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Bridging microscopic cell dynamics to
nematohydrodynamics of cell monolayers

Aleksandra Ardaševa, a Romain Mueller b and Amin Doostmohammadi *a

It is increasingly being realized that liquid-crystalline features can play an important role in the

properties and dynamics of cell monolayers. Here, we present a cell-based model of cell layers, based

on the phase-field formulation, that connects cell–cell interactions specified at the single cell level to

large-scale nematic and hydrodynamic properties of the tissue. In particular, we present a minimal

formulation that reproduces the well-known bend and splay hydrodynamic instabilities of the continuum

nemato-hydrodynamic formulation of active matter, together with an analytical description of the

instability threshold in terms of activity and elasticity of the cells. Furthermore, we provide a quantitative

characterisation and comparison of flows and topological defects for extensile and contractile stress

generation mechanisms, and demonstrate activity-induced heterogeneity and spontaneous formation

of gaps within a confluent monolayer. Together, these results contribute to bridging the gap between

cell-scale dynamics and tissue-scale collective cellular organisation.

1 Introduction

Collective cell migration is crucial for a wide variety of biologi-
cal scenarios, ranging from development1 to wound healing2

and pathological conditions, such as cancer metastasis.3 The
profound role of mechanical forces in regulating such beha-
viour is being increasingly recognized in a variety of cell types.4

On the other hand, these collective behaviours are to a large
degree generic and can be described by different classes of
theoretical models that target specific levels of description. In
particular, there is a well-documented connection between
liquid crystal theories and the description of epithelial cells
at large scales.5–9

Nematic liquid crystals consist of rod-like particles, which
under certain conditions align in a given direction. This gives
rise to quasi long-range nematic order while singularities in
orientational alignment lead to topological defects. Theories of
nematic liquid crystals have recently found application in
different biological systems. For example, the local orientation
of the actin fibres in the tissue can be effectively described as a
nematic liquid crystal,10 and elongated fibroblasts at high
densities show nematic alignment and topological defects
due to steric interactions.6 Even though epithelial cells have
no obvious microscopic nematic degree of freedom, several
flow features of cell layers have been successfully reproduced in
continuum theories of active liquid crystals. This includes flow

fields around cell division events,11 long-range vortex lattices
in dividing cell layers,12,13 chaotic flow features within the
active turbulent state,14,15 and formation of topological defects,
that have been linked with death and extrusion events in
monolayers of MDCK cells.16 However, there is still little under-
standing on how emergent flows relate to microscopic dynamics
of cells.

The mechanisms by which hydrodynamic modes emerge
from overdamped microscopic dynamics is well understood for
self-propelled point particles with aligning interactions, and
there are now powerful methods that allow consideration of a
large class of such models.17,18 There have been efforts to apply
similar ideas to cellular layers19–21 but how these models relate to
a hydrodynamic description is less clear because dense cellular
systems are far from the dilute limit and steric interactions are
important. More complex physical descriptions of dense layers
have also been explored22 but most of the investigations con-
centrated around rigidity transition and jamming23,24 or tissue
reshaping by the extracellular matrix.25

Lately, the phase-field formalism has proven successful in
reproducing various experimental phenomenologies, including
mechanical stress patterns,16 as well as the cell–substrate and
cell–cell interaction forces in epithelial cell layers.26 In these
methods, the cells are modelled as active deformable droplets
in two-dimensions whose boundaries are defined using a
phase-field potential which allows for the precise description
of the intercellular interfaces and forces. Compared to models
where the individual cells are described using a tesselation of
the plane,23,27 it has the advantages that it can accommodate
large shape deformations of the cells independently of the
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location of their center-of-masses and that it naturally allows
for the description of tissue boundaries, including gaps within
the tissue.

The phase-field approach has been used to study the beha-
viour of cellular systems ranging from single cells28 to multi-
cellular structures29 and cell monolayers.30–34 However, most of
these models introduce polar driving of the individual cells as a
source of activity and/or polar interactions between cells, and it
is unclear if such microscopic dynamics can be properly
modelled by a hydrodynamic continuum model of nematic
liquid crystals at macroscopic scales. A formulation based on
coupling active stresses to cell shape deformations showed the
possibility of capturing some aspects of topological defect
formation in isotropic cell layers.33 Recently, this approach
has been extended to account for both extensile and contractile
stresses, noting how these stresses contribute to cell shape
deformations.35 However, the mechanisms of topological defect
formation and the link with the well-established instabilities
in continuum formulations of active nematics remain
unresolved.

In this paper, we present a simple cell-based, discrete model
of a dense 2D cellular layer, where we combine macroscopic
description of cell–cell interactions with cell–scale properties.
The developed model reproduces the phenomenology of hydro-
dynamic theories of active nematic liquid crystals and intro-
duce a generic model of force transmission at the cellular
interfaces, which allows us to connect tissue-level quantities
to the microscopic description. We then use insights from the
continuum theory of active nematic liquid crystals to introduce
a minimal form of local dipolar interaction between cells and
show that our model develops the correct hydrodynamic beha-
viour at macroscopic scales. In particular, we show that this
formulation reproduces the typical bend and splay instabilities
of active nematic liquid crystals theories and that it produces
topological defects and associated flow features that are similar
to the ones observed experimentally. Furthermore, within
a certain parameter regime, we show that the competition
between active stress generation and the elasticity of individual
cells results in the spontaneous formation of gaps within the
confluent layers.

The paper is organized as follows: In Section 2 we describe
the details of the model and the minimal description of
the cell-generated forces and intercellular interactions. In
Section 3.1 we present numerical simulations of the system
that reproduce fundamental hydrodynamic instabilities of
continuum active nematics, followed by a linear stability
analysis in Section 3.2 that sheds light on the mechanism of
the generation of such hydrodynamic modes within our
cell-based description. In Section 3.3 we employ numerical
simulations to move beyond these instabilities and analyse
more closely the dynamics of topological defects, followed by
characterization of the flow features of active turbulence in the
cell-based model in Section 3.4. Finally, we present quantitative
results of gap formation in extensile and contractile systems in
Section 3.5, followed by concluding remarks and discussions in
Section 4.

2 The phase-field model

Following Mueller et al.,33 we represent each cell in an epithe-
lium monolayer via a separate phase field, fi. The dynamics of
each phase field is governed by

@tfi þ~vi � ~rfi ¼ �
dF
dfi

; i ¼ 1; . . . ;N; (1)

where N is the total number of cells and -vi is the total velocity of
the cell i. The free energy, F; governs the dynamics of the cell
interfaces and has three contributions:

F ¼FCH þFarea þFrep:: (2)

The first term in eqn (2) is the Cahn-Hilliard free energy, which
stabilizes the interface between exterior and interior of each
cell. It is defined as

FCH ¼
X
i

g
l

ð
d~x 4fi

2ð1� fiÞ2 þ l2ð~rfiÞ2
n o

; (3)

where l is the interface width and g is the surface tension that
characterizes the cell elasticity.36 The double-well potential in
the first term of eqn (3) makes fi = 1 for regions inside the cells
and fi = 0 for the outside regions. The cell boundary occurs at
fi = 0.5. This formulation is guided by simplicity and models
the cell boundary as a diffuse interface, but could be easily
extended to model sharp interfaces.37–39

The second term in eqn (2), Farea; defines a soft area
constraint for each cell and is given by

Farea ¼
X
i

m 1� 1

pR2

ð
d~xf2

i

� �
2; (4)

where m controls the relaxation of area changes and R is the cell
radius. Farea ensures that cell areas, Ai ¼

Ð
d~xfi

2; are close to
circle, i.e. pR2. Note that area conservation is not implemented
at the level of eqn (1), i.e. even though cells are mostly
incompressible, the cell area can be dramatically altered, for
example, squeezed by neighbouring cells or stretched on the
substrate.40

Finally, the repulsion term, Frep; penalizes regions where
two cells overlap:

Frep: ¼
X
i

X
jai

k
l

ð
d~xfi

2fj
2: (5)

Here, k denotes the strength of the repulsion. Normalisation
has been chosen such that the width of the interfaces at
equilibrium is given by l and that the properties of the cells
are roughly preserved when l is rescaled.

The above mentioned free energies describe the cellular
interfaces, as shown in Fig. 1a, and specify the equilibrium
properties of the interfaces including surface tension and
interface width. To drive the system away from the equilibrium
we define the cell velocities, -

vi, in eqn (1) based on the force
balance for an overdamped system:

x-
vi =

-

Fint
i , (6)
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where x is the substrate friction coefficient and
-

Fint
i is the total

force acting on the interface of the cell i. When modelling
epithelia from a material science perspective, these microscopic
interface forces are usually defined in terms of a macroscopic
tissue stress tensor, rtissue. In our phase-field formulation, this
corresponds to

~F int
i ¼

ð
d~xfi

~r � rtissue ¼ �
ð
d~xrtissue � ~rfi: (7)

These expressions can be interpreted as follows: the first is the
integral of the local force, ~r � rtissue; weighted by the phase-field,
fi, and the second is the integral of the force exerted by the stress

tensor on the vector �~rfi normal to the interface. In the limit of
sharp interfaces, the integral tends to a contour integral over the
cell boundary and leads to the usual expressions for the local
force in terms of the stress tensor, see Section 3.2 below.

In order to reproduce the phenomenology of active nematic
liquid crystals, we include local dipolar interactions into rtissue.
To do so, we associate internal nematic tensor, Qi, to each cell
describing the orientational alignment of the cell. The tissue
stress tensor is defined as follows,

rtissue = �PI � zQ, (8)

where Q ¼
P
i

Qifi is tissue’s nematic field, P ¼
P
i

@F=@fi is

the pressure field, and I is the identity tensor. The first term in
eqn (8) induces steric repulsion between cells, while the second
term mirrors the active term found in continuum theories of
active liquid crystals.17 It can be interpreted as a dipolar force
density distributed along the cells interfaces such that each cell
pushes or pulls its neighbours depending on the direction of
their contact area with respect to the nematic tensor, as
demonstrated schematically in Fig. 1b.

We now introduce the dynamics of the internal nematic
degree of freedom, Qi, of each cell. In the continuum theory,
most of the phenomenology of active liquid crystals depends on
a balance between the restoring elastic forces and flow align-
ment of the nematic tensor. By writing Qi = 2(-ni#

-
ni �

-
ni

2I/2)
with -

ni = (cos yi,sin yi), we can mirror these two components in
our model and define the following dynamics of the angle, yi:

qtyi = Kti + Joi, (9)

where the torques are given by

ti ¼
1

l

ð
d~x Qifi ^Q; oi ¼

ð
d~x~v ^ ~rfi; (10)

and K is the nematic elastic parameter and J is the nematic flow
alignment strength. We have defined the tissue velocity as ~v ¼P
i

~vifi and A4B = AxxBxy � AxyBxx for symmetric traceless

matrices A and B, while ~v ^ ~rfi is the usual wedge product.
The first torque, ti, aligns Qi to the tissue nematic tensor, Q,
and induces an elastic restoring force favouring the homoge-
neous state. The second torque, oi, rotates Qi with the local
vorticity computed as the integral of the neighbouring cells
velocity projected on the interface. Note that our definitions are
local in the sense that each torque is given by an integral along
the cell interface with its neighbours.

We simulate eqn (1) and (9) using an open-source software
Celadro (available on GitHub: https://github.com/rhomu/celadro),
which utilizes a finite difference scheme on a square lattice with a
predictor-corrector step (for details of the implementation, see
Mueller et al.33). For all the simulations presented here, we initialize
each cell with a director along the x-direction. We simulate the
dynamics of 896 cells of radius R = 8 in a 400 � 400 periodic
domain. Cells are placed randomly and relaxed for 200 time steps
under passive dynamics to reach confluence. Simulations are run
for 15 000 time steps with the following parameters/parameter
ranges (unless stated otherwise): m = 0.03, l = 8, k = 0.2, x = 1, K =
2 � 10�5, J = 4 � 10�3, z A �[3 � 10�4, 8 � 10�2], g A [0.01,0.1],
chosen within the range that was previously shown to reproduce
defect flow fields in epithelial layers.26

3 Results

To demonstrate the new features of the developed model and
highlight the consistency with the continuum models of active
nematics,8,9,17 we begin by numerically investigating the mecha-
nism and dynamics of the system starting from a quiescent
state. In our analysis, we explore the behaviour of the model for
a range of activity parameter values, z, (both positive and
negative) and consider different values of the cell elasticity, g.

3.1 Bend and splay instabilities

Continuum theory shows that when a nematic system is active,
it is prone to bend or splay instability, which depends on the
sign of the activity parameter.41–43 Let us define bend and splay
measure as follows:

b ¼
ð
d~xð~n ^ ~r^~nÞ2=2; s ¼

ð
d~xð~r �~nÞ2=2: (11)

Initializing a system from a quiescent state, we observe that
after some transient relaxation time, the tissue nematic field, Q,
develops non-zero bend (splay) when the cell–cell interaction is
extensile (contractile), as demonstrated in Fig. 2a and b.
This initial instability then leads to the formation of walls
(Fig. 2a) – elongated distortions in the director field – which
are also predicted by the continuum theory.17,42,44

Fig. 1 (a) Interfaces between cells defined as the overlap
P
iaj

fifj and (b)

contours fi = 1/2 with an illustration of the contractile force exerted by the
cell in the centre on its neighbours.
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At longer times, we observe the spontaneous creation of pairs of
topological defects that lead to the unzipping of walls in the
orientation field for both bend and splay instabilities, see Fig. 2d.
In order to quantify the timescale associated with the formation of
these instabilities, we measure the time before the creation of the
first defect pair for different values of the activity, z (Fig. 2c). We
observe that as the activity increases, the time to the formation of
first defect pair decreases exponentially, which is consistent with the
predictions from continuum theory on the exponential growth of
the instabilities in time with the time constant proportional to 1/|z|,
where z is the activity coefficient.43,44

3.2 Analysis of the instabilities at linear order

In this section, we show how the dynamics presented in eqn (9)
and (10) capture the bend and splay instabilities observed in
continuum systems of active nematics by performing a linear

stability analysis. The goal is not to derive a new coarse-grained
set of continuum equations for cell monolayers, as done
systematically in a recent work for vertex models.45 Instead
we present a minimal cell-based model that allows to reproduce
hydrodynamic instabilities, as well as topological defect
features that are typically observed in continuum theories of
active nematics.

Previous agent-based models of non-deformable particles,
such as active Brownian particles and self-propelled rods with
properly designed alignment interactions, have shown to result
in active turbulence and defects chaos phase, observed in
nematic continuum theories and experiments.46,47 We follow
similar approach here in order to analyse the model at a linear
order and make several simplifying assumptions that allow us
to present an analytically tractable expression for the instabil-
ities in our multi-agent model in the double limit where both
interfaces and cells are small. We then consider the evolution
of this continuum description from a quiescent state at linear
order and obtain stability conditions for the system. Impor-
tantly, in conducting this linear stability analyses we neglect the
deformablity of the cells in order to allow for an analytical
description of the instability criteria. In Sections 3.1, 3.3–3.5,
we go beyond this simplifying assumption and linear analyses,
to present the results of full numerical simulations of the
cell-based model that indeed show the importance of cell
deformability in setting flow features of active turbulence, on
topological defect dynamics, and on emergent activity-induced
heterogeneities in cell layers.

To perform the linear stability analyses, our procedure is as
follows. First, note that in the absence of activity, i.e. z = 0, the
epithelium relaxes to a honeycomb lattice where all cells take
an approximate hexagonal form (Fig. 3). Consider then a cell
with phase-field f0 centred at -

x with neighbouring cells located
at -xi = -x0 + d-mi�1 for i = 1,. . .,6, where d is the distance between
the centres of two neighbouring cells, and -

mi = (cos(ip/3),sin(ip/
3)). We then assume that the widths of the cells interfaces are
much smaller than the cells sizes, i.e. l { d, such that the cells

take an hexagonal form with d �
ffiffiffi
3
p

R. In this limit, all the
integrals over the phase fields can easily be performed by
separating the directions perpendicular and parallel to the

Fig. 2 Bend-splay instabilities of a cell monolayer. (a) Tissue nematic field,
Q ¼

P
i

Qifi , showing typical bend (left) and splay (right) instabilities of an

initially homogeneous state for extensile (z 4 0) and contractile (z o 0)
activities, respectively. Parameters used here: z = �0.01, g = 0.05. (b)
Evolution of the total bend, b, and splay, s, given by eqn (11) of the tissue
nematic field, Q, as a function of time for extensile (top) and contractile
activities (bottom). Averaged over 5 simulations with z = �0.02 and g =
0.05. (c) Number of time steps (rescaled by 1/RK) before creation of the
first defect pair for different extensile (top) and contractile activities
(bottom). The dashed line is the exponential fit. Mean � std from 5
simulations with g = 0.1. (d) Snapshots of simulation demonstrating
unzipping of walls by topological defects during bend instability for an
extensile activity. Green circle: +1/2-defect, blue triangle: �1/2-defect.
The simulation was performed with z = 0.01 and g = 0.05.

Fig. 3 A cell and its neighbours in a honeycomb configuration showing
approximate hexagonal shape. Additional surrounding cells are not shown.
The locations of the centre of the first cell x0 and of two of its neighbours
x
-

i = x
-

0 + dm
-

i�1 are indicated.
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interfaces. Assuming constant field along the parallel direction

and equilibrium interface profiles f�ð~x�~x0Þ ¼
1

2
1� tanh ~x=lð Þð Þ

along the perpendicular direction, we can use the explicit integralsð
d~xf�ð~xÞf�ð~xÞ ¼ l=2;

ð
d~xf�ð~xÞ@xf�ð~xÞ ¼ �1=2;

to obtain the following expressionsð
d~xfif0 �

dl

2
ffiffiffi
3
p ; and

ð
d~xfi

~rf0 � �
d~mi

2
ffiffiffi
3
p ;

where d=
ffiffiffi
3
p

is the length of the interface between cells 0 and i.
Additionally, we have used the fact that the gradients are

perpendicular to the interfaces, i.e. fi
~rf0 � fi~mið~mi � ~rÞf0.

Note that even though we assume that the interfaces take their
equilibrium profiles, the interface length, l, will be in principle
different from l because we consider a confluent state where
the steric interactions between cells cannot be ignored. Once
such integrals over the individual cells have been computed, we
can consider the limit where cells are small, i.e. l { d { 1. We
rescale all the physical parameters that multiply terms propor-
tional to integrals over the cells interfaces by the interface
length, i.e. we replace K - K/d, J - J/d, and x - xd, and
rewrite Qi and -

vi as fields. Performing an expansion to first
order in d finally allows us to obtain expressions for the tissue
level fields in the continuum limit and perform a linear stability
analysis.

We first apply this procedure to better understand the effect
of the torques in eqn (10). Considering the cell i = 0 located at -x,
we can write

t0 ¼
1

l

ð
d~xQ0f0 ^Q � l

l
d

2
ffiffiffi
3
p
X6
i¼1

Q0 ^Qi;

¼ l

l
d

2
ffiffiffi
3
p
X6
i¼1

Qð~xÞ ^Qð~xþ d~miÞ;

¼ l

l

ffiffiffi
3
p

2
Dyð~xÞd3 þ Oðd5Þ;

where we have set Qxx = cos 2y and Qxy = sin 2y. This form is
similar to the elastic term of continuum theories of liquid
crystals in the one-elastic constant approximation, and shows
that the torque t0 does indeed have the effect of an elastic
restoring force. We can similarly rewrite the vorticity torque as

o0 ¼
ð
d~x~v ^ ~rf0 ¼ �

d

2
ffiffiffi
3
p
X6
i¼1

~vi ^ ~mi;

�� d

2
ffiffiffi
3
p
X6
i¼1

~vð~xþ d~miÞ ^ ~mi;

¼
ffiffiffi
3
p

2
ð@xvyð~xÞ � @yvxð~xÞd2 þOðd4Þ:

This shows that the torque oi indeed measures the local tissue
vorticity around a cell. Finally, we consider the total force on

the interface and, neglecting the pressure term, obtain the
following expansion

~F int
0 ¼ z

ð
d~xQ � ~rf0 � �

zd

2
ffiffiffi
3
p
X6
i¼1

Qi � ~mi

¼ � zd

2
ffiffiffi
3
p
X6
i¼1

Qð~xþ d~miÞ � ~mi

¼ �
ffiffiffi
3
p

z
2

@xQxx þ @yQxy

@xQxy � @yQxx

 !
d2 þ Oðd4Þ;

which is similar to the local force arising from the active stress
term in continuum theories of liquid crystals.

We can now obtain the linear stability condition for the
homogeneous state y = 0 by using the force balance equation
-
v =

-

Fint
0 /x and expand eqn (9) to linear order in y. This gives us

@ty ¼ d2
l

l

ffiffiffi
3
p

K

2
Dþ 3Jz

2x
ð@x2 � @y2Þ

" #
yþ Oðd4; y2Þ;

where we have neglected terms of order d4 and y2. For extensile
(contractile) systems, it is easy to consider perturbations homo-
geneous under translation in the y direction (x direction) and
obtain the linear stability condition, �zc o z o zc, where the
critical activity is given by

zc ¼
l

l
xK
3RJ

/ xK
J
:

Hence, we see that the system shows bend and splay instabil-
ities when z 4 zc and z o zc, respectively. It is important to
highlight the domain size-independence and the difference of
this activity threshold with the hydrodynamic instabilities in
continuum models of active nematics that predict bend/splay
instabilities for extensile/contractile activities at a threshold
value that tends to zero as the domain size L - N.42

We examine the predictions of the linear stability analysis by
performing simulations for different values of the activity
parameter, z, of the nematic elastic parameter, K, and of the
nematic flow alignment strength, J. For each of the simulations
we measure the average bend and splay defined by eqn (11) over
the last 5000 timesteps. Fig. 4a shows the average bend and
splay as a function of activity for fixed K and J, confirming the
existence of an activity threshold. It is apparent that beyond a
certain activity value, the system develops non-zero bend and
splay as predicted by linear stability analysis, both in the
extensile and contractile case. We then estimate the critical
activity zC from simulations by finding the first value of z for
which bend deviates substantially, i.e. b Z 100, from zero at the
end of the simulation (last 5000 time steps) and examine how
this critical value depends on the elastic constant, K, and flow-
alignment constant, J. Fig. 4b shows the critical activity, zC, as a
function of K (top) and J (bottom). The dashed lines demon-
strate the expected scaling as predicted from the linear stability
analyses, i.e., zC p K and zC p 1/J. Together, these results
establish the existence of a well-defined critical activity, above
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which a collection of active deformable cells exhibit bend/splay
instabilities.

3.3 Active turbulence: defects characteristics

As expected from continuum theory of liquid crystals, the
hydrodynamic instability of the ordered state and the subse-
quent defect pair nucleation is followed, at longer times and for
high enough activity, by the emergence of active turbulence.48

The chaotic flows of active cellular systems are often inter-
leaved with dynamic organisation of topological defects.7,14,16

As such, we next look at the rate of defect pair creation and the
density of defects for different values of activity, z, and elasti-
city, g, shown in Fig. 5a. In line with the predictions of
continuum theories of active nematics,43,48 both values of rate
and density increase for larger activities in both contractile and
extensile systems until they saturate. The rate of saturation
depends on the elasticity, i.e. larger values of g lead to more
rapid increase in defect nucleation rate and a faster saturation
of the defect density.

It is well established that although topological defects in
active nematics appear and annihilate in pairs with positive and
negative half-integer charge, the defects with different charge
show distinct dynamic behaviour. In particular, while negative
defects are three-fold symmetric and lack self-propulsion, the
positive, comet-shaped, defects in active systems are endowed
with self-propulsive velocity along their comet-head (-tail) for
extensile (contractile) activities.

To characterize the dynamics of positive and negative half-
integer defects we first measured the average speed of defects
normalised by root-mean-squared velocity of the flow in the
entire domain, which demonstrate higher velocities of positive
defects at low activities (Fig. 5b). At low activities, both positive
and negative half-integer defects show larger velocities in
extensile systems compared to the contractile one. At higher
activities, however, the normalised defect velocities, for both
positive and negative half-integer defects and in both extensile

Fig. 4 Activity threshold for the instabilities. (a) Bend and splay (eqn (11))
after 10 000 steps for different values of activity, z, with g = 0.05, K = 2 �
10�5 and J = 4 � 10�3. Mean � std over 5 simulations. (b) Dependence of
the critical activity, zC, on the nematic elastic parameter, K, (for J = 4 �
10�3) and nematic flow alignment strength, J, (with K = 2 � 10�5) for
g = 0.05. Dashed lines represent scaling: zC p K and zC p 1/J, as predicted
from the linear stability analyses.

Fig. 5 Topological defect statistics. (a) Rescaled rate of creation of defect pairs (top) and density of defects (bottom) as a function of the activity, |z|, for
different values of the elastic constant, g. Solid line – extensile, dotted – contractile (dashed lines not visible since extensile and contractile curves
overlap). Mean � std from 5 simulations. (b) Defect speed divided by root-mean-square velocity of the entire monolayer for positive (red) and negative
(blue) defects for extensile (solid) and contractile (dotted) activities. Here, g = 0.1. Mean � std from 5 simulations. (c) Mean-squared-distance (rescaled by
squared cell radius, R2) travelled by defect from its creation point as a function of time for positive (red) and negative (blue) defects with z = � 0.01 (left)
and z = � 0.06 (right), and g = 0.1. Top row: extensile, bottom row: contractile system. The time is rescaled by 1/RK. Mean � std from all defects in one
simulation. (d) Diffusion exponent for g = 0.1 as a function of activity for extensile (solid) and contractile (dotted) defects. Mean � std from 5 simulations.
(e) Average properties of +1/2-defects (top) and �1/2-defects (bottom) in an extensile and contractile systems with z = �0.04 and g = 0.1. Average over
time and over 5 simulations.
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and contractile systems, drop to the same level. To study this
trend more closely, we calculate the mean squared distance
travelled from the time of defect creation for each defect as
a function of time (Fig. 5c) and obtain the corresponding
diffusion exponent at long times (Fig. 5d). When the activity
is relatively low, the defect density is lower and positive defects
show larger diffusion exponents, indicating the impact of self-
propulsion on their dynamics. However, when the activity is
increased and the density of the defects approaches its satura-
tion values (Fig. 5a), the diffusion constants of both positive
and negative defects become equal and tend to 1. Similar
behaviour is observed for different values of elasticity, g, and
remains the same in both extensile and contractile systems.
This is in contrast to the predictions of continuum theories43

and observations in bacterial colonies49 and subcellular
filaments-motor protein mixtures,50,51 where positive and nega-
tive half-integer defects show distinct propulsive and diffusive
behaviours, respectively. Remarkably, however, the diffusive
behaviour for both defects, observed in our simulations at high
activities, is in agreement with the experimental observations
on Human Bronchial Cells (HBC)14 and recent phase-field
modelling with distinct mechanisms of active driving,52 sug-
gesting that such diffusive defect dynamics are generic features
of deformable active particles at high activities, where the
nematic order is an emergent property and defects motion is
dominated by the interaction between defects at long times.

To further complement the analyses of the defect dynamics
and highlight the structural differences between the different
defect types, we also calculated the average flows around
positive and negative defects since the flow patterns around
defects are crucial in determining the dynamics of active

turbulence48 and have been recently shown to play a role in
the mechanical properties of epithelial monolayers.5,7,16 We
extract the average properties of defects in the case of extensile
interaction, z 4 0, and obtain the local properties for positive
defects (top row) and for negative defects (bottom row), as
shown in Fig. 5e for both contractile and extensile defects. They
reproduce faithfully the theoretical predictions from conti-
nuum models as well as the experimental observations made
in epithelial monolayers.16

3.4 Active turbulence: flow characteristics

Next, we focus on the global features of the flow field in the
monolayer as the active turbulent state is established.

First, we measure both the root-mean-square velocity,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx2 þ vy2

p
; and the ensemble average of the sum of both

velocity components, vx + vy. In a confluent epithelium, the
total force is approximately zero and the system does not
develop any total velocity under periodic boundary conditions.
This is demonstrated in Fig. 6a (dashed line) for both extensile
and contractile systems. In contrast, the rms-velocity has a
finite value and is enhanced with increasing activity for both
extensile and contractile systems. More importantly, the gen-
erated flow is interleaved with vortical structures. This is
quantified by calculating the vorticity-vorticity correlation func-
tion that clearly shows the existence of a characteristic vorticity
length scale for different activities. Consistent with continuum
theories,43 the vorticity length scale decreases with increasing
activity (Fig. 6b).

In addition to having an intrinsic vorticity length scale that
depends on the activity of the system, active turbulence is

Fig. 6 Global flow features of the active turbulence in the monolayer. (a) Rescaled root-mean-square velocity,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx2 þ vy2

p
; (solid) and sum of both

components, vx + vy, (dashed) plotted for different values of activity, z, and elasticity, g. Averaged over the whole domain and time (5 realisations). (b)
Dependence of the vorticity length defined as the location of the minimum of the vorticity autocorrelation function as a function of z for different values
of g. Mean � std from 5 simulations. (c) Distribution of vortex areas, defined by Okubo-Weiss parameter, for different values of activities, z, with g = 0.1.
Averaged over 5 realisations. The x-axis is rescaled by pR2 and the black solid-line marks a possible exponential scaling at intermediate vortex sizes. (d)
Absolute value of the divergence as a function of activity, z, rescaled by vrms/R. Averaged over 5 simulations.
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shown to manifest exponential distribution of vortex sizes, that
was first predicted using active nematohydrodynamic equations,53

and was confirmed in epithelial monolayers of Human Bronchial
Cells,14 and in dense suspensions of microtubule-kinesin motor
mixtures.54 We quantify the vortex areas using Okubo-Weiss
criterion,14 W:

W ¼ �det ~r~v
h i

: (12)

The region is considered to be a vortex if Wo 0. Fig. 6c demon-
strates the semi-log representation of the total vertex area prob-
ability distribution for different values of activity with g = 0.1.
While we see a possible evidence of activity-dependent, exponen-
tial scaling at intermediate vortex areas, we could not find a
conclusive evidence of the exponential distribution of vortex areas
in our simulations.

Additionally, continuum models of epithelial layers often
assume the velocity field of the cells to be incompressible.6,16,55,56

We directly check this constraint in our cell-based model by
calculating the average of the absolute values of the flow diver-

gence, ~r �~v, for different values of z and g, as shown in Fig. 6d.
Interestingly, as the activity increases, the divergence becomes
non-zero, suggesting that the monolayer of cells deviates from an
incompressible behavior. Higher values of divergence are
observed for larger values of elasticity, g. The non-zero divergence
further indicates the emergence of dilating-shrinking domains in
the system, which we explore next.

3.5 Spontaneous gap formation

While physical properties of confluent monolayers have been
intensely investigated, recent modelling and in vivo experi-
ments have begun to unravel the importance of extracellular
spaces on structural properties of the cell layers.57 Interestingly,
we find that the emergence of extracellular spaces can be
governed by the activity level of the cells: at a given cell density,
for sufficiently high activities the confluency condition is
broken and extracellular spaces spontaneously emerge (Fig. 7a).

To quantitatively characterize the spontaneous gap for-
mation, we measure the fraction of empty space within the cell
layer. To this end, in the phase-field model, we use the thresh-
old method. We calculate the total cell density by summing
over all cells:

ftot ¼
XN
i

fi: (13)

We then assume that the grid points with ftot o f0 correspond
to empty space. The value of f0 = 0.2 is chosen by qualitatively
identifying the gaps.

Interestingly, measurement of the empty space fraction over
simulation time shows that after their formation the fraction
reaches a constant value throughout the simulations. Fig. 7b
demonstrates the steady-state fraction of empty space for different
values of activity and elasticity, showing an elasticity-dependent
threshold for activity, above which extracellular spaces are formed.
Beyond this point, the empty space fraction increases as the
activity is increased. Similar gap formation behavior is observed

for both extensile and contractile systems (Fig. 7b), indicating that
the spontaneous emergence of extracellular spaces is a generic
feature of an active multicellular layer.

Furthermore, the crossover from the confluent to non-
confluent state is accompanied by a significant alteration of
the individual cell features. This is best quantified by mea-
suring the distribution of cell areas within the confluent and
non-confluent states of the monolayer (Fig. 7c). When the
monolayer is confluent (left panel in Fig. 7c), the cells obtain
more hexagonal shape, i.e. on average closer to the dashed
line, indicating the area of a hexagon. However, when the
confluency is broken (right panel in Fig. 7c), the cells have
more circular shape, i.e. on average closer to the dotted line,
indicating the area of a circle, and the cell distributions are
narrower compared to the confluent case. Furthermore, as
the activity increases, the distribution broadens significantly,
indicating the emergent activity-induced heterogeneity in cell
areas, and is true for both confluent case and monolayers
with gaps.

Fig. 7 Higher activity values lead to heterogeneity in cell densities,
eventually leading to the formation of highly dense regions and empty
spaces, i.e. gaps. (a) Plots of ftotðtÞ ¼

P
i

fiðtÞ for z = 0.01 with g = 0.1 (left)

and z = 0.08 with g = 0.01 (right) at the end of the simulation. Black lines
represent cell contours, grey – interior of the cell, and white – exterior. (b)
Fraction of empty space on the grid as a function of time for contractile
(left) and extensile (right) activities. The empty space was evaluated at the
end of simulation (15 000 time steps) and averaged over 5 simulations. (c)
Cell area distribution (normalized) for different values of activity, z, and
elasticity, g. Dashed vertical line corresponds to the area of hexagon,

3
ffiffiffi
3
p

R2=2, and the dotted line to the area of circle, pR2. The x-axis is
rescaled by pR2.
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4 Conclusions

We have presented a phase-field model of cellular monolayers
that bridges macroscopic interaction forces at the cell-level to
the active nematohydrodynamic behavior at the multicellular
level. We do so by introducing a minimal form of local
dipolar interaction between cells and show that this simple
formulation reproduces phenomenology of the continuum
active nematohydrodynamic approach. In particular, by per-
forming numerical simulations, we show the emergence of
bend and splay instabilities for extensile and contractile inter-
actions. At later times, the system develops active turbulence
and the formation of topological defects. We quantify the
observed features of flows and defects for both extensile and
contractile systems, and show that they are in agreement with
the experimental observations.

Furthermore, we find that when activity and elasticity of
individual cells is sufficiently high, the monolayer flow field
deviates from its incompressible behavior. Concomitantly, we
demonstrate that this deviation of the cell layer flow field from
incompressibility leads to spontaneous formation of gaps
within the confluent layers. We observe larger fraction of empty
space for higher activity and lower elasticity. Furthermore, we
quantify the emergent heterogeneity in the cell areas, showing
that cells in confluent monolayer have more hexagonal shapes
and higher degree of heterogeneity compared to cells in mono-
layer with gaps. The spontaneous gap formation is accompa-
nied by more homogeneous circular cell shapes.

Inter-cellular gap formation has been observed experimen-
tally in epithelial cell monolayers, where gaps can reach the
length of several cell bodies.58 Appearance of cell-free space has
been linked to viscoelastic properties of the substrate.59 More
recently, Sonam et al.60 have suggested that the spontaneous
formation of holes within cell monolayer can occur due to the
heterogeneity in substrate stiffness and using a vertex model
they show that the gaps can form in the areas close to negative
half-integer topological defects, which result in higher tensile
stresses within the cell layer. Thus, extending the model to
account for substrate heterogeneity will provide a theoretical
platform to study the gap formation and its implications on
collective cell movement. Moreover, in realistic conditions cells
experience cell–cell and cell–substrate adhesion, as well as
traction forces due to e.g. cell polarity. In this work our aim
was to reveal minimal ingredients in the model that would be
able to capture the phenomenology of active nematics and,
therefore, we limited ourselves to only considering the cell–
substrate friction together with the intercellular stresses.
Future research should extend this framework to account for
cell–substrate adhesion forces, as for example done in a recent
3D model of the cell layer in the context of cell elimination,32 to
examine how the interplay of intercellular and cell–substrate
forces affect collective behavior of cell layers.
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