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ILES enumeration for data
augmentation in generative drug discovery

Helena Brinkmann,a Antoine Argante,a Hugo ter Steegea and Francesca Grisoni *ab

Data augmentation can alleviate the limitations of small molecular datasets for generative deep learning by

‘artificially inflating’ the number of instances available for training. SMILES enumeration – wherein multiple

valid SMILES strings are used to represent the same molecules – has become particularly beneficial to

improve the quality of de novo molecule design. Herein, we investigated whether rethinking SMILES

augmentation techniques could further enhance the quality of de novo design. To this end, we introduce

four novel approaches for SMILES augmentation, drawing inspiration from natural language processing

and chemistry insights: (a) token deletion, (b) atom masking, (c) bioisosteric substitution, and (d) self-

training. Via systematic analysis, our results showed the promise of considering additional strategies for

SMILES augmentation. Every strategy showed distinct advantages; for example, atom masking is

particularly promising to learn desirable physico-chemical properties in very low-data regimes, and

deletion to create novel scaffolds. This new repertoire of SMILES augmentation strategies expands the

available toolkit to design molecules with bespoke properties in low-data scenarios.
Introduction

The chemical universe of drug-like molecules is incredibly vast,
making the discovery of new medicinal drugs with traditional
approaches a daunting task.1 Generative deep learning has
gained remarkable attention due to its ability to generate
molecules on-demand with desirable properties. Notably,
chemical language models2 (CLMs) have shown their potential
to learn complex molecular properties3–5 and have been applied
to numerous wet-lab studies for bioactive ligand design.5–8

CLMs adapt algorithms from natural language processing (NLP)
to learn the ‘chemical language’ and generate molecules in the
form of strings with desirable properties.2

Simplied molecular input line entry system (SMILES)9

strings are one of the most widely used line notations for
CLMs.2,10–13 SMILES strings represent two-dimensional molec-
ular information in the form of text (Fig. 1a) by traversing the
molecular graph and annotating (topo)chemical information
with dedicated characters (‘tokens’) that represent atoms,
bonds, rings, and branches. SMILES are non-univocal: the same
molecule can be represented with different SMILES strings,
depending on the starting atom and the chosen graph traversal
path (Fig. 1a). Such non-univocity becomes benecial to achieve
data augmentation,14 i.e., to articially inate the number of
samples available for training ‘data-hungry’ CLMs. Via SMILES
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enumeration (also referred to as ‘randomization’14), a molecule
is represented by several different SMILES strings during
training. SMILES enumeration yields benecial effects on the
quality of de novo drug designs,15,16 especially in low-data
scenarios.17,18 Moreover, SMILES enumeration has improved
model quality in various other chemistry tasks, e.g., organic
synthesis planning,19,20 bioactivity prediction,21,22 and supra-
molecular chemistry.23

Inspired by the impact of SMILES enumeration, we intro-
duce additional augmentation strategies to further stretch the
boundaries of chemical language modelling. In this work, we
adopted a broad denition of data augmentation from the NLP
domain – namely, as a set of strategies for increasing the
diversity and number of training examples without explicitly
collecting new data.24 This can be achieved by “adding slightly
modied copies of existing data or generating synthetic data
from existing data”.25 By combining augmentation techniques
inspired by NLP25 with chemistry insights, herein, we introduce,
for the rst time, four SMILES augmentation strategies for de
novo design, extending from identity-preserving to identity-
altering augmentations: (a) token deletion, whereby specic
tokens are removed from a SMILES string; (b) atom masking,
which replaces specic atoms with a placeholder token; (c) bi-
oisosteric substitution, which replaces functional groups with
their corresponding bioisosteres,26 and (d) self-training, where
SMILES strings generated by a CLM are used as input for the
next training phase. These approaches, in several variants, were
systematically compared to SMILES enumeration, with varying
training set sizes and in combination with transfer learning.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of SMILES augmentation methods. (a) SMILES enumeration28 (used as a baseline in this work), where multiple SMILES strings are
obtained by starting the graph traversal from different non-hydrogen atoms and/or by proceeding in different directions. (b) Token deletion,
where new SMILES strings are generated by randomly removing tokens from the original string. (c) Atom masking, where atoms are randomly
replaced with dummy tokens (‘[*]’). (d) Bioisosteric substitution, where pre-defined functional groups are substituted with their reported bi-
oisosteres. (e) Self-training, where novel SMILES are generated by a trained CLM and used in turn to the initial set for the next training phase.
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Our results show the distinct advantages of each augmen-
tation strategy, for example, the potential of atom masking as
a good alternative to SMILES enumeration, in particular low-
data scenarios, for distribution learning or deletion for design
of structurally diverse candidates. Ultimately, our work equips
machine learning practitioners with a broader computational
toolkit for chemical space exploration with CLMs.
Results and discussion
Novel data augmentation approaches

In this work, we investigated four strategies for SMILES
augmentation (Fig. 1):

� Token Deletion (Fig. 1b), which removes specic symbols
(‘tokens’) from a SMILES string to generate variations in the
original input. We performed three deletion strategies:

� Random deletion, whereby tokens are randomly removed
from a given string. A similar approach has been explored
for molecular property prediction.27
© 2025 The Author(s). Published by the Royal Society of Chemistry
� Random deletion with enforced validity, whereby, aer
randomly removing tokens, only ‘chemically valid’
SMILES strings are retained.

� Random deletion with protection, whereby only certain types
of tokens are subjected to deletion. In particular, we pro-
tected ring- and branching-related tokens, whose incorrect
notation is a failure mode of CLMs.4

The deletion of tokens for each variant was controlled by
a probability of deletion (p).

� AtomMasking (Fig. 1c), which replaces specic atoms with
a placeholder (‘mask’). We investigated two token masking
strategies:

� Random masking, whereby randomly selected atoms are
replaced by a dummy token (‘*’, Fig. 1c). A similar strategy
was explored for molecular property prediction.27

� Masking of functional groups, whereby atoms belonging to
pre-dened functional groups are masked. This is based
on the hypothesis that masking functional groups might
improve the learning of the ‘chemical semantics’
Digital Discovery, 2025, 4, 2752–2764 | 2753
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compared to random masking. A pre-dened list of
‘chemically relevant’ functional groups was used (Sup-
porting Fig. S1).29

In both cases, the probability of atoms getting masked is
controlled by a user-dened probability (p). Unlike commonly
used masking approaches (e.g., in transformer-based
methods30,31), the aim here is not to predict the masked input,
but to introduce noise into the data to potentially increase
robustness and generalizability.

� Bioisosteric substitution (Fig. 1d), which replaces groups of
tokens with their respective bioisosteres. Bioisosteres – chem-
ical groups that can be interchanged in a molecule while
preserving its biological properties – are a key concept in
medicinal chemistry.26 In this work, pre-dened functional
groups (same as in atom masking) were replaced with the cor-
responding bioisosteres (if any), as reported in the SwissBioi-
sostere Database.32 Functional groups were replaced by
choosing randomly among their subset of top-5 frequently re-
ported bioisosteres (see Materials and methods). The replace-
ment was controlled by a user-dened probability (p).

� Augmentation by self-training (Fig. 1e). We dene self-
training as the process of feeding a generative deep learning
approach its own generated samples. Here, we created
‘synthetic’ SMILES strings by sampling from a trained CLM on
non-augmented SMILES strings, to be used to augment the
training set available (for the follow-up training). This was
achieved by temperature sampling of a trained CLM using a low
temperature value (T = 0.5, see Materials and ethods, eqn (1)).

For each strategy, the augmented SMILES strings were used
as input of the CLM for training. For chemical language
modelling, we used a recurrent neural network with long short-
term memory,33,34 which has found widespread applications in
drug design and in combination with SMILES
enumeration.6,10,11,18,34

Method performance across dataset sizes

We analysed the performance of each method across data size
scenarios, focusing on the ability to learn the ‘chemical syntax’
of the SMILES language and the physico-chemical properties of
the training set. For each augmentation strategy, we trained
CLMs using (a) three levels of probability of perturbation (p =
Fig. 2 Syntactic validity of SMILES across augmentation strategies and au
across five training set sizes (1000, 2500, 5000, 75 000, and 10 000 SMILE
across four repetitions for the analysis. The highest validity obtained by
solid and dashed lines, respectively. Statistically significant difference
augmentation approaches and SMILES enumeration (10×) are marked w

2754 | Digital Discovery, 2025, 4, 2752–2764
0.05, p = 0.15 and p = 0.30) for token deletion, atom masking,
and bioisosteric substitution; (b) four levels of augmentation,
i.e., one-fold (no augmentation), three-, ve- and ten-fold
augmentation (corresponding to using three, ve, and ten
times more SMILES than the original training set size, respec-
tively); and (c) ve training sets extracted from ChEMBL,35 and
containing different numbers of molecules (1000, 2500, 5000,
7500, and 10 000 molecules). Not all methods could augment
until the wanted fold, and therefore were augmented until their
possible maximum (Supporting Table S1). Enumeration was
used as a baseline to benchmark the potential of the new
augmentation strategies; for this method, ten-fold augmenta-
tion was used based on its performance (Supporting Fig. S2).
For each setup, a CLM was trained on the (augmented) set and
used to generate 1000 SMILES across three repeats (3000
generated strings in total) in a next-token prediction approach.

First, we evaluated the ability to learn the ‘chemical syntax’
of the SMILES language. We evaluated the generated SMILES
strings based on: (a) validity, the percentage of SMILES strings
that can be mapped back to ‘chemically valid’ molecules; (b)
uniqueness, the percentage of non-duplicated molecules within
the sampled set; and (c) novelty, the percentage of de novo
designs that are not included in the training sets. For concise-
ness, here we report the results of 3-fold and 10-fold augmen-
tation, while the remaining results can be found in SI Fig. S2.

Varying the perturbation probability p had a moderate but
non-negligible effect on the validity of the generated strings
(Supporting Fig. S2) and little to no effect on the uniqueness
and novelty values (Supporting Fig. S3 and 4). Each method
showed optimal probability values to maximize validity (token
deletion and random masking: p = 0.05, bioisosteric substitu-
tion: p = 0.15; functional group masking: p = 0.30; Supporting
Fig. S2), which will be used for the remainder of this work.

All methods, except for random and protected token dele-
tion, achieve a higher validity compared to the baseline without
augmentation (Fig. 2). The benecial effect of the augmentation
strategies depends on (a) the augmentation fold – the higher,
the better in general, and (b) the training set size – the higher,
the lower the effect on validity, as previously reported for
SMILES enumeration.10 The validity achieved by token deletion
declines or plateaus with increasing dataset size, owing to the
gmentation folds. Several folds of augmentation (three- and ten-folds),
S) were analyzed. For each set-up, 1000 SMILES strings were generated
SMILES enumeration and without any augmentation is represented as
s (one-sided Wilcoxon rank-sum test, p < 0.05) between the new
ith asterisks.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Distribution learning of physico-chemical properties. We report the Kolmogorov–Smirnov (KS) distance between the de novo designs
(3000 SMILES strings) and the training set molecules, computed for selected descriptors (HBA = number of hydrogen bond acceptors, HBD =

number of hydrogen bond donors, MW=molecular weight, and log P= octanol–water partitioning coefficient). For each training set size (1000,
2500, 5000, 7500, and 10 000 molecules), the KS distance is reported for each augmentation strategy and each descriptor. For each descriptor
and training set size, the best and second-best KS distances are highlighted in boldface and italics, respectively. The number of times a given
augmentation strategy provides the best or second-best performance for a given descriptor across training set sizes is also reported. The KS
distances between the training and the test set molecules and for the designs obtained with no augmentation are reported as a reference (n.a.=
not available)

Property Method

Training set size

Times top-21000 2500 5000 7500 10 000

HBA Enumeration 4 � 2 12 � 1 2.3 � 0.7 7 � 2 4.5 � 0.7 3
Token deletion (random) 25 � 11 22 � 6 22 � 5 25 � 8 27 � 4 0
Token deletion (validity) 16 � 2 17 � 2 13 � 1 12.9 � 0.5 20 � 3 0
Token deletion (protected) 33 � 8 14 � 5 17 � 5 18 � 2 17 � 4 0
Atom masking (random) 23 � 2 21 � 2 13 � 5 10.8 � 0.9 7.7 � 0.7 0
Atom masking (funct. group) 14 � 4 8 � 3 10 � 1 6 � 2 7 � 2 2
Bioisosteric substitution 2.6 � 0.5 10 � 2 2.1 � 0.7 5 � 2 6.8 � 0.3 5
Self-training 50.0 � 0.5 18.0 � 0.2 14 � 3 13.0 � 0.6 13.2 � 0.9 0
No augmentation 31 � 4 16 � 2 15.4 � 0.5 18 � 3 13.4 � 0.4 0
Train – test 2 1 1 1 1 n.a.

HBD Enumeration 4 � 3 2 � 1 2 � 2 1.8 � 0.5 3 � 1 4
Token deletion (random) 10.3 � 0.2 8 � 2 8 � 2 6 � 2 10 � 6 0
Token deletion (validity) 4 � 2 5 � 2 3 � 1 4.0 � 0.5 4.1 � 0.8 2
Token deletion (protected) 11 � 4 4 � 1 4 � 2 5 � 2 2.9 � 0.1 1
Atom masking (random) 4 � 2 5 � 2 3.7 � 0.2 3.2 � 0.2 6 � 2 2
Atom masking (funct. group) 11 � 3 11 � 5 4 � 3 7 � 3 3.3 � 0.9 0
Bioisosteric substitution 5 � 3 3 � 2 6 � 3 4 � 1 2.2 � 0.7 2
Self-training 17 � 2 4.7 � 0.9 8 � 1 14 � 2 5.7 � 0.9 0
No augmentation 14 � 3 7 � 1 6 � 2 4 � 1 7.2 � 0.7 0
Train – test 3 4 2 2 2 n.a.

MW Enumeration 12.6 � 0.4 14 � 2 8 � 1 5.6 � 0.6 5 � 1 3
Token deletion (random) 45 � 6 31 � 4 34 � 7 31 � 8 32 � 4 0
Token deletion (validity) 25.5 � 0.7 22 � 3 20 � 3 20 � 1 22 � 2 0
Token deletion (protected) 43 � 5 26 � 3 22 � 6 28 � 3 25 � 4 0
Atom masking (random) 21 � 3 21 � 1 6 � 2 10 � 5 4 � 1 2
Atom masking (funct. group) 11 � 5 9 � 3 6 � 2 6 � 2 5 � 2 4
Bioisosteric substitution 5.6 � 1.0 8 � 2 9 � 1 7 � 1 13.1 � 0.5 2
Self-training 16.1 � 0.7 12.1 � 0.8 11.2 � 0.9 11 � 1 7.5 � 0.1 0
No augmentation 40 � 3 21 � 1 15.3 � 0.2 17 � 1 16 � 2 0
Train – test 3 3 3 3 3 n.a.

Log P Enumeration 11 � 3 7 � 2 8 � 3 3 � 1 5.1 � 0.8 3
Token deletion (random) 31 � 3 19 � 4 22 � 4 18 � 6 19 � 2 0
Token deletion (validity) 17 � 5 12 � 1 12 � 2 13 � 2 12 � 3 0
Token deletion (protected) 32 � 11 22 � 4 16 � 3 22.1 � 0.6 17 � 2 0
Atom masking (random) 11 � 2 10 � 1 8 � 2 7 � 2 8 � 2 0
Atom masking (funct. group) 8 � 3 6 � 2 4.7 � 0.7 7 � 3 8 � 2 3
Bioisosteric substitution 4.8 � 0.4 6 � 2 7 � 4 4 � 1 7.5 � 0.5 3
Self-training 20 � 1 7.9 � 0.5 11 � 1 11.1 � 0.8 11 � 2 0
No augmentation 14 � 7 11 � 2 3.2 � 0.7 12 � 2 5.7 � 0.3 2
Train – test 6 5 4 3 3 n.a.
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effect of model training with invalid and/or less common
SMILES strings (as particularly visible with high p values and
augmentation folds). Only self-training augmentation performs
better than enumeration for all dataset sizes for 10× augmen-
tation (one-sided Wilcoxon rank-sum test, p < 0.05).

On uniqueness and novelty, fewer differences among
methods exist (Supporting Fig. S3 and 4), and almost all
methods achieve values close to 100%. Atom masking yielded
lower uniqueness and novelty values than the other approaches
(up to 78.9% worse, SI Fig. S3), possibly owing to the articial
© 2025 The Author(s). Published by the Royal Society of Chemistry
token ‘*‘, which might bias the model towards learning and
reproducing patterns already seen in the training data. There is
no clear evidence if higher probability works better or worse for
atom masking in general.

Next, we evaluated each augmentation method for its ability
to match the physico-chemical properties of the training set
(‘distribution learning’). To this end, we computed eight prop-
erties: number of aliphatic and aromatic rings, molecular
weight (MW), octanol–water partition coefficient (log P),
number of hydrogen bond donors (HBD) and acceptors (HBA),
Digital Discovery, 2025, 4, 2752–2764 | 2755
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topological polar surface area (TPSA), and number of rotatable
bonds. The similarity between the training set and the de novo
designs was measured via the Kolmogorov–Smirnov (KS)
distance36 (the lower, the higher the similarity).

The results depend on the property being analysed (Table 1:
HBA, HBD, MW, and log P; Supporting Table S1: number of
aliphatic and aromatic rings and of rotatable bonds, and TPSA).
Moreover, the distribution learning ability depends on the size
of the training set (Table 1 and Table S1). Smaller training sets
(1000 and 2500 molecules) yielded mostly higher KS values than
the bigger ones (5000 molecules and above), highlighting the
difficulty in learning property distribution properties from
limited data. Certain properties (i.e., number of aliphatic rings,
and hydrogen bond donor) were less affected by the augmen-
tation strategy, with no clear property-augmentation trends.

SMILES enumeration is always performed in the top-two
approaches across descriptors. When considering the new
strategies, atom masking and bioisosteric substitution per-
formed overall the best on distribution learning. This is also
visible in the PC analysis (Supporting Fig. S5), showing that
enumeration performs best, but atommasking and bioisosteric
substitution are close by in performance. Bioisosteric shows the
least dependence towards dataset sizes, with bioisosteric
substitution ranking consistently among the top two
approaches for ve out of eight descriptors. Functional group or
random masking performs best only in three out of eight
properties each, but, in general, shows good results in most
properties. Substitution of functional groups can inuence
certain properties (such as the number of rotatable bonds), but
not others – which makes bioisosteric replacement useful for
specic goals only (e.g., improve selectivity by replacing smaller
fragments with bigger ones). Token deletion consistently per-
formed poorly across all properties and sizes for KS values –

oen even worse than using no augmentation. This is likely due
to the detrimental effect of eliminating SMILES tokens on the
corresponding molecular properties. Finally, self-training
mostly performed slightly worse than not using data augmen-
tation in most cases, with its worst performance for 1000
molecules. This performance trend is expected, since training
on smaller datasets (to generate ‘augmented’ SMILES inputs)
challenges the distribution learning capabilities of CLMs (Table
1, Supporting. Table S2).
Effect of augmentation on transfer learning

In low-data scenarios, transfer learning is oen utilized rather
than training from scratch.37,38 Transfer learning allows to
‘pretrain’ a CLM on a large corpora of molecules, and later to
ne-tune it on task-specic data (e.g., bioactive molecules) to
learn the underlying property distribution. To test the potential
of the augmentation techniques with transfer learning, we pre-
trained a CLM on 1.5 M SMILES strings from ChEMBL.35 The
pre-trained CLM was then ne-tuned on the molecules tested
on three targets,39 separately: (1) Peroxisome Proliferator Acti-
vated Receptor d (PPARd), (2) Serine/threonine-protein kinase
(PIM1), and (3) Janus kinase 2 (JAK2). For each target, we
created two groups of molecules based on their pairwise
2756 | Digital Discovery, 2025, 4, 2752–2764
substructure similarity (determined as Tanimoto similarity on
extended connectivity ngerprints40): (1) ‘high-similarity’
molecules, having pairwise similarity larger than or equal to 0.8,
and (2) ‘low-similarity’molecules, whose pairwise similarity was
equal to or lower than 0.4. For each of these two similarity
scenarios, we created two ne-tuning sets of 10 and 100 mole-
cules. In total, 12 datasets were used for model ne-tuning and
molecule generation (1000 SMILES strings sampled across three
repetitions) with each augmentation strategy. A 10-fold
augmentation was applied to all approaches, whenever
possible. If 10-fold augmented SMILES could not be generated
(e.g., due to a limited number of functional groups to be
replaced), augmentation until saturation was performed (Sup-
porting Table S3). Validity, uniqueness, and novelty were
monitored for ‘sanity check’41 (Supporting Table S4).

The methods were analysed for their ability to learn the
distribution of the selected molecular properties, measured via
the Kolmogorov–Smirnov (KS) distance (Supporting Table S5–
7). In general, distribution learning is more effective when 100
and/or dissimilar ne-tuning sets are used (Fig. 3a). All
augmentation methods performed on a par with SMILES
enumeration when 10 highly similar ne-tuningmolecules were
used. Moreover, functional group masking signicantly out-
performed SMILES enumeration (Wilcoxon signed-rank test, p-
value < 0.008). For 100 molecules and highly similar data, we
can see that random masking and deletion with enforced val-
idity outperforms SMILES enumeration (p-value < 0.03), and
functional group masking and bioisosteric substitution
perform on a par with SMILES enumeration. In low-similarity
scenarios, most methods perform similar to no augmentation
(exceptions are enumeration, atom masking, random deletion,
and deletion with enforced validity, p-value < 0.02) and perform
similarly to SMILES enumeration for ne-tuning sets of 10
molecules (Wilcoxon signed-rank test, a = 0.05) when general
trends are analysed.

To provide a more ne-grained overview of the KS values
across descriptors and targets beyond the analysis of general
trends, we performed a principal component analysis (PCA). For
each dataset size (10 and 100) and similarity level (high, low),
the results were described in a tabular form, with each
augmentation approach applied to a target being a row,
described by 24 KS values (eight descriptors for each targets,
across three targets, in comparison to the ne-tuning set) as the
columns. As in previous studies,39,42,43 to improve interpret-
ability, we added two additional rows: ‘best’ and ‘worst’, corre-
sponding to the minimum andmaximum KS values obtained in
each column, respectively. This addition ‘stretches’ the variance
explained by the rst component in the best-worst direc-
tion,39,42,43 so that the closer a method is to ‘best’ along the best-
worst direction, the better it performs on average across
descriptors (Fig. 3b–e). Deviations from the best-worst line
represent descriptor- and target-dependent variability.39,42,43

Except for the scenario with 100 low-similarity ne-tuning
data (Fig. 3e), at least one augmentation method outperforms
SMILES enumeration on average (Fig. 3b–d). In these cases,
random masking or functional group masking are among the
best performing methods (and the second and third best in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Distribution learning after fine-tuning. The Kolmogorov–Smirnov (KS) distance for eight selected descriptors was calculated between
3000 designs and the respective fine-tuning sets (the lower the KS, the better). (a) KS distances grouped by fine-tuning set similarity (high/low)
and number of fine-tuning molecules (10, 100). Statistically significant differences (Wilcoxon signed-rank test, p < 0.05) between the new
augmentation approaches and no augmentation or SMILES enumeration are marked with asterisks. (b–e) Principal component analysis (PCA)
obtained on the KS values for different dataset sizes (b and d: 10; c and e: 100) and similarity levels (b and c: high; d and e: low). ‘Best’ and ‘Worst’
indicate the lowest and highest values of KS obtained across experiments, and the line connecting represents the direction of average
performance variation from the best to worst performance.
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remaining case, Fig. 3e). The relative performance of the other
methods (except for self-training performing consistently
poorly) depends on the case study (SI Table S5–7), with no
evident trends. These results underscore the potential of atom
masking for distribution learning, and the need to investigate
the usefulness of the other approaches on a case-by-case basis.
Molecular scaffold analysis

The analysis of the generated molecular scaffolds holds great
importance in drug discovery.44 On the one hand, preserving
“privileged” molecular scaffolds for bioactivity can serve for
molecule optimization,45 and, on the other hand, the explora-
tion of structurally distinct compounds having similar activity
can accelerate the identication of new therapeutic agents with
Fig. 4 Percentage of the most common scaffolds after training with eac
tuning sets were determined, and for each method, the percentage of t
dataset sizes (a and c: 10; b and d: 100) and similarity levels (a and b: high
graph with the percentage of its occurrence in the fine-tuning set. The
respectively.

2758 | Digital Discovery, 2025, 4, 2752–2764
improved efficacy and selectivity.46 For this reason, we used the
results of all transfer learning experiments to analyse the
generated molecular scaffolds (computed via the Bemis-
Murcko47 algorithm).

First, we analysed the ve most frequent scaffolds and
compared them with the ve most frequent scaffolds in the
respective ne-tuning sets (Fig. 4 [PPARd], and Supporting
Fig. S6 and 7 [PIM1, JAK2]). In general, using more similar
molecules (Fig. 4a and b) for ne-tuning leads to a better
matching of the most frequent molecular scaffolds by the
CLMs. In such high-similarity settings, most methods (except
for self-training) have a similar or better ability to reproduce
‘recurrent’ scaffolds than SMILES enumeration (Fig. 4a and b).
This observation suggests a better capability to learn the
underlying structural features of the ne-tuning sets compared
h method for PPARd. The most common scaffolds of the PPARd fine-
he matched scaffold of the 4000 designs was calculated for different
; c and d: low). The most common scaffolds are visualized above every
analysis for PIM and JAK2 can be found in Supporting Fig. S6 and S7,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Scaffold diversity and novelty. Metrics were measured after fine-tuning on bioactive molecules for three targets (PPAR, PIM1, and JAK2)
using 10 and 100molecules selected with (a) high similarity and (b) low similarity. Scaffold diversity and novelty relative to the fine-tuning sets (FT)
and pre-training sets (PT) are reported as the mean ± standard deviation for 10 fine-tuning molecules. For each experimental setup and each
metric, the best and second best values are reported in boldface and italics, respectively

Similarity Target Augmentation

10 ne-tuning molecules 100 ne-tuning molecules

Scaffold
diversity

Scaffold
novelty (FT)

Scaffold
novelty (PT)

Scaffold
diversity

Scaffold
novelty (FT)

Scaffold
novelty (PT)

High PPARd Enumeration 67 � 2 67 � 2 35 � 1 60 � 1 56 � 1 42 � 1
Token deletion (random) 78 � 1 78 � 1 46 � 1 70 � 2 62 � 2 41.8 � 0.9
Token deletion (validity) 77.0 � 0.9 76.3 � 0.9 45 � 1 52 � 2 48 � 2 35 � 2
Token deletion (protected) 82 � 1 81 � 1 46 � 3 64.5 � 0.8 56.3 � 0.8 37 � 3
Atom masking (random) 77 � 3 75 � 2 44 � 1 61.3 � 0.8 53 � 1 35 � 2
Atom masking (funct. Group) 81 � 1 80 � 1 45 � 1 63 � 4 55 � 4 35 � 2
Bioisosteric substitution 80 � 1 80 � 1 51 � 3 54 � 2 51 � 2 35.2 � 0.3
Self-training 83 � 1 83 � 1 40.1 � 0.9 55.3 � 0.9 53.8 � 0.9 25 � 1
No augmentation 93 � 1 93 � 1 52 � 3 77 � 1 75 � 1 44 � 1

PIM1 Enumeration 93.6 � 0.3 93.2 � 0.2 58.2 � 0.8 91 � 2 88 � 2 77 � 1
Token deletion (random) 94.1 � 0.1 93.6 � 0.1 59.9 � 0.1 92 � 2 85 � 2 75 � 2
Token deletion (validity) 93.4 � 0.9 92.9 � 1.0 57 � 2 83 � 2 77 � 2 71 � 2
Token deletion (protected) 94.4 � 0.2 93.9 � 0.1 60 � 2 92 � 2 86 � 2 74.5 � 0.8
Atom masking (random) 90.5 � 0.4 89.8 � 0.5 56 � 2 77.1 � 0.9 68.3 � 0.4 57 � 2
Atom masking (funct. Group) 86.1 � 0.4 85.3 � 0.4 51 � 1 80.1 � 0.6 72.6 � 0.9 55 � 2
Bioisosteric substitution 92.8 � 0.8 92.5 � 0.8 53.5 � 1.0 83 � 2 81 � 2 56.7 � 0.5
Self-training 86.5 � 0.8 86.5 � 0.8 45 � 1 85.7 � 0.4 84.0 � 0.5 48 � 1
No augmentation 94.7 � 0.7 94.5 � 0.7 54.6 � 0.6 93 � 2 91 � 1 56.5 � 0.7

JAK2 Enumeration 93.2 � 0.4 93.2 � 0.4 63.8 � 0.2 87.1 � 0.8 85 � 1 73 � 2
Token deletion (random) 96.8 � 0.9 96.3 � 0.9 70 � 2 91 � 1 87.2 � 0.4 72 � 3
Token deletion (validity) 95.8 � 0.5 95.1 � 0.4 75 � 2 78.2 � 0.7 76.3 � 0.7 68 � 1
Token deletion (protected) 97.3 � 0.4 96.7 � 0.4 76.1 � 0.6 89 � 2 85 � 2 72 � 4
Atom masking (random) 93 � 1 92 � 1 68 � 1 76.8 � 0.7 72 � 1 55.5 � 0.8
Atom masking (funct. Group) 93.8 � 0.6 92.7 � 0.7 68 � 2 81.0 � 0.3 77.7 � 0.9 60 � 2
Bioisosteric substitution 92.8 � 0.2 92.0 � 0.2 67.5 � 0.2 75.1 � 1.0 71.4 � 1.0 59 � 1
Self-training 87 � 1 87 � 1 49 � 2 86.0 � 0.4 85.2 � 0.3 51 � 1
No augmentation 94.8 � 0.4 94.8 � 0.4 58.4 � 0.3 93 � 1 91 � 1 61 � 1

Low PPARd Enumeration 76.9 � 0.3 76.6 � 0.3 40.1 � 0.8 86.1 � 0.6 84.7 � 0.8 58 � 2
Token deletion (random) 85.6 � 1.0 85.0 � 1.0 47 � 2 81.2 � 0.7 77 � 1 42 � 1
Token deletion (validity) 91.0 � 0.9 90.5 � 1.0 48 � 3 84.5 � 0.5 82.4 � 0.4 46.1 � 0.9
Token deletion (protected) 91.5 � 0.6 91.3 � 0.6 52 � 2 86 � 1 84 � 1 46 � 1
Atom masking (random) 90.0 � 0.6 89.7 � 0.6 49 � 1 83 � 3 80 � 2 42 � 2
Atom masking (funct. Group) 83 � 2 82 � 2 44 � 2 82.3 � 0.8 79.4 � 0.9 44 � 1
Bioisosteric substitution 90.0 � 1.0 89.7 � 0.9 51 � 2 91 � 1 89 � 1 55.0 � 0.8
Self-training 89 � 1 89 � 1 46.2 � 0.4 71 � 1 71 � 1 33 � 1
No augmentation 94 � 2 94 � 2 54 � 2 88.9 � 0.8 88.0 � 0.9 46 � 3

PIM1 Enumeration 90.0 � 0.3 89.8 � 0.2 47.6 � 0.7 93.5 � 0.3 91.6 � 0.5 63 � 1
Token deletion (random) 94.6 � 0.6 93.9 � 0.6 55.6 � 0.7 92.6 � 0.1 90.0 � 0.4 54.0 � 1.0
Token deletion (validity) 94.9 � 0.2 94.8 � 0.2 56 � 1 94.9 � 0.5 93.0 � 0.7 55 � 2
Token deletion (protected) 95.5 � 0.4 95.4 � 0.4 57.4 � 0.5 94.5 � 0.4 92.5 � 0.7 55 � 1
Atom masking (random) 96.0 � 0.4 95.6 � 0.3 54 � 2 93.9 � 0.3 91.8 � 0.7 52.4 � 0.9
Atom masking (funct. Group) 94.7 � 0.3 94.2 � 0.3 55 � 1 91.5 � 0.3 88.3 � 0.2 49.6 � 0.4
Bioisosteric substitution 95.2 � 0.6 95.0 � 0.5 55 � 2 94.4 � 0.6 93.4 � 0.6 55 � 1
Self-training 88.6 � 0.5 88.6 � 0.5 46.5 � 0.9 87.9 � 0.9 87.5 � 0.8 42.2 � 0.4
No augmentation 94.8 � 0.9 94.7 � 0.8 54 � 2 94.5 � 0.7 93.8 � 0.6 53 � 2

JAK2 Enumeration 83 � 1 83 � 1 39.8 � 0.3 94.3 � 0.9 93 � 1 66 � 1
Token deletion (random) 91.9 � 0.5 91.3 � 0.4 51 � 1 95 � 1 93 � 2 59 � 1
Token deletion (validity) 93.1 � 0.6 92.8 � 0.6 51.8 � 0.4 95.0 � 0.8 93.5 � 1.0 56 � 2
Token deletion (protected) 91.3 � 0.7 90.6 � 0.6 51 � 1 96.7 � 0.9 96 � 1 59 � 1
Atom masking (random) 90.8 � 0.4 90.3 � 0.4 52.3 � 0.9 93.5 � 0.4 91.1 � 0.5 55 � 2
Atom masking (funct. Group) 92.9 � 0.3 92.4 � 0.2 54 � 2 94.1 � 0.2 92.2 � 0.5 56 � 2
Bioisosteric substitution 94.5 � 0.2 94.3 � 0.1 54.3 � 0.9 94.7 � 0.6 94.2 � 0.7 57.5 � 0.9
Self-training 87.6 � 0.7 87.5 � 0.6 44.8 � 0.7 87 � 1 86.6 � 0.9 41.4 � 0.9
No augmentation 94 � 1 94 � 1 53 � 1 96 � 1 96 � 1 53.3 � 0.3

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 2752–2764 | 2759
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to SMILES enumeration. Atom masking showed the best ability
to reproduce frequent scaffolds across experiments for both
high and low similarity datasets, followed closely by token
deletion.

Another desirable property when performing de novo design
is the capacity to generate chemically diverse structures that go
beyond the molecules used for training. To this end, we ana-
lysed the ability of each augmentation strategy to generate
diverse and novel molecular scaffolds47 compared to the mole-
cules used for training. Using all the molecules generated
during the transfer learning experiments, we measured (a)
scaffold diversity, i.e., the number of novel scaffolds within the
sampled molecules, and (b) scaffold novelty, i.e., the number of
sampled scaffolds that are not in the ne-tuning or pre-training
sets. The values obtained without using augmentation were
reported as a baseline.

Performing no data augmentation yields usually high or best
results in the creation of diverse and novel scaffolds. In all
cases, at least two augmentation strategies perform better than
SMILES enumeration when it comes to generating diverse and
novel molecular scaffolds for very low-data settings (Table 2).
Token deletion performs on average the best, regardless of the
molecular similarity, the number of ne-tuning molecules and
the macromolecular target. These results are owing to the
nature of the approach, which perturbs the input by generating
diverse SMILES for training (3–70% scaffold novelty in the
training set, Supporting Table S8). The other methods based on
input ‘perturbation’ (bioisosteric substitution, self-training,
Supporting Table S8) also oen show top performances across
targets. In general, the performance of the other augmentation
methods in comparison with SMILES enumeration depends on
the considered target and ne-tuning scenario.

By combining these two facets of scaffold analysis, token
deletion results in the most promising approach for exploring
both novel chemical scaffolds and decorations of recurring
scaffolds. Atom masking – while still producing good values of
novelty and diversity – is better suited to decorating recurring
ne-tuning scaffolds). Like enumeration, bioisosteric substitu-
tion is a valuable option for both scaffold decoration and scaf-
fold exploration, with a dataset-dependent performance. These
results conrm the value of optimizing the chosen SMILES
augmentation strategies when utilizing generative deep
learning for chemical space exploration and/or molecule
optimization.

Conclusions and outlook

In chemical language modelling, SMILES enumeration has
showed incredible results for data augmentation. In this work,
we rethink how SMILES strings can be augmented for de novo
design with chemical language models. In particular, we
introduced four augmentation strategies (and several variants)
and systematically analysed their ability to generate molecules
with desirable properties and relevant molecular scaffolds. This
systematic study shed light on the different advantages and
unique features of each augmentation strategy. While this study
has relied only on LSTMs, the augmentation strategies reported
2760 | Digital Discovery, 2025, 4, 2752–2764
herein can be applied in principle to any neural network
architecture suited for sequences.

Our study reveals that some of these methods can advance
chemical language modelling further in comparison with the
well-established SMILES enumeration. No augmentation strategy
is able to ‘rule them all’, but the optimal approach depends on
the overall goal. When training from scratch with small datasets
(e.g., less than 5000 training molecules), different augmentation
methods allow matching different physico-chemical properties
differently. In this context, bioisosteric replacement, self-training
and atom masking are particularly interesting alternatives to
SMILES enumeration, depending on the property of interest.
When combined with transfer learning, atom masking and
deletion with enforced validity conrmed their potential to
perform similar to or better than SMILES enumeration in their
distribution learning and scaffold matching capabilities, espe-
cially with (a) low-data regimes (i.e., 10 ne-tuning molecules) or
(b) ne-tuning sets composed of highly similar molecules. The
other augmentation strategies showed a task-dependent perfor-
mance.When it comes to navigating the chemical space in search
for diverse molecules, strategies that perturb the input SMILES
for augmentation (e.g., token deletion and bioisosteric substitu-
tion) show the highest potential to provide novel scaffolds (while
still managing to match scaffolds from the training set). These
results underscore the opportunities of these new augmentation
strategies to further accelerate experimental de novo design
campaign. We expect each one of these techniques to be better
suited for chemical space exploration (e.g., bioisosteric replace-
ment and token deletion) or library enlargement (e.g., atom
masking). In future works, the combination of different
augmentation strategies presents a promising direction, which
could further improve the results.

While our study only focused on SMILES strings, its results
can be applied to virtually any molecular line notation such as
(Group)SELFIES,12,48 fragSMILES12,48,49 and SAFE.50 Moreover,
while here we focused on distribution learning, these newly
introduced augmentation techniques are expected to support
other learning regimes, such as reinforcement learning.51 In this
context, we expect approaches that allow for a higher diversity of
molecular designs (e.g., token deletion and bioisosteric replace-
ment) to be particularly benecial to explore uncharted regions
in the chemical space, steered by model rewards. Finally, the
approaches presented herein are easy to expand based on the
user needs (e.g., by specifying a different set of functional groups
to be considered/replaced for masking and bioisosteric substi-
tution) and are hence expected to show additional potential in
the future. While some of the newly introduced augmentation
strategies are benecial to increase the quality of the de novo
designs, their suitability to other molecular tasks (e.g., structure–
activity or structure–property relationship prediction) has yet to
be demonstrated by additional studies.

Materials and methods
Data collection and curation

ChEMBL data collection and preprocessing. 2 372 647
molecules in the form of SMILES strings were collected from the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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ChEMBL35 database (v. 33). Salts and corresponding charges
were removed, stereochemistry information was eliminated,
and SMILES strings were sanitized. Duplicates were removed,
and SMILES strings that contained atoms different than a pre-
dened set (corresponding to the tokens ‘C’, ‘O’, ‘N’, ‘S’, ‘P’, ‘F’,
‘Cl’, ‘Br’, ‘I’, ‘c’, ‘n’, ‘o’, and ‘s’) were eliminated. Canonical
SMILES strings shorter than six and longer than 150 tokens
were eliminated. Lastly, a randomized SMILES string was
created for each molecule.

Dataset creation for training size analysis. FromChEMBL, we
created several subsets to investigate the effect of the training
data size. Here, 50 000 SMILES strings were randomly sampled
for follow-up clustering. A spectral clustering algorithm52 was
used to cluster the SMILES strings based on their generic Bemis-
Murcko47 scaffolds. Stratied sampling by cluster assignation on
25 000 SMILES strings was used to create the datasets of different
sizes (10 000, 7500, 5000, 2500, and 1000) and ensure that smaller
datasets were included in the bigger ones for comparability. Each
dataset was randomly divided into a training (90%) and a vali-
dation (10%) set. From the remaining 25 000 SMILES strings,
a test set (1000 SMILES strings) was obtained via cluster-based
stratication. The SMILES strings were then tokenized,16 and
the start-of-the-sequence (‘G’) and end-of-the-sequence tokens
(‘E’) were added.53 The tokenized SMILES strings were padded to
the maximum length (150 tokens) and one-hot encoded.

Transfer learning data. (1) Pre-training. The curated
ChEMBL dataset was used (2 213 855 molecules) for further
curation. A single, randomized, SMILES string was used for pre-
training, to not (dis)favour any augmentation technique. The
dataset was randomly divided into a training (70%, 1 549 696
molecules), a validation (10%, 221 385 molecules), and a test
(20%, 442 771 molecules) set. (2) Fine-tuning. Three macro-
molecular targets were chosen from the MoleculeACE54 reposi-
tory: Peroxisome Proliferator Activated Receptor-d (PPARd),
Serine/threonine-protein kinase (PIM1), and Janus kinase 2
(JAK2). These datasets were pre-processed as mentioned before.
Aerwards, similar and dissimilar sets of two different sizes (10,
100) were created. Datasets of similar molecules were created by
performing agglomerative clustering, as reported previously.55

To reach high similarity, 20 parent clusters and 40 subclusters
among the parent clusters were determined. Aerwards, the
clusters and subclusters having more than the target number of
molecules (10 or 100) were analysed for their Tanimoto simi-
larity on Extended Connectivity Fingerprints (ECFPs, length =

1024 bits, radius = 2 bonds). Molecules with high pairwise
similarity with each other (larger than or equal to 0.8) were
assigned to the ne-tuning set of highly similar molecules. To
obtain low-similarity datasets, we used the function Leader_-
Picker of RDKit to identify molecules with a Tanimoto similarity
lower than or equal to 0.4.
Data augmentation

SMILES enumeration was performed as proposed previously.15

For the other strategies, augmentation was performed as
follows:
© 2025 The Author(s). Published by the Royal Society of Chemistry
� Token deletion. Token deletion took place aer vocabulary
creation and tokenization. Each token of a molecule was parsed
and deleted with a probability p. Validity was enforced by
sanitizing the token-depleted SMILES strings and discarding
the invalid SMILES strings. In protected deletion, the removal of
tokens identifying ring structures (numbers from ‘1’ to ‘9’, and
‘%’), and branches (‘(‘ and ’)’) was not allowed.

� Atom masking. Aer transforming the SMILES strings into
an RDKit molecular object, each atom within the molecule was
masked with a probability p using the dummy atom ‘*‘. Each
atom in the molecular object was parsed and replaced. For
functional group masking, SMARTS patterns were used to
identify substructures to mask. A test was conducted to ensure
that the masked and original SMILES string only differ in the ‘*’
token. Only parts of the SMILES input to the model are masked;
the target remains the original, unmasked SMILES string.

� Bioisosteric substitution. Molecules were fragmented
using the ‘Breaking of Retrosynthetically Interesting Chemical
Substructures’ (BRICS) algorithm.56 The list of possible
replacements for each substructure was retrieved from Swiss-
Bioisostere.57 SwissBioisostere, along with the possible
replacements, also include the frequency of how many a certain
bioisosteric replacement was found to occur (based on better,
similar or worse performance in bioactivity). The top ve most
frequent replacements were chosen as candidates for augmen-
tation. Each molecule was parsed for ‘augmentable’ fragments,
the matching fragments were substituted with a probability p
with one of the candidate fragments, and themolecule was then
re-assembled and converted into a SMILES string.

� Self-training. Aer hyperparameter optimization (as
described below), the CLMs were trained with all available, non-
augmented training SMILES strings (in their non-canonical
version), using temperature sampling17 (T = 0.5, eqn (1)). The
trained CLMs were used to generate de novo designs. Valid,
novel, and unique SMILES strings were retained and used to
augment the training set (with the selected augmentation fold).

In this work, an n-fold augmentation of a molecule refers to
using the original SMILES string along with (n-1) additional
SMILES strings generated via a chosen augmentation approach.
All procedures were applied to achieve the desired or highest
possible augmentation fold, and with the desired probability of
perturbation (p) for token deletion, atom masking and bi-
oisosteric substitution (p = 0.05, 0.15, 0.30). All augmentation
methods were checked for uniqueness and for their presence in
the original training dataset.
Model optimization and training

For each augmentation method, the same model architecture,
loss, and hyperparameters were used.

Model training, and hyperparameter optimization. Recur-
rent neural networks with long short-term memory (LSTM,
unidirectional) were optimized using hyperparameter values in
agreement with the literature:10,17 (a) number of LSTM layers =
[2, 3], (b) number of hidden units of the LSTM layer= [256, 512],
(c) learning rate= [0.001, 0.005, 0.0001]; (d) batch size= [32, 64,
128]. Somax activation and Adam optimizer were used. Each
Digital Discovery, 2025, 4, 2752–2764 | 2761
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combination was trained for 500 epochs, and early stopping on
the cross-entropy loss in validation was applied (patience = 10,
minimum loss change = 0.0001). The model with the best
validation loss was used to sample 1000 SMILES strings with
a sampling temperature17 of T = 1.0 (multinomial sampling,
eqn (1)), across three independent repeats.

Transfer learning. Hyperparameters were chosen in agree-
ment with the literature.10,17 For pre-training, three LSTM layers
with 512 hidden units each, a learning rate of 0.0005, and a batch
size of 512 were chosen, in combination with somax activation
and Adam optimizer. The model was pre-trained for 500 epochs,
and early stopping on the cross-entropy loss in validation was
applied (patience = 10, minimum loss change = 0.0001). The
trained model was used to sample 1000 SMILES strings across
three repeats with multinomial sampling17 (T = 1.0, eqn (1)).
During ne-tuning, a learning rate of 0.0000005 and a clipping
norm of 1 were used. The model was ne-tuned for 500 epochs
with early stopping and sampling as for the pre-training.

Molecule generation and evaluation

Temperature sampling. Molecules were generated via
temperature sampling, which controls the randomness of the
generation. In particular, given a trained CLM, the probability
of sampling the i-th token of the vocabulary at a given portion of
a SMILES string is determined as follows:

pi ¼ ezi=T
P

j

ezi=T
(1)

where zi is the CLM (logit) output for the i-th token, and j runs over
all SMILES tokens in the vocabulary. The temperature value (T)
controls the randomness of the sampling: T = 1 corresponds to
standard somax sampling with no post-hoc modication of the
probabilities (multinomial sampling), T > 1 allows generating
more diverse outputs, while T < 1 promotes higher-probability
tokens, resulting in more deterministic and repetitive outputs. In
this work, we used T = 1.0 (multinomial sampling) for CLM eval-
uation. For self-training augmentation, a value of T= 0.5 was used.

Evaluation. The sampled SMILES strings were evaluated for
their validity, uniqueness, and novelty using tools available in
the RDKit. Eight molecular descriptors were computed: number
of aliphatic and aromatic rings, molecular weight, partition
coefficient (log P), number of hydrogen bond acceptors and
donors, number of rotatable bonds, and topological surface
area (TPSA). The Kolmogorov–Smirnov (KS) distance was
computed as implemented in scipy (scipy.kstest). Scaffold
diversity and novelty53 were calculated by determining their
Bemis-Murcko47 scaffold of each valid molecule.

Software and code

All calculations were performed in a Python (v. 3.9.18) envi-
ronment. We used RDKit v. 2023.9.5 (ref. 58) for molecule
handling, SMILES canonicalization, processing and sanica-
tion, and for the calculation of molecular ngerprints, scaffolds
and descriptors. Clustering was performed with scikit-learn (v.
1.3.0), scipy (v. 1.13.1) and kneed (v. 0.8.5). CLMs were trained
2762 | Digital Discovery, 2025, 4, 2752–2764
using Keras (v. 3.4.1) with a Tensforow (v. 2.17.0) back-end.
ChatGPT (version GPT-4, 2025) assisted in the generation of the
graphical abstract.
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14 J. Arús-Pous, et al., Randomized SMILES strings improve the
quality of molecular generative models, J. Cheminf., 2019, 11,
71.

15 E. J. Bjerrum, SMILES Enumeration as Data Augmentation
for Neural Network Modeling of Molecules, arXiv, 2017,
arXiv:1703.07076, DOI: 10.48550/arXiv.1703.07076.
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