being niche materials for
photovoltaics to now a dynamic platform with the potential of
revolutionizing energy conversion and storage technologies.
Their standout properties, like high ionic conductivity, adjust-
able optoelectronic properties, expansive surface areas, and
structural flexibility, have opened doors for their use in LIBs,
SCs, ASEIs, and integrated photo-rechargeable systems. Acting
as electrodes and interfacial layers, MHPs enhance energy
storage and conversion performance. By advancing composi-
tional engineering, surface passivation, and interface design,
perovskite-based devices have been able to achieve improved
operational stability and functional versatility, allowing for
moving beyond proof-of-concept. Combining carbon with
perovskite in hybrid electrodes can enhance -electronic
conductivity, while approaches like compositional and bandgap
engineering (for instance, partially substituting Pb>* with Sn>")
may provide avenues to optimize charge carrier mobility and
address toxicity issues. However, as this review points out, there
are still several hurdles that need to be overcome before
perovskite-based energy technologies can hit the market. These
challenges include long-term operational instability when faced
with real-world stressors, environmental and health issues tied
to lead-containing systems, difficulties in scaling up high-
quality large-area films, and the use of toxic or hard-to-handle
solvents in material synthesis. To address these issues, not
only will materials chemistry have to be bettered gradually, but
processing methods will also need to be integrated, sustainable,
and scalable. Ultimately, MHPs offer a remarkable opportunity
to create self-sustaining, multifunctional energy platforms by
integrating photovoltaics with energy storage. The following
should be considered when prioritizing future research:

(1) Environmentally friendly chemistries: lead-free MHP
formulations that maintain electronic and ionic performance
while ensuring long-term chemical stability need to be explored
further. Compositional bandgap engineering requires the
partial replacement of Pb>" with Sn>* or with other stable metals
and surface passivation techniques (by widening the bandgap,
it suppresses electron migration).

(2) Scalable and green fabrication methods: pushing forward
with solvent-free or hybrid deposition strategies that work well with
industrial roll-to-roll processing, ensuring everything stays uniform
and reproducible over large areas. Undisputedly, a significant
mission in the preparation of MHPs and deposition procedures of
perovskite thin film also lies in translating the lab-scale technique
to industrially applicable manufacturing methods.

(3) Dimensionality and microstructural engineering: the
study of the influence of modifying grain size, controlling
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defects, optimizing phase transitions, and nano-structuring on
the electrochemical performance is required. Moreover, the
enhanced electrochemical performance of low-dimensional
MHPs in energy storage systems should be explored further.

(4) Solid-electrolyte: development of advanced methods of
dense perovskite-based solid electrolytes, which would lower
impedance and boost performance.

(5) Li-transport mechanisms: understanding of Li-ion
movement through vacancy, interstitial, or exchange routes
within perovskite frameworks is essential for facilitating
uniform ion flow and even lithium deposition.

(6) Interface study: diving into advanced characterization
and computational modelling to get a grip on defect formation,
ion migration, and interfacial degradation, all while keeping it
real under actual operating conditions.

(7) ASEI: the MHP interfacial layer protection approach could
open a promising avenue for shielding lithium metal from the
liquid electrolyte-Li-ion transport gradient layer model.

(8) Fluorinated MHPs: future research should aim at creating
open-framework perovskite-derived electrodes and SEIs with
fluorinated heterogeneous nanodomains to improve stability
and prevent dendrite growth in LIBs.

(9) Circular economy integration: setting up closed-loop
recycling protocols for MHP-based devices to tackle end-of-life
management, especially for those lead-containing systems.
Also, integrate sustainable supply chain practices.

(10) Collaborative pathways: promote interdisciplinary
collaboration across materials science, electrochemistry, and
device engineering to achieve stable, efficient, and scalable
next-generation perovskite-based energy storage solutions.

To conclude, MHPs are poised to redefine energy harvesting,
storage, and optoelectronics. In order to transform the energy
landscape, MHP-based technologies must strategically tackle
current challenges and embrace interdisciplinary innovations.
We aim to be both a comprehensive reference and a spring-
board for such forward-thinking research directions. In turn,
profound insights offered by the scientists in the near future
will pave the way for discoveries and developments in fertile
landscapes of halide perovskite materials and energy storage
systems. With profound insights offered by the scientists in the
future, further exciting discoveries are certainly to be realized.
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