#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue,

twa: The World Avatar Python package for dynamic
knowledge graphs and its application in reticular
chemistry+

i ") Check for updates ‘

Cite this: Digital Discovery, 2025, 4,
2123

Jiaru Bai, @2 Simon D. Rinm, 2 Aleksandar Kondinski,®® Fabio Saluz,?
Xinhong Deng,® George Brownbridge, &9 Sebastian Mosbach, &2
Jethro Akroyd 23 and Markus Kraft (& *ace

Data-driven discovery is crucial in scientific domains, yet the lack of standardised data management hinders
reproducibility. In chemical science, this is exacerbated by fragmented data formats. The World Avatar
(TWA) addresses these challenges via a dynamic knowledge graph historically provided in Java-based
toolkits. We present twa, an open-source Python package that lowers the barrier to semantic data
management. Its object-graph mapper (OGM) synchronises Python class hierarchies with RDF
knowledge graphs, streamlining ontology-driven data integration and automated workflows. We
demonstrate twa's capacity to unify fragmented chemical data and accelerate research through use

cases in molecular design and Al-assisted synthesis protocol extraction for metal-organic polyhedra
Recelved 1 th February 2025 (MOPs). O h ds the existing OntoMOPs knowled h by adding 799 MOP
Accepted 25th June 2025 s). Our approach expands the existing Onto s knowledge graph by adding new S
derived from combinatorial assembly models. By abstracting complex SPARQL queries behind a user-

DOI: 10.1039/d5dd00065F friendly interface, twa fosters transparent, reproducible knowledge-driven discovery. The package is

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

1 Introduction

Modern scientific and industrial domains generate digital data
at an unprecedented scale, yet interoperability remains
hampered by fragmented formats and siloed architectures.!
These barriers limit data integration and reuse, undermining
the potential of cross-domain collaboration. To address this,
semantic web technologies systematise data into machine-
readable formats that encode conceptual relationships, thus
enabling cross-disciplinary interoperability.> A core manifesta-
tion of the semantic web is the knowledge graph, which has
become indispensable for scientific and industrial innovation,
due to its ability to harmonise and automate data workflows.**

A field that stands to benefit significantly from such inno-
vation is chemistry, where researchers handle complex infor-
mation on molecular structures, reaction pathways, and

“Department of Chemical Engineering and Biotechnology, University of Cambridge,
Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. E-mail: mk306@cam.ac.uk
*Institute of Physical and Theoretical Chemistry, Graz University of Technology,
Stremayrgasse 9, 8010 Graz, Austria

‘Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd, 1
Create Way, CREATE Tower #05-05, 138602, Singapore

‘CMCL, No. 9 Journey Campus, Castle Park, Cambridge, CB30AX, UK

‘Department of Chemical Engineering, Massachusetts Institute of Technology, 77
Massachusetts Avenue, Room 66-350, Cambridge, Massachusetts 02139, USA

(ESI) DOL:

T Electronic supplementary information available. See

https://doi.org/10.1039/d5dd00069f

© 2025 The Author(s). Published by the Royal Society of Chemistry

freely available via pip install twa or https://pypi.org/project/twa/.

experimental protocols. Ontologies offer a powerful framework
for encoding these data in a formal and computationally
interpretable manner.>® Through adherence to semantic web
standards, chemists can unify and automate disparate work-
flows, ultimately accelerating discovery.”® Despite the evident
value of this approach, chemistry ontologies remain underu-
tilised.> Many researchers find them challenging to maintain
and extend, given the delicate balance between stability and
adaptability that is essential for effective knowledge
representation.®*

Managing the evolution of ontologies requires robust
version control, comprehensive documentation, and consistent
input from domain experts. While some software solutions and
collaborative workflows support these needs,"** they are typi-
cally designed for expert programmers and require substantial
knowledge of ontologies. This is particularly acute in Al-driven
chemistry, where ontologies have immense potential to unify
complex data but have seen limited adopted.’*** As a result,
user-friendly tools in widely adopted languages such as Python
are sorely needed to lower entry barriers for non-experts,
ensuring transparency, reproducibility, and broader adoption.

Over the past decade, object graph mappers (OGMs) have
evolved from object-relational mappers (ORMs), which simplify
database interactions by mapping object-oriented program-
ming constructs to relational schemas." OGMs extend this
approach to graph databases, allowing developers to work with
structured knowledge while abstracting away query complexity.

Digital Discovery, 2025, 4, 2123-2135 | 2123

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00069f&domain=pdf&date_stamp=2025-08-02
http://orcid.org/0000-0002-1246-1993
http://orcid.org/0000-0001-8342-7269
http://orcid.org/0000-0002-9054-0558
http://orcid.org/0000-0001-7018-9433
http://orcid.org/0000-0002-2143-8656
http://orcid.org/0000-0002-4293-8924
https://pypi.org/project/twa/
https://doi.org/10.1039/d5dd00069f
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004008

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

However, most existing Python-based OGMs are designed for
property-graph databases, such as GQLAlchemy'® and neo-
model,"” while resource description framework (RDF)-backed
OGMs are predominantly developed in Java'™?° or Type-
Script.** In Python, RDF-focused OGMs remain scarce, with
Owlready2 (ref. 22) being one of the few available options.
Despite its utility, Owlready2, along with its extension for
material science,” is primarily designed for local ontology files
rather than remote triple stores and lacks robust built-in type
validation. Although Owlready2 offers an experimental quad-
store approach that converts ontologies into SQL databases, this
functionality does not fully support distributed or scalable
SPARQL-based knowledge graphs. Consequently, its application
remains limited in the context of scalable, distributed knowl-
edge graph systems.?

The World Avatar (TWA) is a distributed, dynamic knowledge
graph designed to create a digital replica of the physical
world.** It employs software agents to synchronise digital
environments with geographically distributed physical
systems.® For seamless integration, modifying its states entirely
through Python programmes is essential, necessitating an OGM
solution tailored for distributed applications. To address this
need, we introduce a Python-based OGM specifically designed
for remote RDF-backed graph databases, featuring built-in type
validation. This solution bridges modern scientific applications
with the semantic web ecosystem and integrates directly with
twa, the Python wrapper for The World Avatar project. By
providing a vendor-neutral and standardised approach to
managing RDF data structures, our OGM enhances accessibility
and interoperability in chemical research.

Furthermore, as large language models (LLMs) gain traction
in automating tasks within chemistry,>*** integrating OGMs
with Al-driven methods unlocks new opportunities for struc-
tured hypothesis generation and data analysis. This work aims
to accelerate the adoption of graph-based data management in
chemistry, fostering a globally connected research network
through an accessible and open-source Python toolkit.

The remainder of this paper is structured as follows. Section
2 situates our work within the broader context of The World
Avatar project. Section 3 details the technical underpinnings of
the proposed OGM, while Section 4 demonstrates its utility
through use cases in metal-organic polyhedra. Finally, Section
5 presents and perspectives for
development.

conclusions future

2 The World Avatar

The World Avatar (TWA) is an open, interoperable digital
ecosystem that integrates dynamic knowledge graphs and
autonomous software agents to create a scalable digital twin of
the physical world. It bridges domain silos using ontologies and
linked data principles to enable cross-disciplinary interopera-
bility. Emphasising collaborative and agent-based intelli-
gence,® TWA supports applications from molecular and
material discovery” to urban resilience planning.>® Specifically,
in the chemistry domain, TWA supports chemical species
ontology,' rational design of novel reticular and porous

2124 | Digital Discovery, 2025, 4, 2123-2135

View Article Online

Paper

materials,®*> natural language question-answering system,*
and distributed self-driving laboratories.***

A key challenge across projects was the steep learning curve
of Java and the inherent complexity of ontologies, making it
difficult to onboard new team members. To improve accessi-
bility, we developed a Python wrapper as a more accessible
alternative. However, team members often had to write repeti-
tive SPARQL boilerplate code to access graph data, particularly
when working with the same ontology across different projects.
This not only increased development time but also introduced
inconsistencies when modifications to the same ontology were
needed for cross-domain applications. Moreover, developers
had to manually update their SPARQL scripts to ensure mean-
ingful results as ontologies evolved. To address these issues, we
set out to develop a reusable software package that simplifies
access to knowledge graphs by replacing repetitive SPARQL
queries and complex Java-based workflows with a more effi-
cient, consistent, and Python-native approach. This integration
also enhances ontology version control for better change
tracking and streamlined updates.

3 Object graph mapper

Building on years of experience in knowledge graph develop-
ment, we present the twa Python package as a comprehensive
solution for more intuitive and efficient knowledge graph
management. By abstracting interactions with the underlying
graph database, twa simplifies ontology development and
population. A central feature of this package is its object-graph
mapper (OGM), which provides a unified and scalable way to
interact with knowledge graphs using object-oriented princi-
ples. This section introduces the core component of twa, the
OGM, highlighting its role in streamlining ontology manage-
ment and enhancing interoperability in modern scientific
applications.

Fig. 1 presents an overview of the OGM, showcasing how it
enables semantic translation between Python objects, RDF
triples, and JSON data - both when utilising existing knowledge
graphs and when constructing new ones. By leveraging Pydan-
tic* for structured data modelling and RDFLib*® for represent-
ing RDF triples, OGM bridges object-oriented programming
with semantic web technologies. Python classes (left, blue box)
explicitly map onto OWL classes and properties within the RDF
graphs (top right, orange box). JSON objects (bottom right,
black box) can be validated and directly instantiated into OGM
objects through the Pydantic JSON validation method, which
enforces data validation and ensures schema compliance.
Notably, compared to the default instantiation behaviour of
Pydantic when dealing with nested JSON, which creates a new
model instance for every occurrence regardless of its contents,
our OGM maintains an in-memory registry keyed by
instance_iri. Repeated IRIs are resolved to the same Python
object, preserving graph integrity and eliminating duplicate
nodes without compromising standard validation semantics.

Fig. 2 exemplifies how OGM in the twa Python package
simplifies both ontology management and data-level interac-
tions by abstracting complexities of querying and updating

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Python

import twa.data_model.base_ontology as ogm

class MyOntology(ogm.BaseOntology): <———— ~z,gjgct_graph
mapping

base_url = 'https://twa.io/kg’
namespace = 'mo’
owl_versionInfo = '0.0.1-ogm’

ToClass = ogm.ObjectProperty

.create_from_base('ToClass') < ——————&+——

class MyClass(ogm.BaseClass): <————————f———————F—————————————-

rdfs_isDefinedBy = MyOntology
toData: ToDatal[str]

toClass: ToClass[AnotherClass] ——-————

myPydantic: MyModel-—-~
>

i
|
class MyModel (pydantic.BaseModel): :

myPydanticField: str |

load json to
instantiate | J

View Article Online

Digital Discovery

Knowledge Graph

@prefix mo: <https:/twa.io/kg/mo/> .

mo:toClass a owl:ObjectProperty ;
rdfs:domain mo:MyClass ;
rdfsrange mo:AnotherClass .

rdfs:isDefinedBy xsd:string

rdfs:isDefinedBy

mo:toData

json
"toData”: "my_str”, {J ° }
"toClass”: "https://twa.io/kg/clsx”

Fig. 1 Overview of the object graph mapper (OGM) functionality, demonstrating how Python objects defined using the twa OGM directly
correspond to RDF triples in knowledge graphs and structured JSON data commonly used in modern applications.

Python

from twa.kg_operations import PySparglClient

initialise SPARQL client Abstracted
endpoint = 'http://my-sparql-endpoint/’ communication with
client = PySparglClient(endpoint, endpoint) knowledge graph

export TBox as triples

MyOntology.export_to_triple_store(client) Built-in alignment of
ontologies with Python
export TBox as triples locally codes

MyOntology.export_to_owl('my_ontology.ttl')

pull/push objects from/to knowledge graph
my_obj = MyClass.pull_from_kg('my-iri’,
client, -1)

my_other_obj = AnotherClass(...)
my_obj.toClass.add(my_other_obj)
my_obj.push_to_kg(client , -1)

Git-like operation
between Python objects
and knowledge graph
triples

Fig. 2 Example usage of the twa Python package for interacting with
knowledge graphs at both the TBox and ABox levels. The left panel
shows concise Python operations for initialising a SPARQL client,
exporting class hierarchies as triples to both remote endpoints and
local files, and synchronising Python object states with their RDF
representations in the knowledge graph. The annotations on the right
side clarify the conceptual benefits.

knowledge graphs (boilerplate of SPARQL and RDF). Developers
only need to specify the endpoint, without worrying about
manually writing SPARQL queries. Ontologies emerge naturally
as a byproduct of defining relationships in Python, with a single
function called exporting them as structured graph data. Simi-
larly, pulling and pushing objects to and from the knowledge
graph is streamlined through intuitive Python functions. These
abstractions shift the developers' focus from “how do I write
SPARQL” to “how do I model my domain”, making semantic web
technologies more accessible and efficient for rapid prototyping
of complex and interlinked data workflows in chemistry (and
beyond).

© 2025 The Author(s). Published by the Royal Society of Chemistry

The core components of OGM include BaseOntology, Base-
Class, ObjectProperty, and DatatypeProperty, which provide
a direct mapping between Python classes and ontological
concepts in the terminology component (TBox) of a knowledge
graph, while instances correspond to assertion component
(ABox). Designed to follow the standard subclassing mecha-
nism in Python, these base classes can be extended by users to
define domain-specific ontologies. Since they inherit from
pydantic.BaseModel, they seamlessly integrate semantic
functions while remaining compatible with native Pydantic
features, such as JSON parsing and validation. This enables
structured JSON data, including outputs from large language
models (LLMs), to be directly instantiated as Python objects
while preserving alignment with formal ontologies. Addition-
ally, OGM provides utility functions for exporting defined
ontologies as description logic, ensuring interoperability with
standard semantic reasoning tools.

Fig. 3 illustrates the core functionalities of OGM for enabling
object-level interaction between Python and the knowledge
graph. These rely on two key algorithms that ensure consistent
and efficient data synchronisation. The pull_from_kg function
retrieves data from the graph and instantiates or updates cor-
responding Python objects. It dynamically resolves the appro-
priate Python class for a given node based on its rdf:type label
and the class inheritance hierarchy in Python. The algorithm
supports recursive loading of linked objects, with a recursion
depth parameter that controls whether nested structures are
fetched to a specified depth or infinitely. To optimise perfor-
mance and prevent redundant operations, it maintains a cache
of object states, mitigating race conditions during concurrent
pulls. The push_to_kg function propagates local changes from
in-memory objects back to the knowledge graph. It computes
the differences between the cached graph state and the current
Python values to determine which triples need to be added or
removed. To prevent infinite loops when traversing cyclic

Digital Discovery, 2025, 4, 2123-2135 | 2125

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

a Graph
t=0

Graph
t=2
sparql A
insert /
@,0-»@ .y Gy@—»@

t=1 pull\@

Python
remove
in
python

—_

O\ f
push with pull

t=2 |Python

View Article Online

Paper

Graph Graph

o

O o

\
©

t=4

o
sparq| \
insert 0‘»@

i
i1 push with pull

t=5 | Python m

m add
N A LNy
n$ python $B
\ ®
Instance

Graph Python

E] Python

=——pull= instance of u

Python

n instance of

class =pull=

@)

Python

class class

instance of

C SPARQL Query Graph

hasPart
—_—
select ?parts e °
where {
a hasPart+ ?parts.

pull
hasPart

) o}

e hasPart °

Fig. 3

Python Retrieve in Python

a - u a = A.pull_from_kg(
iri, spargl_client, -1
1)

N
\

\
\ parts = hasPart
008 - (@

Illustration of three key features of the package: (a) recursive synchronisation showcases how changes in Python objects and RDF graphs

propagate bidirectionally, ensuring data consistency across multiple levels of interconnected objects, where green indicates additions and red
indicates removals, (b) multi-inheritance resolution demonstrates how the OGM resolves complex object-class hierarchies, automatically
instantiating Python objects to their most specific matching RDF classes according to OWL semantics, thereby ensuring precise and intuitive
semantic mappings, and (c) transitive property handling simplifies navigation of hierarchical or linked relationships in RDF graphs where a single
Python method call retrieves all recursively related entities similar to SPARQL property-path queries, thereby abstracting query complexity and

reducing developer workload.

structures, it tracks processed nodes during traversal. Both
algorithms are detailed in ESI A.1.f The core features of the
framework are detailed in the following subsections, and
a comparative summary with other commonly used Python RDF
libraries is provided in Table 1.

3.1 Recursive synchronisation

Fig. 3(a) illustrates the Git-like recursive push and pull opera-
tions, where changes in the graph, such as SPARQL insertions of
nodes i4 and i5, and modifications in Python objects, such as
the removal of i2 or the addition of i6, are propagated in both
directions. This mechanism ensures that Python objects remain
aligned with the knowledge graph, even when updates are made
externally.

To achieve this, OGM maintains three sets of values for each
node connection (i.e., object or datatype properties). The local
state represents the current state of Python objects, the cached
state stores the last known version retrieved from the knowledge

2126 | Digital Discovery, 2025, 4, 2123-2135

graph, and the fetched state reflects the latest values obtained
from the graph if the pull is flagged before the push. When
synchronising, OGM first compares the fetched and cached
states to identify external modifications that should be instan-
tiated in Python. It then compares the cached and local states to
detect changes made within Python that should be pushed to
the graph. Users can provide a flag to enforce an overwrite of
local modifications when pulling from the remote graph,
ensuring that externally introduced changes take precedence in
case of conflicts. This design enables multiple clients to operate
concurrently on the same knowledge graph, similar to how
developers collaborate on software projects using Git.

The recursive synchronisation mechanism operates at con-
figurable depths, allowing users to control the extent of
traversal during pull and push operations. A depth of 0 limits
synchronisation to direct relationships, while a positive integer
n restricts recursion to n levels. A depth of —1 enables full
recursion, ensuring that updates propagate through all

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

View Article Online

tal D

iscovery

igi

D

Paper

WISAS009

IeyeAy pPIop 9yl jo 1red
se syuawaaoxduar guro3uo
M ‘padofonsp A[eAnoy
UOISIOAUOD

NOSI paanjonns pia sydeid
a3pamowy ojut sndino
INTT sorexdajur Apordxg
sdnyas

eae[3m Axordwod rentul
o) w1y pasoidur ‘s1orireq
AT3US qom dTIUBWIAS SIIMO]
uonoensqe A[pusaLy-uoyisd
sardojojuo

doap pue sydeid adre|
M dIom 03 payuawafduur
aq p[nod uonestundo
12Ny ‘sydexd paynqsip
UM YIOM 03 J[qISSOd
saonoerd

159q onuepAd YImm paudife
A[oso[o sassed uoyisd
Pajua110-392[qo0 SI9O

uonerdayul axnjny pauuerd
‘saniiqedes Suruoseal
ur-Ing soe[A[3Ua1Ind
s393[qo uoysg

ojut Apoa1rp parerdaur
syutodpus TOIVAS

9]0WIAI I0J UOTIOBIISqE
duikranb sapraoig

£yoyes ad£y pue uonepiea
BUWAYDS dJBWOINE 10§
S[opowr paseq-onuepAd sasn

adesn frunwwod

isnqoi1 pue sajepdn juanbaiy
UM paurejuretr A[oAnoy
suoneorjdde 1v

103 A1eSS009u Juswdoaaap
[euIa3x9 ‘uonerdayur

WTT 10 IV 9AIBU ON

asn paoueApe

103 Ayreriurey TAMO0
saxmbai Inq ‘siodofasap
uoyIAd 10J pIEMIONIYSIIens
‘udisap 40O A[puaiij-1asn

A[uo apou-a[3urs Ing ‘o3e103s
r10S poziwndo ydnoiy
(so1din jo suorqiq 01 dn)
douewIo}Iad [BOO] JUS[[9OXH
uoneIdaur JOO SSI[Weas
103 doejIxul Surwwrerdord
udALIp-A30103U0

‘OruoyiAd Aydiy e sapraoid
90UQIoJUI PUE SHOIYD
Adoudysisuod 103 (39[[od

puUE [TWISH) SIOUOSEII
pajerdaur pia saniiqedes
duruoseal TMO 2A13EN

yoddns

Jurodpua 2)0waI 103IIp OU
nqg aurdua AIIOS Y3noIyy
sautanb TOYVAS 180071
uonepIeA JWHUNI

paywa] Ing ‘sadAyerep
TMO ydnoiyy papraoid
Juowrudife ad4) orseqg

sajepdn
Juada1 ou pue 3roddns
[BWITUTW ‘9T (¢ 90UIS dAT}ORUI

SMOT[IOM
IV Jua1Ind sajepaid
udISap SI1 Se UOTIBIUI ON

A1anoeur

03 anp A[puslLiy-1ouurdaq
SS9 pue pajepino nq
‘o010l MI[-INJO d1duurs

uonestundo y[nq

S$30®[INQ PEIYIIAO [BUUTUIL
UIIM PUORQ UISOYD

UO JUBI[2I dOUBWLIOJId]
uonoBIANUI

102[q0-03- 1Y 2ARINIUL

103 uSIsap Axoid pajuatio
-303[qo NI-INIO Sap1roid

Zurddew 300(qo-03-1ad
sapiaoid £o1os “10ddns
90U2I9JUT 10 JUTUOSEI ON

192[qo 03 s3NSsa1

Jo 3urddew 30211p INOYPIIM
‘puadjoeq qIrIA@Y via sauanb
TOYVAS 210wl syroddng

uonepIfeA ur
-[nq noydm sarxoxd uoyIsd
sajerauad A[feorureud(q

110ddns Hrunwruod
duomns pue sayepdn re[ndax
IM pOUTBIUTRW A[OAIOY

uoneIdajul
TT 10 [V 2ADBU ON

sao1A0U

A 10§ 2AIND JUTUILI]
doa3s Inq ‘s1osn uoyIkg Aares
-1y 10J piemiopySrens

Spuayoeq Jseqerep

UM YI0M 0} parmbail

S[003 [BUINXD IIM ‘ATOWaT
-ur pajsoy are so[din v
sudrsap 40O

10§ s3urddew sse[o [enuewt
Zurrmbax vonendruew
AQY [oA9[-91d11L,

TI"IMO 39
‘{003 [euonIppe via d[qissod
Inq ‘3UTUOSEaI JATIEU ON

surdnyd
p1a 3urkronb TOYVAS 210wa1
pue Ted0[103 310ddns [[ng

S[003 TeuINXd saimbaix
‘{K1o3es 2d4y 10 uonepIfEA
BUWAYDS UI[ING ON

snyess yuawdo[araq

SIN'TT J3Im uonerdaiul

asn Jo asey

A1[Iqeress pue 90UBWIONIOJ

u3Isap pajuanio-303[qo

saniiqedes 3uruoseay

11oddns
Jurodpus TOYVIS 0wy

UOTIEPI[BA BWAYDS

(1104 s1U) BN

(zz "321) TApRAIIMO

hmmﬂmsm

e AT

2Injesq

'90UB217 paModun 0'g uong LNy suowiwoD aaireas) e sepun pasusol|siapiesiyl |[EEGEEL ()

"0€'85:6T G202/0T/T¢ UO papeo|umoq ‘G20z olunl og o paus!iand 1Y Ss300Y usdo

sdomaulely WOHO emy pasodoud ayy Yym saueldl 4y pased-uoyihd UoUWOD JO uosiedulod ainyeaq T alqel

Digital Discovery, 2025, 4, 2123-2135 | 2127

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

relationship links in the graph. This flexibility ensures that
OGM can handle complex knowledge graphs efficiently while
maintaining consistency between Python objects and the graph
database.

Listing S1 in ESI{ presents an example demonstrating how
recursive synchronisation is performed as shown in Fig. 3(a).
The process begins by pulling an instance and its connected
objects from the knowledge graph into Python. After external
modifications are made directly in the graph, a local deletion is
performed in Python. The push operation then ensures that all
changes, including those made externally and locally, are
properly reconciled. Finally, a new instance is created and
linked to the existing object, and another push is executed to
propagate the update recursively.

3.2 Multi-inheritance resolution

In ontologies with subclass hierarchies, a single entity can often
be viewed through multiple facets, leading to multiple class
labels (i.e., rdf:type) for the same instance. This phenomenon,
known as multiple inheritance,*® is common in knowledge
representation systems. For example, the Climate Resilience
Demonstrator (CReDo) project® develops a digital twin of
infrastructure networks to assess their resilience to climate
events such as flooding and extreme heat. In their imple-
mentation, each node in the infrastructure network is instan-
tiated both as an asset, which stores essential information, and
as a site, which is used for visualisation. When performing
analyses, it is crucial to retrieve only the relevant aspects of the
data to maintain computational efficiency, especially when the
digital twin is operated at the national level.

Fig. 3(b) illustrates how OGM resolves such multiple-
inheritance scenarios. When pulling an instance from the
knowledge graph, OGM determines its Python instantiation
based on the method resolution order (MRO) of the class hier-
archy. The system identifies the deepest subclass at the inter-
section of the class used for pulling and the instance's assigned
types in the knowledge graph. For example, as node i is labelled
with multiple classes, it will always be instantiated as the most
specific subclass, such as leaf class B when pulled using either A
or B. If multiple parallel leaf classes exist, such as when pulling i
using T and encountering both B and C, OGM raises an error to
prevent ambiguity. The user must explicitly use either B or C to
prevent the conflict. An error is also raised if an instance is
pulled using a class that is not assigned as its type in the
knowledge graph, even if it exists in the class hierarchies, such
as attempting to pull i using D.

In the current implementation, the OGM enforces a single
perspective per query to simplify the object representation and
maintain clarity, whereas attributes from other perspectives
remain available but are not merged automatically. When
a different view is required, the user can re-instantiate the same
IRI as an instance of the alternative class, and all view-specific
attributes will be accessible through that class. This design
ensures that Python objects inherit only the relevant properties
for each context while preserving the underlying graph struc-
ture. Additionally, when pushing local changes back to the

2128 | Digital Discovery, 2025, 4, 2123-2135

View Article Online

Paper

graph, OGM updates only the pulled portions and leaves
untouched any unpulled data, thereby preventing unintended
data loss. Listing S2 in ESIf provides a minimal example
demonstrating this behaviour. If simultaneous merging of
multiple views becomes a common requirement, we will explore
support for that feature in future iterations.

3.3 Transitive property

Transitive properties play a fundamental role in ontology
modelling by enabling efficient reasoning over hierarchical and
dependency-based relationships. They allow relationships to be
inferred across multiple levels, ensuring a more comprehensive
and structured representation of complex systems. Fig. 3(c)
illustrates the retrieval of transitive properties using native
SPARQL queries and OGM in Python, highlighting the differ-
ence in approach.

In SPARQL, transitive properties are retrieved using property
paths, which efficiently traverse hierarchical relationships
directly within the query. OGM achieves this capability by
implementing recursion, allowing Python objects to interact
dynamically with connected entities. This recursive traversal is
particularly useful in scientific domains where hierarchical
relationships are prevalent, such as laboratory setups, reaction
networks, or material dependency structures.

For instance (see Listing S3 in ESIt), in a lab setup, if Beaker
A is part of Reaction Setup X, which itself is part of Experiment
Y, transitive reasoning infers that Beaker A is part of Experiment
Y. Similarly, if Clamp B is part of Stand C, and Stand C is part of
Reaction Setup X, the entire component hierarchy can be
traced. Such reasoning ensures precise representation and
management of complex equipment arrangements, enhancing
the efficiency and reliability of lab operations.*’

By leveraging transitive reasoning, OGM enhances the
usability of knowledge graphs by providing structured access to
indirect relationships while preserving the interpretability of
object-oriented representations in Python. This integration of
SPARQL's declarative querying with OGM's recursive traversal
ensures that complex hierarchical structures can be navigated
and manipulated seamlessly in a programmatic environment.

4 Use cases for reticular chemistry

Metal-organic polyhedra (MOPs) can be described as structures
formed by metal- and organic-based chemical building units
(CBUs) that resemble regular polyhedra.****** The rational
design of MOPs, as well as other cage-like assemblies, requires
domain experts to carefully consider both the chemical
compatibility and geometric complementarity of the constit-
uent CBUs.*»** Didactical research involving children's
construction of polyhedral models from toys has shown that no
formal geometric training is necessary to assemble such
shapes,*>*¢ indicating that some form of cognitive visualisation
is involved in the reasoning process. Motivated by these
insights, the concepts of assembly models (AMs) and generic
building units (GBUs) were introduced as mental “blueprints”
for systematically designing MOPs from available CBUs.*' These

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Paper Digital Discovery
class CBU(ogm.BaseClass):
A K N class GBU(ogm.BaseClass):
(functionAs: FunctionAs[GBU] ®] Z(HH gbuType: GbuType[GBUTypel
Y alignsTo > o coord: Coord[GBUCoord]
2 X
A
class MOP(ogm.BaseClass): \ //
hasAM: HasAM[AM] coord coord,” | class GBUType(ogm.BaseClass):
hasCBU: HasCBU[LCBU] X modularity: Modulgrity[int]
funchs T planarity: Planarity[int]
-« .
I ~
hasCBU ~ J— hasGBU
— [V606(CSHANPO3)(CH30)9]™ i
hasAM _
> -
Y
H H4)2)3(CO2)31 \
~— [(C6H3)((CE6H4)2)3(CO2)3] 3-planar \
hasCBU, hasGBU \\
funcAs (3-planar)x4)‘
[(C6H3)(C6H4)2)3(CO2)31 (3-pyramidal)x4_Td v
[V606(C5HANPO3)(CH30)9],5" #
coorf class AM(ogm.BaseClass):
cbuTrans }oord hasGBU: HasGBU[LGBU]
2 : :
e G| g N N
alignsTo: AlignsTo[CoordCentre] ® Y. X R y: Y[float]
quaternion: Quaternion[str] z: Z[float]
<7

Fig. 4 Representation of MOPs, CBUs, GBUs, AMs as part of OntoMOPs,3! key geometric concepts used in the assembly modelling of MOPs,*®
and additional concepts added for semantic construction using the OGM. Class and relation names are abbreviated for clarity.

ideas were first formalised in the OntoMOPs ontology,** in
which the CBUs were further classified as species using the
OntoSpecies ontology."’

The MOP discovery agent employs an algorithm based on set
operations to identify which CBUs can be combined without
generating undesirable strain.** In an analysis of 151 experi-
mentally reported MOPs constructed from 137 unique CBUs,
the dataset was effectively organised into 18 AMs and 7 GBUs.
According to the discovery agent, as many as 1418 new MOPs
could be rationally designed,® and several of these predicted
structures have been confirmed by experimental synthesis.*”
This targeted approach substantially narrows down the poten-
tial design space, originally estimated to be approximately 80
000 possibilities, thus allowing more focused and efficient
computational and experimental investigations.**

Fig. 4 depicts a MOP [(CsH3)((CeHa)2)3(CO5)3]a[VsOs
(CsH4NPO;)(CH30)s],*7, which follows the AM topology
(3-planar),(3-pyramidal),_T4. The assembly model (AM) prescribes
two types of generic building units (GBUs), “3-planar” and
“3-pyramidal”, each appearing four times and identified by their
spatial coordinates. Instances of the “3-planar” GBU connect to
three “3-pyramidal” GBUs, forming the polyhedral framework.
This hierarchical representation was implemented via the OGM
method to encode both chemical structure and geometric rela-
tionship.** Beyond rational design, the OGM method also includes
automated assembly modelling of MOPs.*

4.1 Semantic geometry construction

In our previous work, we introduced an automated rational
design framework for MOPs, leveraging assembly models (AMs)
and generic building units (GBUs).** Building on that founda-
tion, subsequent developments extended the process of
assembly modelling to generate structural information about

© 2025 The Author(s). Published by the Royal Society of Chemistry

MOPs, thereby enabling computational analyses of cavity and
pore sizing.*® This work generalises these earlier methods and
integrates them into the OGM infrastructure, providing a single,
modular pipeline for constructing computation-ready 3D
geometries of MOPs.

Fig. 5 illustrates our semantic assembly workflow, which
generalises and refines the vector-transformation approach
from prior work.*® The process begins with identifying binding
sites for the chemical building units (CBUs), as shown in
Fig. 5(a). Each binding site is defined as the centroid of a user-
labeled binding fragment, corresponding to the atomic group(s)
involved in bonding, inspired by “connection points” as
implemented in geometry-based assembly for metal-organic
framework.*® A 2D circle is fitted through these binding sites,
defining a plane whose normal vector serves as the “fingerprint
vector” of the CBU. To ensure a unique orientational reference,
we compute the cross-product of this fingerprint vector with
a secondary vector extending from the circle's centre to the
nearest binding site. For CBUs functioning as 4-planar GBUs
with an ideal D,;, symmetry, the secondary vector is instead
defined from the centre to the shortest edges between two
binding sites. The centroid of the CBU's atoms, projected onto
the normal vector of this plane, is designated as the assembly
centre.

Next, Fig. 5(b) illustrates the quaternion-based alignment of
the CBU fingerprint vector with that of its corresponding GBU in
the AM. The fingerprint vectors of these GBUs are computed
using the same procedure. Once rotational alignment is ach-
ieved, a translation vector is computed to place the rotated CBU
at the appropriate distance for bonding (Fig. 5(c)). This step
adjusts the distance between each CBU's centre and binding
site by half the bond length for calculation, preserving struc-
tural fidelity.*® These adjustments prevent bonds from being too

Digital Discovery, 2025, 4, 2123-2135 | 2129

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Class BindingSite(ogn.BaseClass):

CBUs' \
binding

bonds
\ S

22 distance to

class GBUCoord(CoordinatePoint): | Q>

Fig. 5 Automated semantic assembly of MOPs following the OGM
implementation, inspired by previously developed geometry assembly
protocol:*® (a) assignment of binding sites and calculation of the
fingerprint vector for CBUs, (b) quaternion-based alignment of CBUs
and GBUs via their fingerprint vectors, (c) calculation of translation
vectors to shift CBUs such that their binding bonds are equidistant
from the origin of MOPs, and (d) transformation of CBUs into the final
3D MOP geometry, re-centred at the origin.

short, which would otherwise be difficult (though not impos-
sible) to correct in future geometry optimisations.”* Scaling
factors are determined per GBU type to maintain the propor-
tional relationships dictated by the symmetric AM topology,
ensuring consistency across all CBU transformations. A 3D
MOP geometry derived by the OGM implementation is shown in
Fig. 5(d), whole details on the construction steps are provided as
part of ESI A.4.t

4.1.1 Expanding the chemical space of MOPs. We first
tested our geometry construction algorithm on an expanded
dataset that builds upon the original OntoMOPs set introduced
by Kondinski and co-workers.*"** Specifically, we incorporated
two new assembly models (AM19 and AM20) and 15 additional
MOPs from the literature that were not present in the original
knowledge graph (see Tables S1 and S2 in ESIt). Fig. 6(a)
highlights one such newly added MOP,
[V500]4[(CeH4)(CO,),]s*~, which follows the newly defined AM
(4-pyramidal),(2-bent)s_Dyp (AM19).

To systematically broaden the design space, we applied the
algorithms in ESI A.31 to interchange compatible metal and
organic CBUs across the newly added AMs. In contrast to Listing
S4,T which strictly assembles CBUs already proven compatible
with the same AM, Listing S57 allows for inter-AM CBU
exchanges, provided both AMs share at least one common CBU.
Fig. 6(b) illustrates how this generates novel combinations,
such as leveraging AM20 ((4-planar)(3-pyramidal)s T},) and
AM2 ((3-planar),(3-pyramidal),_Ty). Overall, these expansions

2130 | Digital Discovery, 2025, 4, 2123-2135

View Article Online

Paper

yielded 799 newly designed MOPs derived from a base set of
1584. A summary of the new structures is listed in Table S37,
with further details in Table S4 in ESI A.5.}

Fig. 7 offers an overview of these 799 new MOPs, based on
structural properties computed from the 3D geometries. Each
MOP is re-centred on its geometric midpoint to streamline
calculations. The largest inner sphere diameter measures the
distance from the centre to the closest atom (adjusted by
covalent radii), while outer diameter captures the farthest atom.
The maximum pore size is obtained by projecting atomic posi-
tions onto vectors connecting the MOP centre to the centroid of
ring-forming GBUs. The mathematical details behind these
estimations are given in ESI A.4.}

Among the newly generated structures, certain AM19-based
MOPs stand out for their compactness, exhibiting relatively
small cavities. This is primarily due to the “4-pyramidal”
metallic CBUs and “2-bent” organic CBUs with narrow dihedral
angles. Conversely, other AMs that incorporate bulkier organic
linkers display significantly larger pore sizes, emphasising how
AM geometry and CBU composition drive structural properties.

These findings validate our OGM workflow implementation.
By leveraging semantic data representation and automated
assembly, developers can focus on high-level design logic while
leaving the recursive data retrieval and consistency checks to
the OGM. This eliminates extensive scripting and facilitates the
pre-screen of promising candidates before expensive density
functional theory (DFT) optimisations. This continuing effort
builds on the rational design concepts outlined in Kondinski
et al.>** and highlights how a semantic-driven approach can
streamline large-scale molecular design. Future work will
explore the application of structural viability, based on
computational chemistry protocols as proposed by Hoffmann
et al.,”> and expand this approach to other reticular materials.

4.2 Extraction of synthesis protocols using LLMs

Following the automated rational design and geometry
construction, the chemical relevance of newly designed MOPs
ultimately depends on their experimental synthesis. However,
such validation often faces bottlenecks due to the inefficiency of
traditional trial-and-error synthesis methods. The self-assembly
of these structures offers the potential to reliably predict
synthesis procedures based on building units and assembly
models. Connecting computational design with experimental
realisation requires the systematic inference of synthesis
protocols from literature procedures. Unfortunately, such
protocols are often documented inconsistently across scientific
publications and in non-machine-readable formats. Large
language models (LLMs) show promise in addressing these
challenges by extracting detailed synthesis information from
the scientific literature to infer new synthesis routes.>*"*

Fig. 8 illustrates the integration of LLMs with OGM to bridge
unstructured literature with computable chemical knowledge.
The pipeline automates the extraction of synthesis protocols
from scientific literature, such as ESIt in journal articles, using
the OpenAlI Python API*® with domain-specific prompts. The
LLM-generated structured JSON outputs are then loaded into

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

4-pyramidal

AM19 NP
(4-pyramidal)x4
(2-bent)x8_D4h

View Article Online

Digital Discovery

[V50913*

[V5091,[(C6H4)(CO2)21g*
[(C6H4)(CO2)2]*

@ [V606(C5HANPO3)(CH30)9] ™
b [V606(0OCH3)9(S04)]™*

@ [(C16H8N2)(C6H4CO2)41*+

@ [(C6H3)((C6H4)2)3(CO2)3>

@ [(C18H10)(CO2)41*

Organic

¢

4-planar

AM20 -
(4-planar)x6 ?
(3-pyramidal)x8_Th
3-pyramidal
"equivalent
GBUs"
_~ 3-pyramidal
Organic
AM2 CBUs for AM2 _
(3-planar)x4 * —_— :
(3-pyramidal)x4_Td ‘-“x:-:g:?i‘
b
3-planar é®

Fig. 6 Examples of expanded chemical space resulting from the new AMs and MOPs introduced
, added from the literature*® and assembled with existing CBUs under an unseen AM topology (4-pyramidal)4(2-

[VsOol4l(CeHA(CO,),ls*™

CBUs of AM20

MOPs
b for AM20

% S 5

Metal
CBUs of AM20

3@@;&%

"equivalent CBUs"

Metal

CBUs of AM2 MOPs

for AM2

P
fsameﬁ) across
\AM J | AMs

J
g

in this work. (@) A MOP

bent)g_D4, (AM19). (b) Rational design of new MOPs, showing internal combinatorial CBU assembly for (4-planar)g(3-pyramidal)g_Ty, (AM20), and
broader CBU swaps across compatible AMs (e.g., (3-planar)4(3-pyramidal)4_T4, AM2). The ontologised versions of both algorithms are provided

in ESI A3.%

the knowledge graph through OGM. This integration is made
possible by the OGM's foundation on Pydantic, which natively
supports converting structured JSON into strongly-typed Python
objects by validating both the structure and data types against
predefined schemas. In the OGM framework, all user-defined
classes inherit from a common BaseClass, which itself
extends pydantic.BaseModel. This design allows JSON
outputs from LLMs—when conforming to the expected
schema—to be directly parsed into in-memory Python objects.
These objects can then be seamlessly converted into RDF
triples, ensuring that only schema-compliant, semantically

© 2025 The Author(s). Published by the Royal Society of Chemistry

valid data enters the knowledge graph and reducing the likeli-
hood of inconsistencies. This integration establishes a bidirec-
tional connection between unstructured text and semantic
triples, enabling the instantiation of new knowledge extracted
from LLMs while leveraging existing structured knowledge to
guide LLM prompts. By simplifying the transformation of data
between JSON, Python objects, and graph nodes, this approach
minimises coding overhead for researchers while ensuring
compatibility with existing workflows. Full technical details of
this use case are provided in Rihm et al.*

Digital Discovery, 2025, 4, 2123-2135 | 2131

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Digital Discovery Paper

* (3-planar)x4(3-pyramidal)x4_Td * (3-planar)x8(2-bent)x12_Oh * (3-pyramidal)x2(2-bent)x3_D3h * (3-pyramidal)x4(2-linear)x6_Td
(3-pyramidal)x8(2-bent)x12_Cs © (3-pyramidal)x8(2-bent)x12_Th * (4-planar)x6(3-pyramidal)x8_Th (4-pyramidal)x3(2-bent)x6_D3h
(4-pyramidal)x4(2-bent)x8 D4h (4-pyramidal)x6(2-linear)x12_ Oh = (5-pyramidal)x12(2-linear)x30_Ih

[(C6H3)((C6H4)2)3(CO2)3]s VO, class MOP(ogm.BaseClass):
hasMOPFormula: HasMOPFormula[str]
hasMW: HasMW[os.MolecularWeight]
_—p4895.28 g/mol
m & hasCavity: HasCavity[Cavity]
hasOuterDia: HasOuterDia[om.Diameter]
\ hasPoreSize: HasPoreSize[PoreSize]

formula

4

outer _~7 [V408]4[(C6H3)(CO2)3]s>

poresize diameter

Y :
28.18A' 53.76 A Ly ey 4
”% formula 2983.98 g/mol

8 Ta)

Ser WSSy mw
[WV5011]4,[(C14N2H10)Co(OH2)4(C6H4)2(CO2)2]130'> Y o e

5 s ‘e) » 9.96A
formula /9 i
P 4
K ~~ outer

24698.3 g/mol
diameter . oo 4 '

A Q pore size 417 A
2 & AMIS ' largest

57.84 A

‘ smallest

Fig. 7 Visualisation of the expanded chemical space of 799 MOPs, highlighting structural properties such as maximum pore size, largest inner
sphere diameter (a proxy for cavity size), and outer diameter. Points are colour-coded by their AM, and specific examples are circled to indicate
extremes within the design space.

4.3 Natural language question answering geometry and then identifies the largest pore size among
MOPs associated with a selected AM. Next, observing the
presence of a specific CBU within the identified MOP inspires
a query for other MOPs formed from the same CBU. Marie
retrieves detailed information, including structural visual-
isation and data from both literature and computational
predictions. Future work includes integrating OGM into Mar-
ie's codebase to enable dynamic data retrieval and modifica-
tion during interactions.

As OGM recursively pushes all generated triples to the
knowledge graph, newly generated MOPs can be seamlessly
queried by the chatbot Marie,***® enabling interactive explo-
ration of calculated properties and their interrelationships.
This functionality allows researchers to connect computa-
tional results to practical applications, such as screening
MOPs with specific properties. Fig. 9 illustrates this through
chained queries: the user first queries AMs with octahedral

Synthesis of Nii2('pr-cdc)s2. Ni(Acetate),-4H,0 (0.500 g, 2 mmol) and methanol (20 mL) were
added to a 100 mL VWR glass jar. Once the metal salt had dissolved, N,N’-dimethylacetamide
(20 mL) was added to the solution. 9-isopropyl-carbazole-3,6-dicarboxylic acid (0.148 g, 0.5
mmol) and N, N -dunethylacetamxde 20 mL) were added to a 20 mL scmtlllatlon v1al Metal

The World Avatar

Chemical
Synthesis_1

%‘9

=

J LUV - . =Nt
"éteps": [Tr 0 np
{ { J S o n } 5 = s > rdf:ty) hasstep hasseep rdftype
"Add: { i 0 it(query._ ~EP; \/ \/
"stepNumber": update endpomt— A E
“usedVesselName": "vessel 1", 2 SynthesisStep_1 Synthe5|sStep 2
"usedVesselType": "glass jar", i
"addedChemical": [
{ = up F LLM TEN ! hasVessel hasVessel
"chemicalForm Ni(C2H302)2-4H20", =l i — hasAmounl / hasAmoum
“"chemicalName llm_clien pi_k Y
"Ni(acetate)2-4H20" ; :
1 respons L 4 5 i Amount 1 Chemical
"chemicalAmount": "0.500 g, 2 mmol" model 6 5 St Contalner 1 /\
]‘) response_ format VI_TEMP, X,alue un‘lt Chemm rdfs Jabel Solvent Xa\ue un\w‘
"atmosphere": "Air" messages=full_prompt, milli
}') temperature=0.2,top_p=0.1) litre
. ., llm_out = response.choices[0].message.content =
Dissolve": { L Chemical_2
"stepNumber": 2, » . .
"usedVesselName": "vessel 1", syn = ChemicalSynthesis.model_validate_json(llm_out) hasFormula hasFormuTz\
"usedVesselType": "glass jar", for ct lin hasCt 1l o Ves i
“solvent [for chemical in syn.hasChemicallnput(): Ni(C2H302! rdfs:label CH30H rdfs:label
{ i check_iri_query = IRI_QUERY.format(name=chemical.label) 2-4H2! NIk | tat ;
" i et ¥ » s Ickel acetate
EEZQIEZILZ'Q‘:"’[CH3OH", iri = kg_client.perform_query(check_iri_query) met anol
]"methanol" chemical.instance_iri=iri
“chemicalAmount": "20 mL" syn.push_to_kg(kg_client,5) i ! Legend @OntoSyn @OntoSpecies @oum @Ontolab,

Fig. 8 Automated extraction of MOPs synthesis protocols from literature using LLMs and integration into knowledge graphs using OGM. ESIT is
processed through the OpenAl Python API to generate structured JSON outputs, which are then loaded by OGM to expand the knowledge
graph.

2132 | Digital Discovery, 2025, 4, 2123-2135 © 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

What assembly models are representative of octahedron geometry

=

The assembly models that are representative of octahedron geometry include:
* (3-planar)x8(4-pyramidal)x6, Symmetry Point Group: Oh

. (4 i 2-linear)x12, 'y Point Group: Oh

* (4-planar)x6(3-pyramidal)x8, Symmetry Point Group: Oh

* (4-pyramidal)x6(3-pyramidal)x8, Symmetry Point Group: Oh

®

value

@

Which MOP with AM (4-pyramidal)x6(2-linear)x12_Oh has the largest pore size diameter /] @
A\V/

The Metal-Organic Polyhedron (MOP) with the specified assembly model
(4-pyramidal)x6(2-linear)x12_Oh that has the largest pore size diameter value
is represented by the following details:

* Formula: [V509]6[(C14N2H10)Co(OH2)4(C6H4)2(C02)2];,

+ Pore Size Diameter: 11.49 Angstréms

* Provenance: TWA OGM

@

For the largest outer diameter value of MOPs with CBU 38 e
[(C14N2H10)Co(OH2)4(C6H4)2(C02)2], what is its assembly model and its pore size W

For the Metal-Organic Polyhedron (MOP) with the Chemical Building Unit (CBU)
formula [(C14N2H10)Co(OH2)4(C6H4)2(C02)2],
the following details are provided:
* Formula: [WV5011],2[(C14N2H10)Co(OH2)4(C6H4)2(C02)2]5o
+ Assembly Model: (5-pyramidal)x12(2-linear)x30
« Pore Size: 12.30 Angstroms
« Outer Diameter: 57.84 Angstréms

What MOP has AM (5-pyramidal)x12(2-linear)x30 and what are their inner sphere PECN
diameters b

@

1.MOP Formula:
[WV5011];,[(C6H4N)2(CO2)2]50
Inner Sphere Diameter:
35.68 Angstroms

2.MOP Formula:
[V6011];2[(C14N2H10)Co(OH2)4(C6H4)2(C0O2)2]3,
Inner Sphere Diameter:
40.07 Angstréms

B

Fig. 9 Illustration of Marie's natural language interface for exploratory
queries on MOPs data via chained questions.

5 Conclusions

In this work, we introduced twa (The World Avatar) Python
package, a comprehensive framework that democratises the
creation and management of dynamic knowledge graphs. By
abstracting SPARQL queries and ontology manipulation, twa
enables developers to build and maintain RDF-based knowl-
edge structures in a familiar Python environment. Its modular
design facilitates seamless integration with existing Python
ecosystems, while its core object graph mapper (OGM) provides
a versatile means of synchronising semantic data between
Python classes and RDF-backed graph databases. Through
demonstrating how the OGM facilitates the automation of
geometry assembly and synthesis protocol extraction for metal—-
organic polyhedra, we have shown that domain-specific
abstractions can significantly streamline the handling of hier-
archical and relational data, thus lowering barriers to the
broader adoption of knowledge-graph technologies in scientific
research.

Embedding semantic definitions directly into Python code
with twa unlocks powerful automation opportunities in chem-
ical research. As users define classes for molecules, reactions,
and protocols, twa automatically generates and maintains the
underlying RDF schema. Combined with large language models
(LLMs)-driven protocol extraction, which is validated against

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Pydantic-enforced schemas, this framework ensures high data
quality with minimal manual curation and lays the groundwork
for agentic experimentation, where Al agents plan, execute, and
record syntheses in real time under semantic constraints. By
lowering the barrier to semantic web integration, twa acceler-
ates data-centric discovery, promotes interoperability across
laboratories, and moves the field toward robust self-driving
labs.

Looking ahead, future developments will focus on address-
ing current limitations while expanding the framework's capa-
bilities. Planned improvements include the integration of
continuous integration/deployment (CI/CD) pipelines to ensure
consistency across multi-namespace ontologies, optimisations
for query performance at scale (such as batched SPARQL
queries and asynchronous fetches), support for list-based RDF
container (rdf:Seq) and collection (rdf:List) handling in addi-
tion to the current set-based default, reasoning capabilities,*
and convenience inverse relationships. Enhancing interopera-
bility with standards—such as SHACL,* LinkML,* and the
Object-Oriented Linked Data Schema®—is also a key priority,
alongside extending SPARQL support to include property-path
queries for more expressive graph traversal. To improve OGM
usability, we aim to support the automatic generation of Python
class hierarchies from existing ontologies. A user interface
component is also under consideration to assist non-expert
users in defining and navigating semantic schemas. As part of
this effort, we are also exploring mechanisms to simplify the
manual annotation of relationships in Python classes, with the
goal of making schema definition more intuitive for researchers
unfamiliar with ontology modelling. Ultimately, these efforts
contribute toward the broader vision of autonomous and Al-
driven research ecosystems that support more efficient and
transparent data-driven digital discovery.

Data availability

All data covered in this research can be automatically queried
through TWA-Marie interface (https://theworldavatar.io/demos/
marie). The twa Python package is publicly available at the
following links:

o PyPI: https://pypi.org/project/twa/.

e GitHub: https://github.com/TheWorldAvatar/baselib/tree/
main/python_wrapper.

e Documentation: https://theworldavatar.github.io/baselib/.

The OntoMOPs use case using twa is publicly available at:
https://github.com/TheWorldAvatar/MOPTools/tree/main/
twa_mops.

The above codes presented in this paper (twa Python package
and OntoMOPs use case using OGM) are also publicly available
on Zenodo at https://zenodo.org/records/15731397 and can be
accessed via the DOI: https://doi.org/10.5281/zenodo0.15731397.

Conflicts of interest

There are no conflicts to declare.

Digital Discovery, 2025, 4, 2123-2135 | 2133

https://theworldavatar.io/demos/marie
https://theworldavatar.io/demos/marie
https://pypi.org/project/twa/
https://github.com/TheWorldAvatar/baselib/tree/main/python_wrapper
https://github.com/TheWorldAvatar/baselib/tree/main/python_wrapper
https://theworldavatar.github.io/baselib/
https://github.com/TheWorldAvatar/MOPTools/tree/main/twa_mops
https://github.com/TheWorldAvatar/MOPTools/tree/main/twa_mops
https://zenodo.org/records/15731397
https://doi.org/10.5281/zenodo.15731397
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Acknowledgements

This research was supported by the National Research Foun-
dation, Prime Minister's Office, Singapore under its Campus for
Research Excellence and Technological Enterprise (CREATE)
programme. Financial support from the UK Engineering and
Physical Sciences Research Council (EPSRC) grant EP/Y016076/
1 is also gratefully acknowledged. The authors thank Yiqun
Bian for fruitful discussions on geometric vector operations. For
the purpose of open access, the author has applied a Creative
Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising. During the preparation of this work
the authors used ChatGPT in order to enhance the readability
and language of the manuscript. After using this tool, the
authors reviewed and edited the content as needed and take full
responsibility for the content of the publication.

References

1 V. Marx, Nature, 2013, 498, 255-260.

2 T. Berners-Lee, J. Hendler and O. Lassila, Sci. Am., 2001, 284,
34-43.

3 P. Hitzler, Commun. ACM, 2021, 64, 76-83.

4 N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson and
J. Taylor, Commun. ACM, 2019, 62, 36-43.

5 A. Kondinski, J. Bai, S. Mosbach, J. Akroyd and M. Kraft, Acc.
Chem. Res., 2023, 56, 128-139.

6 P. Stromert, J. Hunold, A. Castro, S. Neumann and
O. Koepler, Pure Appl. Chem., 2022, 94, 605-622.

7 A. Kondinski, S. Mosbach, J. Akroyd, A. Breeson, Y. R. Tan,
S. Rihm, J. Bai and M. Kraft, Chem, 2024, 10, 1071-1083.

8 J. Bai, S. Mosbach, C. J. Taylor, D. Karan, K. F. Lee,
S. D. Rihm, J. Akroyd, A. A. Lapkin and M. Kraft, Nat.
Commun., 2024, 15, 462.

9 Directorate General for Research and Innovation (European
Commission), Turning FAIR into Reality: Final Report and
Action Plan from the European Commission Expert Group on
FAIR Data, Publications Office, LU, 2018.

10 L. Pascazio, S. Rihm, A. Naseri, S. Mosbach, J. Akroyd and
M. Kraft, . Chem. Inf. Model., 2023, 63, 6569-6586.

11 A. Maedche, B. Motik and L. Stojanovic, VLDB J. Int. J. Very
Large Data Bases, 2003, 12, 286-302.

12 A. Paschke and R. Schifermeier, in OntoMaven - Maven-
Based Ontology Development and Management of Distributed
Ontology Repositories, Springer International Publishing,
2017, pp. 251-273.

13 K. M. Jablonka, L. Patiny and B. Smit, Nat. Chem., 2022, 14,
365-376.

14 J. Bai, L. Cao, S. Mosbach, J. Akroyd, A. A. Lapkin and
M. Kraft, JACS Au, 2022, 2, 292-309.

15 M. Ledvinka and P. Kfemen, Semant. Web, 2020, 11, 483-524.

16 Memgraph, GQLAlchemy, 2024, https://github.com/
memgraph/gqlalchemy, accessed 29 January 2025.

17 Neodj, neomodel, 2025, https://github.com/neo4j-contrib/
neomodel, accessed 29 January 2025.

18 M. Grove, Empire: RDF for JPA, 2019, https://github.com/
mhgrove/Empire, accessed 01 February 2025.

2134 | Digital Discovery, 2025, 4, 2123-2135

View Article Online

Paper

19 The Apache Software Foundation, Apache jena, 2025, https://
jena.apache.org/, accessed 01 February 2025.

20 A. Chadzynski, S. Li, A. Grisisiaté, J. Chua, M. Hofmeister,
J. Yan, H. Y. Tai, E. Lloyd, Y. K. Tsai, M. Agarwal,
J. Akroyd, P. Herthogs and M. Kraft, Data-Centric
Engineering, 2023, 4, €20.

21 K. Klima, R. Taelman and M. Necasky, in LDkit: Linked Data
Object Graph Mapping Toolkit for Web Applications, Springer
Nature Switzerland, 2023, pp. 194-210.

22 J.-B. Lamy, Artif. Intell. Med., 2017, 80, 11-28.

23 S. Clark, F. L. Bleken, S. Stier, E. Flores, C. W. Andersen,
M. Marcinek, A. Szczesna-Chrzan, M. Gaberscek,
M. R. Palacin, M. Uhrin and]. Friis, Adv. Energy Mater.,
2021, 12, 2102702.

24 J. Akroyd, S. Mosbach, A. Bhave and M. Kraft, Data-Centric
Engineering, 2021, 2, e14.

25 Y. R. Tan, M. Hofmeister, S. Z. Phua, G. Brownbridge,
K. Rustagi, J. Akroyd, S. Mosbach, A. Bhave and M. Kraft,
Beyond Connected Digital Twins - from GIS to The World
Avatar, 2024, Preprint at https://como.ceb.cam.ac.uk/
preprints/332/.

26 A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D. White and
P. Schwaller, Nat. Mach. Intell., 2024, 6, 525-535.

27 Z.Ren, Z. Zhang, Y. Tian and J. Li, ChemRxiv, 2023, preprint,
DOI: 10.26434/chemrxiv-2023-tnz1x-v4.

28 D. A. Boiko, R. MacKnight, B. Kline and G. Gomes, Nature,
2023, 624, 570-578.

29 K. Darvish, M. Skreta, Y. Zhao, N. Yoshikawa, S. Som,
M. Bogdanovic, Y. Cao, H. Hao, H. Xu, A. Aspuru-Guzik,
A. Garg and F. Shkurti, Matter, 2024, 8, 101897.

30 J. Bai, K. F. Lee, M. Hofmeister, S. Mosbach, J. Akroyd and
M. Kraft, Future Gener. Comput. Syst., 2024, 152, 112-126.

31 A. Kondinski, A. Menon, D. Nurkowski, F. Farazi,
S. Mosbach, J. Akroyd and M. Kraft, J. Am. Chem. Soc.,
2022, 144, 11713-11728.

32 A.Kondinski, P. Rutkevych, L. Pascazio, D. N. Tran, F. Farazi,
S. Gangulya and M. Kraft, Digital Discovery, 2024, 3, 2070~
2084.

33 X. Zhou, D. Nurkowski, S. Mosbach, J. Akroyd and M. Kraft, J.
Chem. Inf. Model., 2021, 61, 3868-3880.

34 S. D. Rihm, J. Bai, A. Kondinski, S. Mosbach, J. Akroyd and
M. Kraft, Nexus, 2024, 1, 100004.

35 Pydantic, pydantic, 2025, https://github.com/pydantic/
pydantic, accessed 31 January 2025.

36 RDFLib, rdflib, 2025, https://github.com/RDFLib/rdflib,
accessed 31 January 2025.

37 C. Basca, SuRF: A Python Object RDF Mapper (ORM), 2016,
https://github.com/cosminbasca/surfrdf, accessed 13 May
2025.

38 N. F. Noy and D. L. McGuinness, Ontology Development 101: A
Guide to Creating Your First Ontology, 2001, https://
protegewiki.stanford.edu/images/6/61/
First_ontology_guide.pdf, accessed 29 January 2025.

39 J. Akroyd, A. Bhave, G. Brownbridge, E. Christou,
M. Hillman, M. Hofmeister, M. Kraft, J. Lai, K. F. Lee,
S. Mosbach, D. Nurkowski and O. Parry, CReDo Technical

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://github.com/memgraph/gqlalchemy
https://github.com/memgraph/gqlalchemy
https://github.com/neo4j-contrib/neomodel
https://github.com/neo4j-contrib/neomodel
https://github.com/mhgrove/Empire
https://github.com/mhgrove/Empire
https://jena.apache.org/
https://jena.apache.org/
https://como.ceb.cam.ac.uk/preprints/332/
https://como.ceb.cam.ac.uk/preprints/332/
https://doi.org/10.26434/chemrxiv-2023-tnz1x-v4
https://github.com/pydantic/pydantic
https://github.com/pydantic/pydantic
https://github.com/RDFLib/rdflib
https://github.com/cosminbasca/surfrdf
https://protegewiki.stanford.edu/images/6/61/First_ontology_guide.pdf
https://protegewiki.stanford.edu/images/6/61/First_ontology_guide.pdf
https://protegewiki.stanford.edu/images/6/61/First_ontology_guide.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

Open Access Article. Published on 30 junio 2025. Downloaded on 21/10/2025 19:58:30.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Paper 1: Building a Cross-Sector Digital Twin, 2022, DOI:
10.17863/CAM.81779, accessed 26 Jan 2025.

40 S. D. Rihm, Y. R. Tan, W. Ang, H. Y. Quek, X. Deng,
M. T. Laksana, J. Bai, S. Mosbach, J. Akroyd and M. Kraft,
Nexus, 2024, 1, 100031.

41 D. J. Tranchemontagne, Z. Ni, M. O'Keeffe and O. M. Yaghi,
Angew. Chem., Int. Ed., 2008, 47, 5136-5147.

42 R. Chakrabarty, P. S. Mukherjee and P. J. Stang, Chem. Rev.,
2011, 111, 6810-6918.

43 A. J. Gosselin, C. A. Rowland and E. D. Bloch, Chem. Rev.,
2020, 120, 8987-9014.

44 A. Kondinski, ChemistryEurope, 2025, 3(3), €202400118.

45 A. Kondinski and T. N. Parac-Vogt, J. Chem. Educ., 2019, 96,
601-605.

46 A. Kondinski, J. Moons, Y. Zhang,]. Bussé, W. De
Borggraeve, E. Nies and T. N. Parac-Vogt, J. Chem. Educ.,
2020, 97, 289-294.

47 Y.-H. Wang, K.-W. Tong, C.-Q. Chen, J. Du and P. Yang, Chin.
Chem. Lett., 2024, 35, 109066.

48 A. Kondinski, A. M. Oyarzun, S. D. Rihm, J. Bai, S. Mosbach,
J. Akroyd and M. Kraft, Automated Assembly Modelling of
Metal-Organic Polyhedra, 2024, Preprint at https://
como.ceb.cam.ac.uk/preprints/332/.

49 Y. Zhang, X. Wang, S. Li, B. Song, K. Shao and Z. Su, Inorg.
Chem., 2016, 55, 8770-8775.

50 D. A. Gomez-Gualdroén, Y. J. Colon, X. Zhang, T. C. Wang,
Y.-S. Chen, J. T. Hupp, T. Yildirim, O. K. Farha, J. Zhang
and R. Q. Snurr, Energy Environ. Sci., 2016, 9, 3279-3289.

51 M. A. Addicoat, D. E. Coupry and T. Heine, J. Phys. Chem. A,
2014, 118, 9607-9614.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

52 R. Hoffmann, P. v. R. Schleyer and H. F. Schaefer, Angew.
Chem., Int. Ed., 2008, 47, 7164-7167.

53 M. Suvarna, A. C. Vaucher, S. Mitchell, T. Laino and J. Pérez-
Ramirez, Nat. Commun., 2023, 14, 7964.

54 Q. Zhu, F. Zhang, Y. Huang, H. Xiao, L. Zhao, X. Zhang,
T. Song, X. Tang, X. Li, G. He, B. Chong,]J. Zhou, Y. Zhang,
B. Zhang,]J. Cao, M. Luo, S. Wang, G. Ye, W. Zhang,
X. Chen, S. Cong, D. Zhou, H. Li, J. Li, G. Zou, W. Shang,
J. Jiang and Y. Luo, Natl. Sci. Rev., 2022, 9, nwac190.

55 S. X. Leong, S. Pablo-Garcia, Z. Zhang and A. Aspuru-Guzik,
Chem. Sci., 2024, 15, 17881-17891.

56 OpenAl, OpenAl Python API Library, 2025, https://github.com/
openai/openai-python, accessed 30 January 2025.

57 S. D. Rihm, F. Saluz, A. Kondinski, J. Bai, S. Mosbach,
J. Akroyd and M. Kraft, Extraction of chemical synthesis
information using The World Avatar, 2025, Preprint at
https://como.ceb.cam.ac.uk/preprints/336/.

58 D. N. Tran, S. D. Rihm, A. Kondinski, L. Pascazio, F. Saluz,
S. Mosbach, J. Akroyd and M. Kraft, Natural Language
Access Point to Digital Metal-Organic Polyhedra Chemistry in
The World Avatar, 2024, Preprint at https://
como.ceb.cam.ac.uk/preprints/327/.

59 W3C, Shapes Constraint Language (SHACL), 2025, https://
www.w3.0rg/TR/2017/REC-shacl-20170720/, accessed 28
January 2025.

60 LinkML, LinkML - Linked Open Data Modeling Language,
2025, https://github.com/linkml/linkml, accessed 13 May
2025.

61 S. Stier, OO-LD/schema:
zenodo.11401727.

v0.1.0, 2024, DOL 10.5281/

Digital Discovery, 2025, 4, 2123-2135 | 2135

https://doi.org/10.17863/CAM.81779
https://como.ceb.cam.ac.uk/preprints/332/
https://como.ceb.cam.ac.uk/preprints/332/
https://github.com/openai/openai-python
https://github.com/openai/openai-python
https://como.ceb.cam.ac.uk/preprints/336/
https://como.ceb.cam.ac.uk/preprints/327/
https://como.ceb.cam.ac.uk/preprints/327/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://github.com/linkml/linkml
https://doi.org/10.5281/zenodo.11401727
https://doi.org/10.5281/zenodo.11401727
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00069f

	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f

	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f

	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f
	twa: The World Avatar Python package for dynamic knowledge graphs and its application in reticular chemistryElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5dd00069f

