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Formation and fluctuation of two-dimensional dodecagonal
quasicrystals

Particles in a dodecagonal quasicrystal are collectively
displaced. The order of the structure can be seen from the
particle positions after decorating the particles according

to their local structures and the triangulated network. Each
vertex is the centre of a dodecagonal motif made of nineteen
particles. The changes in the network are associated with the
displacements of chains of particles.
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The self-assembly of two-dimensional dodecagonal quasicrystals (DDQCs) from patchy particles is
investigated by Brownian dynamics simulations. The patchy particle has a five-fold rotational symmetry
pattern described by the spherical harmonics Yss. From the formation of the DDQC obtained by an annealing
process, we find the following mechanism. The early stage of the dynamics is dominated by hexagonal
structures. Then, nucleation of dodecagonal motifs appears by particle rearrangement, and finally the motifs
span the whole system. The transition from the hexagonal structure into the dodecagonal motif is coincident
with the collective motion of the particles. The DDQC consists of clusters of dodecagonal motifs, which can
be classified into several packing structures. By the analyses of the DDQC under fixed temperature, we find
that the fluctuations are characterised by changes in the network of the dodecagonal motifs. Finally we
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compare the DDQCs assembled from the patchy particle system and isotropic particle system. The two
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1 Introduction

Quasicrystals (QCs) are ordered structures lacking periodic
translational symmetry."” Different from crystals which possess
2-, 3-, 4-, and 6-fold rotational symmetry, QCs may have 5-, 8-, 10-,
12-, and 18-fold rotational symmetry. QCs can be applied in
various applications, such as advanced coatings, reinforced com-
posites, optics, photovoltaics, magnetism,® superconductivity,”
and bandgap materials in photonic devices.” The appearance of
QCs and approximants has been observed in different length
scales, from intermetallics’*® to meso-scale.” ! Recently, qua-
sicrystalline structures have been found in soft materials,
such as block copolymers,'>*? surfactants,"* colloids," and
dendrimers."®

The quasiperiodic self-assembly has been obtained mainly
by three types of mechanisms: isotropic interactions between
particles, anisotropic interactions between particles, or poly-
dispersity. In the first case, the isotropic interaction potential
depends only on the distance between particles, but has at least
two length scales.'” > For example, the Lennard-Jones-Gauss
potentials can produce decagonal QCs or dodecagonal QCs
(DDQCs),"” or the hard-core/square-shoulder potentials** create
a family of QC structures with 10-, 12-, 18- and 24-fold bond
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systems share a similar mechanism of the formation and fluctuation of DDQCs.

orientational order. Continuum description has also been
proposed in ref. 23-25. The three-well oscillating pair potential
is able to form a three-dimensional icosahedral QC in non-
atomic systems."®

In the second case of anisotropic interactions between
particles, the interactions depend on their mutual orientation
while the distance-dependence has only one length scale. For
example, the five-patch particles, whose five sticky patches are
equally distributed around the equator of the sphere, can
arrange into a two-dimensional DDQC;***° hard tetrahedra
create a three-dimensional DDQC.?°

In the third type of systems, DDQCs and approximant structures
are realised in polydisperse systems,**'** such as binary nano-
particles with two different sizes,® and bidisperse pentavalent and
hexavalent patchy particles.*” Recently icosahedral QCs have
been built from a mixture of patchy particles.*®

Despite intensive studies on the structural characterisation
of QCs, the kinetics and dynamics of QC growth, are still
incomplete.**” It is not clear how the QCs appear from a
liquid or crystalline state, what is happening at the periphery of
QCs during their growth, and how local structures change under
thermal fluctuation after QC formation. It is also of interest
whether the dynamics and kinetics of QCs are dependent or not
on the three aforementioned mechanisms. Most of the previous
studies focused on the analysis of the structures. In ref. 26 and
27, stable DDQCs were generated via Monte-Carlo simulations
of the five-patch particles. In ref. 28, the growth of DDQCs was
studied by particle deposition on a prepared quasicrystalline
substrate. The growth of a three-dimensional DDQC was studied
in ref. 34, and it was suggested that characteristic structures
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(icosahedra in that system) preferentially appear around the nucleus
of DDQCs. The growth of a two-dimensional DDQC was also studied
in ref. 38. Nevertheless, what kind of local structures preferentially
appear near the nucleus of QCs in other systems remains unknown.
Also, it is of relevance to clarify how those structures are trans-
formed as a part of DDQCs by particle displacements.

To clarify those issues, it is necessary to analyse the dynamics
of local structures. We carry out the analyses in different scales:
local structures based on neighbours, (dodecagonal) motifs con-
sisting of several particles, and packing of the motifs. These
structural changes have not been studied in the previous studies.

In this study, we investigate the kinetics and dynamics
of DDQCs by computer simulations. The majority of reported
QCs in soft materials are DDQCs. Therefore, we focus on the
formation of DDQCs. We have developed a model for the
interaction of a pair of anisotropic particles whose surface
pattern is described by spherical harmonics Y,.*>**° Using
the five-fold symmetry patchy particles, we are able to assemble
the DDQC. We investigate the formation of the DDQC from a
bulk phase, and the local structural changes (fluctuation) after
the DDQC is formed. The same procedure is applied to the
DDQC assembled from the isotropic particle system. We com-
pare the kinetics and dynamics of the DDQCs from the patchy
particle system and the isotropic particle system.

2 Methods

2.1 Numerical simulation

We consider the patchy particle with five-fold symmetry, composed
of ten alternating patches of two different types (Fig. 1). The
pattern on a spherical particle is described by spherical harmonics
Y55.39’4O

The pairwise interaction of the particles includes a Weeks—
Chandler-Andersen (WCA) term preventing the overlap and a
Morse-like, orientation-dependent term. The details of the aniso-
tropic potential are given in Appendix A. Fig. 2 illustrates the
potential used in the study at different particle configurations.

The assembly of patchy particles is performed by Brownian
dynamics simulations.** The positions r and orientations Q of
the particles after the time step At are updated according to the
equations

()+—F( At + 6SV2DTAs, (1)
ks T

r(t+Ar) =

min Re(Ygs)

Fig. 1 Illustration of a patchy particle with five-fold symmetry expressed
by the pattern of Yss and the corresponding patchiness. The patches in the
same colour are attractive, while those in different colours are repulsive.
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Fig. 2 Pairwise potential of patchy particles at different configurations.
The red arrows indicate the orientations of the patchy particles.

Q1+ A1) = Q1) + kB—TT( YAt 4+ 6SV2DRA¢, (2)

where D" and D® are the translational and rotational diffusion
coefficients, respectively; the force F and torque T are derived from
the pair potential V; and each component of §° is a Gaussian
distribution with zero mean and unit variance. The simulations
are conducted in a dimensionless form where the characteristic
length, energy, time, and temperature are the particle radius q,
Lennard-Jones potential well-depth ¢, the Brownian diffusion time
s = a*/D", and &/kg, respectively.

The spherical particles are confined to a two-dimensional
plane while rotating freely in three dimensions. The initial
condition of the simulation is a random distribution of posi-
tions in a periodic box of size L, x L, with random orientations.
The number of particles is N = 1024. The density is defined as
area fraction p, = nN/(L,Ly).

The numerical simulations are conducted in two tempera-
ture settings: annealing and fixed temperature. In the anneal-
ing, the temperature starts from disordered states at high
temperature and gradually decreases to lower temperatures at
which crystalline states are stable. For the system at a fixed
temperature, the system under the random initial condition is
suddenly quenched at the temperature 7, and the structures are
relaxed at the fixed 7. We choose the schedule of annealing as
the temperature decreases from Ty,ax = 1.2 t0 Thyin = 0.4 with
intervals of AT = 0.0125. At each temperature the number of
steps is 0.1 x 10°% and the total steps are 6.5 x 10°. The time
step is set at At = 0.5 x 107 °T, and thus the total time of the
annealing simulation is ¢ = 2600. We have checked that the
annealing schedule is slow enough to make stable QCs.

For the system at a fixed temperature, we conduct simulations
at temperature T € [0.5,1.1]; the number of simulation steps is
5 x 10° and the simulation time at each temperature is ¢ = 2500T.

Note that we use the term annealing in the sense of simu-
lated annealing, consisting of melting and successive cooling.*>

This journal is © The Royal Society of Chemistry 2022
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In our system, the initial condition is a disordered state and the
initial temperature Ty,.x = 1.2 is high enough to get large
thermal fluctuation. Therefore, we do not need a process to
increase the temperature during annealing.

To analyse the fluctuation of the DDQC, simulations are
performed with the parameters area fraction p, = 0.75, fixed
temperature 7= 0.8 and 50 x 10° steps, which are approximately
10 times longer and slightly less dense than the annealing
simulations. For five independent simulations, the DDQC is
formed from a rich hexagonal phase after the first 5 x 10° steps.
The fluctuation of the DDQC is reported after it is formed. We
also investigate the DDQC assembled from the isotropic inter-
acting particles. The details of the potential and simulation
condition are given in Appendix B.

2.2 Structural analysis

The types of local structures of each particle are determined by
the connection of the nearest neighbours of a particle. The local
environments in a DDQC are ¢, H, and Z° as given in Fig. 3.
These local structures are based on the number of common
neighbours of the neighbouring particles analogous to the
Frank-Kasper phases. For example, a ¢ particle has five neigh-
bours. One of them has two common neighbours, and four of
them have only one common neighbour. Therefore the local
structure of a ¢ particle is identified as {21111}. The other local
structures are H {22110}, Z {222222}, D, {22211}, and D, {222211}.
In this study, the new local structures D; and D, result from
fluctuating Z particles, where they form a diamond shape as
shown in Fig. 3. A particle which does not fall into these
categories is considered as undefined U. The number of uni-
dentified particles is only < 5% of the total number of particles in
the system.

The local structure of the particle varies with time. The
interchange of a given local structure to/from other local
structures is determined between two consecutive snapshots
different by 10* time steps, for each local structure. The purpose
of this calculation is to identify the relevant “reaction” of the
local structures during the growth of DDQCs. For example, we

Fig. 3 Local structures g, Z, H, D;, and D, and their nearest neighbours
within the distance r < 2.5a, and the illustration of the diamond structures
D; and D, inside a cluster of Z particles. The number of common
neighbours are also given.

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 Typical packing of dodecagonal motifs. The packing is charac-
terised by the Delaunay triangulation of the dodecagonal motif centres.
The yellow and grey particles are the Z and ¢ particles, respectively.

can calculate the interchange rate between Z and o, which
includes the amount of Z becoming ¢ and the amount of ¢
becoming Z during the two snapshots. If the amount of Z — ¢ is
greater than that of ¢ — Z, then the transformation of Z to ¢ is
dominant. By the analyses of the reactions between two local
structures, we may also quantify how the interchange of Z & ¢
(both Z - ¢ and ¢ — Z) occurs more frequently than other pairs
of local structures, such as D; < D,.

The DDQC has a characteristic dodecagonal motif”*” (see
Fig. 5(e)). The motif is made of one Z particle at the centre, six ¢
particles on the first ring, and twelve ¢ particles on the second
ring. Fig. 4 shows several ways of packing the motifs. These
dodecagonal motifs are identified by the network of Z particles
in each snapshot of simulations. The Z particles are the centres of
each dodecagonal ring. We describe the motif packing by the
triangular tiles in the network of Z particles obtained from
Delaunay triangulation. Different clusters of motifs are shown in
different colours. Each cluster is characterised by the distance
between the centres of the dodecagonal motifs. For example, the
dodecagonal motifs can interpenetrate in Fig. 4(a), share a com-
mon edge in Fig. 4(d) and (e), or connect via extra ¢ particles in
Fig. 4(c). The criteria of the clusters are based on the edge lengths
of the triangular tiles; e.g. the edge lengths of the perfect cluster in
Fig. 4(a) are / = (1 4+ /3)2a; a simulated cluster is of this type if
the edge lengths Iy, satisfy |lsim — I| < 0.11. We will discuss how
the structure of the clusters of motifs changes over time. The time-
dependent network structure during [¢, ¢ + 6] is visualised by
overlapping the images at [t,.. .t + dt] (see Fig. 11 and 12).

3 Results of the patchy particle system
3.1 The formation of the DDQC

The dynamical self-assembly using the five-fold symmetric
patchy particles under annealing is investigated. Fig. 5 shows
the change in the ratios of local structures during the formation
of the DDQC and the representative snapshots with the colour
coded according to local structures o, Z, D;, and D, (Fig. 3).
Dynamical formation of a DDQC can be decomposed into three
stages. At stage I, the majority of particles are Z type, with a
ratio of around 0.7. The ratios of both D; and D, are around 0.1.

Soft Matter, 2022,18, 7497-7509 | 7499
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Fig. 5 Change in local structures during annealing simulations at p, = 0.78. (a) Ratio of the local structure in time; the line represents the data of a
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stages. (b—d) The snapshots and their Fourier transformation; the colour of the particle indicates the local structure as shown in the legend and Fig. 3.
(e) Ilustration of two kinds of dodecagonal motifs in the boxes in (d); they are interchangeable by rotating the particles on the first ring £30°. (f) The
packing of the dodecagonal motifs of the structure in (d). (g) Orientations of the tiling edges connected by the particle positions of the structure in (d); the

colours of the edges correspond to the six unit vectors shown above.

The snapshot of this stage is a Z-rich structure with clear
hexagonal spots in its Fourier transform. The D; and D,
particles often appear in pairs as a diamond shape surrounded
by Z particles. Stage II corresponds to the growth of the QC
where the ratios of Z, D;, and D, decrease, while that of o
increases. A g-rich region is formed in the bulk of Z particles.
The o-rich region contains a few Z particles inside. The D; and
D, particles accumulate at the boundary between this region
and the ‘bulk’ Z particles. Finally at stage III, when the expan-
sion of ¢ reaches the system size, all the ratios maintain
constant values with fluctuations. The o-rich region spans the
whole system and a DDQC is assembled, as we can observe the
twelve-fold rotational symmetry in the Fourier space.”®

There are several dodecagonal motifs in the QC structure.
The motif contains one Z particle at the centre and six ¢
particles on the first ring and twelve ¢ particles on the second
ring (see Fig. 5(e)). There are two types of motifs which are
different by 30° degrees of the first ring. The QC structures
consist of the two types of dodecagonal motifs (Fig. 5(e)) packed
in different ways as shown in Fig. 4. The four structures in
which the Z particles of the motif centres form either an
equilateral triangle (Fig. 4(a) and (d)) or a right angle triangle
(Fig. 4(b) and (e)) were obtained in ref. 26 using patchy particles
with five-fold or seven-fold symmetry. In our simulations, aside
from these packings, we also obtain the structure in which the
Z particles form an isosceles triangle (Fig. 4(c)). Approximants
can be obtained by repeating each packing structure in Fig. 4.
Higher-order approximants may also be obtained by combining

7500 | Soft Matter, 2022,18, 7497-7509

two or more packing types in Fig. 4, and repeating the unit
structure.*”** DDQCs do not have any periodicity and should
appear as a limit of an infinitely large unit cell. The spatial
distribution of these packing structures of the dodecagonal motifs
at stage I1I is illustrated in Fig. 5(f). There are several packing types
and no periodicity in these packing types is observed.

Here, we discuss the quasicrystallinity of the obtained
structures. In Fig. 5(g), a square triangle tiling whose vertices
are the particles of the snapshot in Stage III is shown. The
edges of the tiles are along the 12 directions at intervals of 30°.
The probability of the direction of the edge along the 6 direc-
tions shown in the figure is almost identical in the range of
(0.16, 0.17). This uniformity of the edge direction suggests that
the structures are close to the perfect 12-fold symmetry. Next,
we measure the ratio of the number of triangles to squares, and
it is 983/424 =~ 2.31 for the structure in Fig. 5(g) (it is 2.42 +
0.065 for 10 independent snapshots). This value is comparable
to the ratio N,/Ns = 4/+/3 2.3 of the ideal DDQC made by
inflation.** This ratio appears also for the random tiling of
triangles and squares at maximum entropy. Finally, following
the method of ref. 45 and 46, we calculate the linear phason
strain tensor. To do this, we focus on the region of the well-
defined square-triangle tiles in Fig. 5(g), and lift the vertices of
the square-triangle tiling to 4d space. The perpendicular space
x is expressed by the physical space x| as x| = Ax; +b, where b
is the residual. From the invariants in the matrix A under
rotation, we may estimate the phason strain. The obtained
three invariants for the matrix of the linear phason strain

This journal is © The Royal Society of Chemistry 2022
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(le| ~ 0.02, |B] ~ 0.02, and /9% + p?> ~ 0.027) are close to
the values of the ideal dodecagonal quasiperiodic tiling
(« = B = +/y*+ 12 = 0).** The values of the phason strain are
also far from known periodic approximants.*> With these
analyses, it is fair to call the obtained structures DDQCs,
although they contain defects and are neither an ideal DDQC
nor random square-triangle tiling. We should also note that the
simulations are performed under the periodic boundary con-
dition, and therefore, the size of the unit cell is bounded by the
system size. In this study, by DDQCs we mean the structures
discussed in this paragraph.

The ratio in Fig. 5(a), however, cannot show the “reaction”
of each local structure changing to/from other local structures.
Fig. 6 shows the interchange among Z, D,, D,, and ¢. During
stage I, a majority of Z particles change to and from D; and D,
as the “reactions” are comparable in both forward and back-
ward directions. In stage II, the particles Z, D,, and D, change to
o faster than the backward direction. This suggests that the
relevant ingredients for the formation of the ¢ particle, or the
dodecagonal motif, are the Z, D,, and D, particles.

We propose that there is a relation between Z, Dy, D,, and .
Specifically, the particles D; and D, play an intermediate role in
the formation and expansion of the DDQC from a Z-rich
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4100 x 107]. (c) Scaling of boundary D with ¢ for simulation steps [3000 x
10% 3600 x 10°]. The dashed lines are regression data.

structure. Fig. 7(a) shows the decomposition of the D; and D,
particles in terms of the bulk Dy and the boundary Dyoundary
amounts. Dpoundary Fepresents D particles (D; and D,) neigh-
bouring the ¢ particles, while the rest are defined as Dy. The
bulk D fluctuates around a constant value, and then decreases
to zero as the QC occupies all the space. Fig. 7(b) shows the
relation between the bulk D particles and Z particles. For the
bulk particles, the amount of D, and D, is almost the same as
they often appear as pairs (see snapshots in Fig. 5 and 7), and
linearly increases with Z. We fit the data in Fig. 7(b) by linear
regression, and find the slope of 6.6 . In Fig. 3 we illustrate a
diamond shape made of four Dy in twelve Z. In this case, the
ratio of D; and D, to Z is equal to 6 . This argument supports a
picture in which D; and D, particles appear as fluctuations of Z
particles and appear in pairs.

Regarding the D particles at the boundary, as given in
Fig. 7(a), these particles occupy a small amount before the
growth of the o-rich domain, then increase during the growth,
and eventually decrease to a plateau. Before the QC is formed,
the number of stable D particles is small and they appear
stochastically associated with ¢ particles; then when the QC
is expanded, the number of boundary D particles increases. The
decrease of the boundary D is because of the limit of the finite
system size. Moreover, the number of D, particles is higher
than the number of D, particles, suggesting that there is
extra D; which may contribute to the transformation from D,
to o or Z.

The larger number of D; than D, may be due to the
anisotropy of the boundary; one side is dominated by o
particles whereas the other side is dominated by Z particles.
Fig. 7(c) shows that Dpoundary grows linearly with ¢%°. This
is because the growing QC has the area oc N, and the
circumference o< /N.

Soft Matter, 2022,18, 7497-7509 | 7501
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We seek a simple mechanism of DDQC growth. In the
simulation, the particles fluctuate locally and change their local
structures continuously. However, we observe a typical local
rotation of the particle during the growth of DDQCs. Fig. 8
suggests a mechanism from a Z-rich structure (stage I) to a
DDQC (stage III). In the schematic of Fig. 8(a), from a hexagonal
lattice, the first ring of the hexagonal lattice rotates by 15°
either clockwise or anticlockwise. Simultaneously some parti-
cles of the second ring displace and eventually a dodecagonal
motif is formed. The D, and D, particles also appear during this
local rotation, and become ¢ or Z as the dodecagonal motif
grows. We can calculate the rotation of the first neighbours of a
centre particle (see Appendix C) from the displacements of the
particles between two snapshots in Fig. 8(b). Fig. 8(c) shows
that around the centres of the DDQC motif (roughly the Z
particles in the DDQC), there are rotations for the particles on
the first ring. The histogram in Fig. 8(d) approximately has two
peaks at £15°.

To summarise, the mechanism of the self-assembled DDQC
from patchy particles can be proposed as follows: (i) initially the

o‘.’o . . o‘.’o .
ek R B,
el BOPoR
HE

(c)

60 -40 -20 O 20 40 60
Rotation angle, °

Fig. 8 Local rotation during the growth of a DDQC. (a) lllustration of local
rotation from a hexagonal structure to a dodecagonal motif by rotating the
particles on the first ring in the clockwise direction 15°. (b) Two snapshots
before and after the DDQC is formed. (c) Corresponding displacement for
the snapshots in (b). The yellow dots represent the Z particles in the DDQC.
The size of Z particles indicates the “strength” of the rotation of the first
ring. The Z particles of very low rotation are not shown. The displacement
of the first ring of the Z particle reveals a rotation. (d) Histogram of the
rotations of the neighbouring particles of the Z particles in (c). The vertical
dashed lines show rotations at £15°.
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structure is rich in Z particles and thermal fluctuation induces
the pairs of D; and D, in the bulk of Z, (ii) at the right
temperature, the ¢ particles are formed and they cluster together
to form dodecagonal motifs. (iii) The DDQC rapidly expands at
the boundary where the transformation Z — (D4, D,) — ¢ occurs.
Around the centre of the dodecagonal motifs, local rotations of
the nearest neighbours take place.

3.2 Temperature dependence of DDQC formation

In this section, the effect of temperature on the DDQC is
investigated. Fig. 9 shows the dependence of the local structure
ratio on temperature for annealing simulations and fixed
temperature simulations. In both cases, there are two phases:
Z-rich and o-rich, separated by a critical temperature 7* =~ 0.8.
The Z-rich phase corresponds to T > T*, where the structure is
dominated by Z particles and some D; and D, particles due to
the strong thermal fluctuation. In this case, the global structure
is hexagonal. The ¢-rich region appears at 7 < T*, where the
structure is dominated by ¢ particles. There is a slight differ-
ence in T* of the annealing case and the fixed temperature case.
This is expected because the onset of the QC, i.e. the growth
from the first dodecagonal motif, depends on both temperature
and time, and these two parameters cannot be directly com-
pared in the two simulation procedures. For example, at
T = T*, the onset of the annealing QC is in a uniform manner,

(a) Annealin
1.0 - : : : : :
o * o Z ¢Di oD, oH ouU
208} P 3
0 B I
©06¢f .
© X
(6] x !
204t 3
5 §
£ 0.0 I
@ V4l 1
€ |a 2 9 l HWee o 0 0
0.0 L4 | ] e o ¢ [ ]
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(b) Fixed temperatures
1.0 T T ! " - .
g N
208f &
e 31
w06t ' X :
© |
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05 06 07 08 09 10 1.1

Temperature T

Fig. 9 Dependence of the ratio of local structure on temperature in (a)
annealing simulations and (b) fixed temperature simulations at p, = 0.78.
The dashed lines estimate the critical temperature T*.
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whereas it is more scattered for the fixed temperature QC. As a
result, among ten independent simulations at fixed temperature T'=
0.825, three of them are DDQCs and the remaining seven are Zrich.
Regarding the quality of the QC of fixed temperature simulation, the
ratio of ¢ particles decreases as T decreases. The fixed temperature
simulation is equivalent to very fast quenching before fixing the
temperature. The small ratio of ¢ at the low temperature is due to
particles that are kinetically trapped; hence the structure is more
disordered and contains more defects. Such a behaviour is not
observed in the slow annealing case, as the ratio of ¢ is independent
of temperature. The results reveal that the patchy particle DDQC can
be obtained by annealing more easily than fixed temperature when
T < T*. The self-assembly of high quality DDQCs corresponds to the
annealing scheme or fixed temperature at T = T*.

3.3 Local fluctuation after the DDQC is formed

After the DDQC is formed, we have observed local structural
changes when it is subjected to thermal fluctuation. The QC
structures consist of two types of dodecagonal motifs packed in
different ways as shown in Fig. 4. We focus on a network of the
dodecagonal motifs, which is evaluated from the network of the
Z particles because the Z particles are the centres of the
dodecagonal motifs (see Section 2.2).

The structural changes are analysed by comparing snap-
shots at time ¢ and ¢ + 5¢. We show the change of the network in

Fig. 10 Two types of changes of the dodecagonal motif network at T =
0.8. (a) A snapshot and (b) its corresponding dodecagonal motif network of
Z particles at t. The coloured dots in (a) represent particle positions and
particle types based on the colours in Fig. 3. Coloured triangles in (b) are
different packing of dodecagonal motifs in Fig. 4. The white triangles are
packing structures that cannot be classified by the structures in Fig. 4.
(c and d) Change of the motif network of the boxed area in (a and b) after
8t = 10° steps. At t + 8t, the displacements of the particles from t are given
by red arrows. Here, we show only the large displacements satisfying
|r(t + 8t) — r(t)] > 0.5a. For the box with a dashed line in (c), the particles
rotate but the local dodecagonal network is unchanged. For the box with a
solid line in (d), several particles exhibit chain-like displacement and the
local dodecagonal network changes.
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Fig. 11 Fluctuation of the dodecagonal motif network after a long time
scale of 5t = 10° steps at T = 0.8. (a) Collective movement of the particles
as rearrangement of the network with superposing structures between
[t, t + 8tl. The small panels show the structures between [t t + &t].
The displacements of the particles are represented by red arrows.
(b) Histogram of the rotation angle of the particles in (a) with peaks at
+30° (dashed lines). (c) Energy of the whole simulation process. The
windows of t and t + &t are marked by the vertical dotted lines.

both short (8¢ = 10° in Fig. 10) and long (5¢ = 10° in Fig. 11)
timescales.

In the short timescale, Fig. 10 shows the analysed snapshot,
its corresponding Z particle network by Delaunay triangulation,
and two types of network rearrangement within a time scale of
5t = 10° steps. (i) In Fig. 10(c), although a few particles move,
the local motif network does not change. The displacements of
these particles show that the whole first ring of the centre Z
rotates 30° and eventually this dodecagonal motif is still main-
tained (see Fig. 5 for the two motifs). (ii) On the other hand, in
Fig. 10(d), a few particles move and the local motif network
changes. When those particles move, their local structures also
change, e.g. o particles become Z particles, and therefore the
network of Z also alters. This process may continue as a chain.
We observe that the displacements occur for the particles
neighbouring Z (centre of the dodecagonal motif). The rearran-
gement of the network is coincident with the displacement.

Soft Matter, 2022, 18, 7497-7509 | 7503
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We have analysed the phason strain using the same method
as in Section 3.1. The phason strain changes by the change of
the local structure in Fig. 10(d); for example, one invariant of
the phason strain || changes & 0.02. This change is significant
compared with the error in the evaluation of the phason strain
<0.001 when the network rearrangement does not occur. The
results suggest that the change of the network is associated
with phason flips.

In Fig. 11, we show the fluctuation of the dodecagonal motif
network observed in a longer time scale (5t = 10° steps) by
means of the packing of motifs for the whole simulated
structure. The small panels in Fig. 11(a) are the structures
between [¢, ¢], while the big panel is the superposition of those
small panels (see a video in the ESIt{). In some regions, for
example, bottom and left in Fig. 11(a), the network structure
does not change, whereas in other regions, rearrangement of
the network occurs. These snapshots are superposed in the big
panel of Fig. 11(a). The deeper colour indicates that the network
of Z particles is maintained. The region with lighter colours
and overlapping edges indicates a network rearrangement. The
network rearrangement has two features: first, there is a
collective motion of the particles along the place where rear-
rangement of the network of the dodecagonal motifs occurs.
Second, the network contains different types of packing struc-
tures of the dodecagonal motifs, and the displacements of the
particles seem to occur between two different packing types. The
chain of such collective motion is longer than the one in Fig. 10.
The readers may refer to Fig. 12 for clearer visualisation of the
maintained network and network rearrangement. We perform
the same analysis of rotational displacement as in Section 3.1.
The rotation angles of the displaced particles around the Z
particles (centre of the dodecagonal motif) are around +30° as
depicted in Fig. 11(b). The structural change of the dodecagonal
motif network is associated with the local rotation of the first
neighbours of the motif’s centre. Such rotations seem to appear
at the border of different types of packing of dodecagonal motifs.
During the structural changes associated with network rearran-
gement of dodecagonal motifs, the energy is fluctuating around a
constant value as shown in Fig. 11(c).

4 Results of the isotropic particle
system

As mentioned in the Introduction, the DDQC can be assembled
also from isotropic particles. We perform the same analysis
with the isotropic DDQC. The details of the potential and
simulation parameters can be found in Appendix B.

Fig. 12 presents the formation and fluctuation of the iso-
tropic DDQC. In Fig. 12(a-d), similar to the formation of the
annealed patchy particle DDQC, the isotropic DDQC also starts
with a Z-rich structure with some D; and D, particles generated
due to fluctuation of Z. The dodecagonal motif is then organised
and expanded, in which the D; and D, particles are accumulated
at the boundary of the cluster of the dodecagonal motif and the
Z-rich bulk. The resulting DDQC consists of dodecagonal motifs
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Fig. 12 Typical rotations of particles in the (a—d) formation and (e and f)
fluctuation of the DDQCs. (a and b) The two shapshots for the growth of
the DDQC. (c) Corresponding particle displacement of the two snapshots
in (@ and b). The yellow dots are the Z particles in (b). The size of Z particles
indicates the “strength” of the rotation of the first ring. The Z particles of
very low rotation are not shown. (d) Histogram of the rotations of the
neighbouring particles of the Z particles in (c); the vertical dashed lines
show rotations at +15°. (e) Change in the network of the dodecagonal
motifs during the fluctuation of a DDQC. (f) Histogram of the rotation of
the particles in (e); the vertical dashed lines show rotations at +30°.

packed in different ways (Fig. 4). Regarding the mechanism of the
transformation from Z-rich structures to DDQCs, the first neigh-
bours of the dodecagonal motif centres rotate by +15° (Fig. 12(c)
and (d)). The fluctuation of the DDQC is investigated by perform-
ing simulations at a fixed temperature of 7 = 0.7. Fig. 12(e)
illustrates the fluctuations of isotropic DDQCs in terms of the
network of the dodecagonal motifs. The change in the network is
also associated with the collective rotation by +30° of the first
neighbours of the motif centres (Fig. 12(f)). For a detailed
comparison with the patchy particle system in Fig. 5, 6 and 9,
the corresponding analyses for the isotropic particle system are
given in Fig. S1-S3 in the ESLt

However, there are differences between the DDQCs made of
patchy particles and isotropic particles. In general, the isotropic
DDQC (Fig. 12(e)) has less defects as the network has more well-
defined packing structures than that of the patchy particle
DDQC (Fig. 11).

This journal is © The Royal Society of Chemistry 2022
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In a dodecagonal motif of the DDQC, the Z particle of the
isotropic system has the lowest energy whereas the energy of Z
particle of the patchy particle DDQC is the highest (see Fig. 15).
For the patchy particle case, the orientation of the Z particle at
the centre is incompatible with the six ¢ neighbours. The
energy of this hexagonal particle is expected to be higher than
that of the ¢ particle, and hence s-dominant structures are
expected at low density. The patchy particle system requires
fine tuning of density to assemble a DDQC, whereas the DDQC
in the isotropic particle system works even under low density
conditions (Fig. 16). Additional data can be found in Fig. 15 and
16 in Appendix D.

Although the DDQCs in both systems consist of dodecagonal
motifs, the network of the motifs is different. In the DDQC
made by the particles with the two-length-scale isotropic inter-
action shown in Fig. 12(e), the distance between the motifs is
smaller, namely, the distance between two Z particles at the
centres of two dodecagonal motifs (Fig. 5(e)) is shorter. There-
fore, there are many small triangles among the packing struc-
tures, such as those of Fig. 4(a) and (b). These packing types
appear less in the patchy particle DDQC, which rather consists
of the packing structures of Fig. 4(c)-(e) (see Fig. 5(f) and 11(a)).
We should note that the packing structures of Fig. 4(a) and (b)
have triangles with shorter edges (reddish colour), whereas those
of Fig. 4(d) and (e) have triangles with longer edges (bluish
colour). The difference of the motif arrangement is possibly
due to the potentials used in the two particle systems. As
discussed above, the patchy particles prefer ¢ particles, whereas
the isotropic particles prefer Z particles. Because Z particles are
located at the centre of the dodecagonal motifs and play the role
of vertices in the network of packing structures, smaller triangles
tend to appear when more Z particles exist.

5 Discussion and conclusions

We have investigated the formation of DDQCs from the patchy
particles with five-fold symmetry. From a Z-rich hexagonal
structure, fluctuations of positions of patchy particles generate
intermediate structures D; and D,. After the dodecagonal motif is
formed, the motif rapidly expands and the D, and D, particles are
accumulated as a boundary between the cluster of the dodeca-
gonal motif and the hexagonal structure. The DDQC contains
many dodecagonal motifs packed in different ways. The for-
mation of the DDQC is driven by the local fluctuations of the
particles. The fluctuation is characterised by rotation of the first
ring in the dodecagonal motif. After the DDQC is formed, the
dodecagonal motif network changes when thermal fluctuation
causes large displacements of the particles. The change of the
network is associated with rotation of the nearest neighbours of
the centres of the motifs.

Regarding the formation of the DDQC, the transformation
from a Z-rich structure to a DDQC is observed in both the patchy
particle system and isotropic particle system. Superposition of a
hexagonal lattice and a dodecagonal motif reveals the difference
in the position of the first ring, which is manifested by a circular
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rotation of 15° around the motif’s centre. Such displacements of the
particles on the first rings of the dodecagonal motifs are confirmed
in our simulations. This may be the reason why the DDQCs of
patchy particles and isotropic particles both share the same mecha-
nism although the interactions are completely different.

Compared with the growth of the DDQC from a Z-rich phase
in the annealing simulation, the reversal process, i.e. the DDQC
to Zrich phase, shows similar behaviours despite the large
hysteresis in the structural transitions. A cluster of Z particles
appears and then spans the whole system. Transformation
from ¢ to Z reveals a rotation of around 15° of the first ring
of the dodecagonal motif (see the schematic in Fig. 8). Further
details can be found in Appendix E.

The DDQC comprises different types of packing of dodeca-
gonal motifs (see Fig. 4). These packing structures can be
constructed from the network of centres of dodecagonal motifs.
The packing is divided into several characteristic structures
(Fig. 4). In the obtained DDQCs, different types of packing
structures coexist, and they do not show periodicity. We have
observed that the DDQC continues to fluctuate in the sense that
the relative positions of some particles change. Two types of
displacement are considered. (i) In the case of individual
displacement, the particles on the first ring of the dodecagonal
motif quickly rotate. Despite the particle displacements, the
whole dodecagonal motif remains intact. (ii) Collective displa-
cement of particles can bring about rearrangement of the
DDQC network. Such changes appear at the border of different
types of packing structures, i.e. some dodecagonal motifs are
disintegrated and new motifs are generated. The displacement
of the particle mostly occurs at the first ring of the dodecagonal
motifs, and at short length scale like (i). However such dis-
placements can propagate to the neighbouring motifs, and the
whole DDQC network eventually changes.

There is another type of DDQC made of isotropic particles'”
where the high-symmetry dodecagonal motif has five particles
on the inner ring (compared to six particles for the DDQC in
our study) and twelve particles on the second ring. The kinetics
and dynamics of those DDQCs may be different from those in
this study. We leave the analyses of such different DDQCs as a
future study.

The patchy particle DDQC in our study is in agreement with
other works using the five-fold symmetry patchy particle system,
such as the particle with five equally distributed patches on the
equator.”® The Y55 patchy particle in our study also has five-fold
symmetry, but the number of patches and the interaction are
different. This particle has ten patches in red and blue, where the
interaction of red-red/blue-blue patches is considered attractive
and that of red-blue patches repulsive. In the assembled DDQC,
the orientation of the patchiness of the ¢ particle and its
neighbours (Fig. 3) is found to be similar to the one in ref. 26.
Moreover, the ratios of the Z and ¢ particles of the DDQC in the
Monte-Carlo simulations in ref. 26 are about 0.07 and 0.8,
respectively, which are comparable to our system in Fig. 5.

A DDQC can be formed by a bidisperse DNA system in
simulation® or experimentation.’® The two DNA tiles can be
considered as 5- and 6-point-star particles. The self-assembly of
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the patchy particle DDQC at different densities in our study is
somewhat analogical to that of bidisperse DNA systems.*> When
the ratio of the 5- to 6-point-star particle increases, the resultant
structures change. A low ratio leads to ¢ phase structures. A
medium ratio forms DDQCs of which many dodecagonal motifs
are observed. At a high ratio, the hexagonal structures dominate
the dodecagonal motifs. Such changes are also observed in our
study when the density of the patchy particle increases.

We have investigated the formation and fluctuation of
DDQCs in the patchy particle system and the isotropic particle
system. It may help to predict and design the two-dimensional
DDQCs in different soft matter systems. The fluctuation of the
DDQC may relate to the properties of the QC, e.g. heat capacity.
An analogical study is still required for, for example, octagonal
QCs and decagonal QCs to know how the other QCs behave.
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Appendix
A Potential of the patchy particle system
The potential for a pair of patchy particles is

V = Vwea(r) + V() Z(), (A1)

The details of the isotropic Week-Chandler-Anderson
potential Viyca preventing the overlapping of particles and the
Morse potential Vy; in eqn (A1) are given as

12 6
4e [(%) — <§) +l , r< a2
Vwea = r ! 4 (AZ)
0, r>2a¥?2
(Liﬂ) g
Vv =eMg{ [1—e\ M/ | 13, (A3)

where r = 1¥ = r/ — ¢’ is the distance vector between particle
centres, r = |r|, and f = 1/r, ¢ is the potential well depth, 7 is the
Morse potential equilibrium position (r.q = 1.878a), and My =
2.294a and M, = a are the Morse potential depth and range,
respectively.**%47

The anisotropic interaction is calculated based on the
mutual orientation of a pair of particles i and j. Let n{) and
n'? with m = 1, 2, 3 be local bases of particles i and j, and t is
the unit distance vector between particle centres. The aniso-

1
tropic interaction =, o {CE?S"’)} oVI-o {CE'/)" 1)} estimates
; .
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the angular dependence of a pair of particles Y, as

= ~l—mam 22/ ~l—mam A _
B o {g "0} © {F'} © {8y "0} ), where fi, = n; and

. 1 . - . an .
n, =—=(n; +im). For example, Zjo o< {Ro}, O {rr} © {no};

V2

for a pair of particles Yio, and Zj o< {hofg} ;) © {Ffff} ©

{nono } ;) for a pair of particles Y5,.

B Isotropic particle system

The isotropic potential is a Lennard-Jones Gauss potential”*?%%;

12 6 )2
o] () o) o ()
where the particle radius is a and the potential parameters 7g, ¢,
and ¢” determine the position, depth, and width of the second
well. The values of these parameters are 7 = 1.95 X 2a, ¢’ = 2.0, and
o> = 0.02. Fig. 13 shows the potential.

The simulation parameters are almost identical to those of the
patchy particle system. The number of particles is N = 1024. In the
annealing simulations, the temperature decreases from 7' = 1.2 to
T = 0.4 with an interval of AT = 0.0125. There are 100000 steps at
each value of temperature, making a total of 65 x 100000 steps.

C Determination of neighbouring rotation

The particle configuration is known at every time step. Let 1(t,)
and r(t,) be the particle position at time ¢ and ¢,, respectively,
and d = r(t;) — r(t;) the particle displacement from ¢, to t,.
Consider that the particle i has N; nearest neighbours
{J12J2s- - »Jn} in a clockwise order. At ¢;, we define &; the unit
vector from ji to ji,, of the polygon made of {j1, 2, . ., jn,}- The
displacement of the neighbour particle is determined from ¢, to
t,; for example, d; is the displacement of the particle j; (Fig. 14).
The rotation of the neighbours of particle i is defined as

1 A
w; = ﬁ[ Z d_iA € -

Note that the relative displacement to the centre particle is
considered as d—d — d;.

(1)

D Energy of local structure and density dependence

We compare the energy of each local structure during the
growth of the DDQC assembled from the patchy particles and
isotropic particles. In each snapshot, for example, the energy of the Z

- N

Potential, V/e
L o

'
N

'
w

-
N

3 4 5 6
Distance, r/a

Fig. 13 Isotropic potential for the creation of a DDQC.
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Fig. 14 Calculation of local rotation.

particle is the mean energy of all Z particles. The data are calculated
from the annealing simulations of Fig. 5 and Fig. S1 in the ESL{
The energy of each local structure during annealing is given
in Fig. 15. The DDQC is steadily formed when the ratio of the
local structure is in stage III. Regarding the local structure of the
DDQC, the lowest energy particle is the ¢ particle in the patchy
DDQC, while it is the Z particle in the isotropic DDQC. This is
due to the difference in the two particle systems. The five-fold
patchy particle prefers five nearest neighbours. Therefore, the
local structure o is expected to have the lowest energy. Then the
self-assembly of patchy particles at low densities results in a
o-rich structure instead of a DDQC. In contrast, the Z particle in
the isotropic DDQC has the lowest energy, and therefore the
DDQC structure is formed at low densities. The decrease of

Stage llI

Energy

-10t

0 2000 4000 6000

Simulation step/103
(b) Isotropic

Stage Il ]
6000

0 2000 4000
Simulation step/103
Fig. 15 Energy of local structures during annealing simulation from T =
12 to T = 0.4 for the (a) patchy particle system and (b) isotropic particle
system. The colours of local structures are given in Fig. 3, and the black

dotted line shows the average energy of all particles. The vertical dashed
lines define the three stages of the growth of the DDQC (see Fig. 5).
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Table 1 Parameters of annealing simulations at different densities. The
results are shown in Fig. 16

Da Tinax Trmin AT Total simulation steps
Patchy particles
(a) 045 1.0 0.2 0.0125 13000 x 10°
(b) 084 1.2 0.4 0.0125 6500 x 10°
Isotropic particles
(c) 030 1.2 0.2 0.0125 8500 x 10°
(d 087 1.2 0.2 0.0125 8500 x 10°

energy with time when the DDQC reaches stable stage III is
mainly due to lowering of temperature in annealing. As a result,
the thermal fluctuation is reduced and the energy decreases.

We investigate the effect of density on the formation of
DDQCs by patchy particles and isotropic particles. Annealing
simulations are conducted at different values of the area fractions
of the particles. The simulation parameters and results are given
in Table 1 and Fig. 16.
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Fig. 16 Changes in the ratio of local structures of patchy particle (@ and b)
and isotropic particle (c and d) self-assemblies at low and high values of area
fractions. The snapshots are taken at the last steps of the annealing simula-
tions. The area fractions p, of the simulations (a-d) are 0.45, 0.84, 0.30, and
0.87, respectively. The details of simulation parameters are given in Table 1.
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There are different phases depending on the area fraction.
For the patchy particle system, the suitable density for the
assembly of the DDQC is limited around 0.69 < p, < 0.81. At low
density p, < 0.69, the structure contains clusters of ¢ particles
and undefined particles at the interfaces. The dodecagonal motif
is hardly observed (Fig. 16(a)). At high density p > 0.81 the
hexagonal structure is dominant (Fig. 16(b)).

For the isotropic particle system, the DDQC more easily
forms as p, < 0.84. Even at the low density, clusters of the
dodecagonal motif are clearly observed inside the interfaces
(Fig. 16(c)). At high density p > 0.84 the hexagonal structure is
also dominant (Fig. 16(d)).

E Structural change in the reverse process

In comparison with the growth of a DDQC from a Z-rich phase
in the annealing simulation, the reversal process, ie. the
transformation of a DDQC to a Z-rich phase, is simulated. In
this simulation, the parameters are identical to those of the
annealing simulation except that the temperature is set to
increase.

Fig. 17 displays the structural change and the growth of a
cluster of Z particles for the patchy particle system. In the
annealing simulation, the Z-rich phase transforms to a o-rich
phase at T~ 0.8. In the simulation, the ¢-rich phase transforms
to a Zrich phase at T ~ 0.95. Regarding the possible mechanism,
in the schematic in Fig. 8 for annealing simulation, we illustrate
the transformation of a hexagonal lattice to a dodecagonal motif,
which can be obtained by a 15° rotation of the first neighbours of
a Z particle. Analogically, in this reverse simulation, a region of Z
particles is formed and then spans the whole system. At the
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Fig. 17 The reverse transition from the DDQC to the Z structure for
patchy particles. (a) Structural change of particle composition during the
reverse (continuous line) and annealing (dotted line) processes. (b and c)
Snapshots showing the expansion of the Z particle region during the
reverse process taken at T = 0.95. (d) Displacements of particles from
snapshot (b—c). Some rotations of the first neighbours of Z particles
(marked yellow) can be observed. (e) Histogram of the rotation angle of
the neighbours of Z particles in (d); the dashed lines indicate peaks at +15°.
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periphery of the Z-rich domain, particles rotate 15°. This rotation
is a reverse process of the rotation that occurs in the transforma-
tion from Z to ¢ particles for the annealing simulations. Similar
hysteresis and mechanism are observed for the isotropic particle
system. We also show the result in Fig. S4 in the ESLf
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