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atomistic and deep-learning calculations†
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The spread of severe acute respiratory syndrome coronavirus 2 novel coronavirus (SARS-CoV-2) worldwide

has caused the coronavirus disease 2019 (COVID-19) pandemic. A hundred million people were infected,

resulting in several millions of death worldwide. In order to prevent viral replication, scientists have been

aiming to prevent the biological activity of the SARS-CoV-2 main protease (3CL pro or Mpro). In this

work, we demonstrate that using a reasonable combination of deep-learning calculations and atomistic

simulations could lead to a new approach for developing SARS-CoV-2 main protease (Mpro) inhibitors.

Initially, the binding affinities of the natural compounds to SARS-CoV-2 Mpro were estimated via

atomistic simulations. The compound tomatine, thevetine, and tribuloside could bind to SARS-CoV-2

Mpro with nanomolar/high-nanomolar affinities. Secondly, the deep-learning (DL) calculations were

performed to chemically alter the top-lead natural compounds to improve ligand-binding affinity. The

obtained results were then validated by free energy calculations using atomistic simulations. The

outcome of the research will probably boost COVID-19 therapy.
Introduction

SARS-CoV-2, which belongs to the b-coronavirus genus, shares
79.6% of sequence identity with SARS-CoV.1 This virus is
supposed to have originated from bats, but other animals, such
as pangolins, are also possible intermediate hosts. SARS-CoV-2
has been causing the coronavirus disease 2019 (COVID-19)
pandemic,2 which has affected more than 182 million patients
and is associated with about 4 million deaths worldwide as of
July 2021. SARS-CoV-2, a single positive-strand RNA virus with
spherical morphology is composed of four main structural
proteins, including spike, envelope, membrane and nucleo-
capsid proteins that are crucial for the synthesis of viral
proteins and viral replication.3 The spike (S) protein of SARS-
CoV-2 is present on the viral surface as a homo-trimer, which
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is researched thoroughly because this is the part that the virus
employs in order to enter human cells by binding to
angiotensin-converting enzyme 2 receptor (ACE2).4 This
receptor is present in different organs in the human body, such
as the lung, heart, and liver.4

The health burden of coronavirus is increasing signicantly
with the emergence of new variants that can decrease the
effectiveness of vaccines and the complication of co-infection of
human patients with other viruses, bacteria, and fungi.5 These
present a challenge to develop new drugs that can effectively
cure or at least reduce the severity of COVID-19. Many drugs
have been tested in pre-clinical and clinical trials so far,
including remdesivir, hydroxychloroquine, lopinavir/ritonavir,
interferon b-1a, tocilizumab, favipiravir, plitidepsin, convales-
cent plasma infusions, and monoclonal antibodies, among
many others, for their effect on SARS-CoV-2 elimination.6–8
† Electronic supplementary information (ESI) available: Include docking results
of natural compounds; interaction diagram of SARS-CoV-2 Mpro + ligands from
docking and MD-rened simulations; the pulling force in displacement
dependence over FPL simulations; MD-rened structures of SARS-CoV-2 Mpro
+ modied compounds; MD-rened structures of SARS-CoV-2 Mpro +
modied compounds, which were suggested by DeepFrag estimations; the
calculated results of 62 modied compounds to SARS-CoV-2 Mpro using DL
and FPL calculations; the permeability/solubility of the top-lead compounds;
the PreADMET results of 62 designed inhibitors; the toxicity results of 41
natural compounds, which were reported in Table 1; the modied positions
of the studied compounds, in which the numbers correspond to the atomic
index; and 2D interaction diagram of top-lead designed inhibitors to
SARS-CoV-2 Mpro. See DOI: 10.1039/d1ra06534c
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Especially, numerous studies were carried out to nd a prom-
ising inhibitor to prevent the SARS-CoV-2 Mpro since it associ-
ates with the cleavage of polyproteins to polypeptides
accounting for the viral functionalities and replication.9–17

However, none of them are really curative for the disease.
Characterizing the binding free energy (DG) between proteins

and ligands is a critical issue in predicting potential inhibitors for
inhibiting biological targets.18–23 The metric is popularly estimated
using computational approaches.24 Rigorous calculations usually
provide correlated results with the respective experiments.25

Required costs and time for therapeutic development are thus
reduced.20,26 In particular, molecular docking simulations are oen
used to initially estimate the ligand binding pose and free energy
to enzyme targets.27,28 Docking simulations can rapidly provide
results with appropriate correlation coefficients.29 However,
molecular docking uses several constraints to accelerate the
calculation speed, the obtained results are normally required to
rene via more accurate approaches. Molecular dynamics simu-
lations are then employed to unravel the outcome of docking
calculations.11,30 Moreover, in recent years, the development of
deep-learning (DL) approaches has brought many benets for
various areas of society. DL has also been employed in CADD31

because it is able to learn themapping frommolecular inputs such
as structural, physical, and chemical properties to ligand binding
affinities and poses. In particular, a deep convolutional neural
network can be used to alter the chemical structure of ligands to
improve ligand-binding free energy.32,33 DL models are also
employed to characterize the binding affinity of ligands.34–36

In addition, natural compounds historically contribute to
pharmacotherapy, especially for infected diseases.37,38

Numerous studies have indicated that natural products can
prevent SARS-CoV-2,39,40 especially SARS-CoV-2 Mpro.11,41

Therefore, in this work, we have screened natural compounds
for preventing SARS-CoV-2 Mpro using rigorously computa-
tional approaches. As well, the top-lead compounds were
chemically modied to improve the binding affinity via Deep-
Frag, a deep learning (DL) model.32 The binding affinity of these
ligands was then validated using atomistic simulations. The
calculated improvement was repeated until the ligand-binding
affinity was not enhanced. Totally, there are 17, 27, and 34
compounds exhibiting nanomolar, high-nanomolar, and sub-
micromolar affinities to SARS-CoV-2 Mpro, respectively. Using
a reasonable combination of DL calculations and atomistic
simulations could lead to a new approach for developing SARS-
CoV-2 Mpro inhibitors.

Materials and methods
Structure of SARS-CoV-2 Mpro and ligands

The three-dimensional shape of SARS-CoV-2 Mpro was down-
loaded from the Protein Data Bank (PDB ID: 7JYC).42 The
protein structure was obtained via X-ray diffraction with
a resolution of 1.79 Å. The structure of ligands was downloaded
from the PubChem database.43 The PubChem identity and two-
dimensional structure of ligands are mentioned in the ESI.†43 In
particular, 41 compounds, denoted from K1 to K41, were found
from Cordyceps.44 339 compounds, denoted from T1 to T339, are
38496 | RSC Adv., 2021, 11, 38495–38504
natural compounds reported in the previous study.45 17 natural
compounds, denoted from w1 to w17, were tested for binding
affinity to SARS-CoV.46 Moreover, 60 compounds were generated
over DL calculations, whose structures were also reported in the
ESI† le.

Molecular docking simulations

The ligand-binding pose and affinity were initially assessed via
AutoDock Vina (Fig. 1A),47 which is an appropriate package to
perform this task.25 In particular, the ligands and receptors were
prepared for docking simulations via AutoDockTools 1.5.6.48 The
docking global search parameter exhaustiveness is selected as the
default value. The ligand-binding pose was searched in the space
of the docking grid, whereas the grid center is the narlaprevir
center ofmass and the grid size is 2.40� 2.40� 2.40 nm. It should
be noted that narlaprevir is the native ligand of 7JYC.42 Only the
best docking mode was recorded for further calculations.

Fast pulling of ligand (FPL) simulations

GROMACS 5.1.5 (ref. 49) was used to simulate the dissociation
process of ligands out of SARS-CoV-2 Mpro binding cavity. In
particular, the protease and ions were topologized using the
Amber99SB-iLDN force eld.50 Due to the importance of the
catalytic dyad in the biological activity of the protease,51 the
protonation state of His41 and Cys145 was assigned as
described in Fig. 1B. Besides, protonation states of other resi-
dues were assigned by GROMACS via canonical pKa metrics
according to the previous work.25 A water molecule was
parameterized via the TIP3P water model.52 Moreover, a ligand
was represented using the general Amber force eld (GAFF)53

produced by ACPYPE and AmberTools18 packages.54,55 In
particular, the geometrical parameters and atomic charges of
a ligand were provided from the quantum mechanics calcula-
tions using the B3LYP functional with 6-31G(d,p) basis set.
During which, ligand atomic charges were tted by the
restrained electrostatic potential (RESP) scheme.56 It should be
noted that quantum calculations were carried out using the
implicit solvent option, 3 ¼ 78.4.

The complex was inserted into a rectangular periodic
boundary condition box as described in Fig. 1C. The box size (x,
y, z) is (9.83, 5.92, 8.70) in the unit of nm. The solvated complex
thus consists of ca. 50 000 atoms, which include a protease,
a ligand, water molecules, and Na+ ions. Energy minimization
simulations were initially carried out to optimize the solvated
complex. The system was then relaxed over 0.1 ns ofNVT and 2.0
ns of NPT simulations. The relaxed conformation was employed
as the starting shape for steered-molecular dynamics (SMD)
simulations. The simulations were performed using parameters
referred to in the previous work.11 During simulations, the
integral was calculated every 2 fs. The simulation temperature
was 310 K and the pressure of NPT simulation was chosen as 1
atm. A non-bonded pair was available when the distance
between two atoms was smaller than 0.9 nm. The fast particle-
mesh Ewald electrostatics scheme57 was utilized to calculate
electrostatic interactions, besides the cutoff scheme was
employed to treat van der Waals (vdW) interaction. Each
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) Computational scheme was applied to characterize and design potential inhibitors for SARS-CoV-2 Mpro using atomistic simulations
andmachine learning calculations. (B) A ligandwas docked to SARS-CoV-2Mpro using AutoDock Vina. (C) The protonation states of the catalytic
dyad His41 and Cys145. (D) A ligandwas dissociated from the bound state using external-harmonic force ð~FÞ during FPL simulations.~F was put on
the ligand center of mass in order to force the ligand to mobilize out of the protease binding cavity.
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calculation was independently repeated 8 times to guarantee
sampling.

During SMD simulations, the ligand was dissociated via an
external harmonic force, which has a cantilever spring constant
n¼ 600 kJ mol�1 nm�2 and pulling velocity k¼ 0.005 nm ps�1.58

The recorded pulling work, W ¼ v
Ð t
0 FðtÞdt, is associated with

the binding free energy, DG, via isobaric-isothermal Jarzynski

equality,59 e�
W
kBT ¼ e�

DG
kBT :
Deep-learning calculations

DeepFrag,32,33 a deep convolutional neural network, was used to
predict the chemical modication of the ligand to enhance the
binding affinity. In particular, the complex structure of SARS-CoV-2
Mpro and top-lead compounds revealed by FPL simulations were
used as the initial conformation of DL calculations. In particular,
the PDB les of ligands and protease were uploaded to DeepFrag
web application (https://durrantlab.pitt.edu/deepfrag/). The ligand
atoms were then selected to check if they could be replaced by
another chemical group. The possible alteration was recorded if
the DeepFrag score was larger than 0.90.
Analyzed tools

BeforeMD simulations, the ligand protonation state was predicted
using the chemicalize webserver.60 Ligand interaction diagramwas
generated by the Maestro free package,61 in which the hydrogen
bond (HB) and side-chain (SC) contacts were predicted using the
default option of the Maestro package. In addition, human
© 2021 The Author(s). Published by the Royal Society of Chemistry
intestinal absorption (HIA), logP, and toxicity of the compounds
were estimated using the PreADMET webserver.62
Results and discussion
Natural compounds bind to SARS-CoV-2 Mpro

Molecular docking simulations are normally used to rapidly
assess ligand-binding pose and affinity to enzyme targets.63

AutoDock Vina,47 a free package, was usually used to dock the
inhibitor to SARS-CoV-2 Mpro64,65 since its results formed
appropriate correlation coefficients between docking results
and experiments, RVina ranging from 0.60 � 0.13 to 0.82 �
0.08,25,58,66 and success rates, r̂Vina ¼ 67%.25 Therefore, in this
work, AutoDock Vina47 was utilized to nd a shortlist of
compounds having large docking energy to SARS-CoV-2 Mpro.
The docking results are fully described in Table S1 of the ESI†
le. Docking energy ranged from �3.1 to �8.9 kcal mol�1 with
an average value of �6.14 � 0.06 kcal mol�1. In particular, 40
compounds, occupying 10% of total substrates were then re-
assessed for the ligand-binding affinity via molecular
dynamics simulations. The interaction diagrams of these
compounds in SARS-CoV-2 Mpro were generated by the Maestro
package61 and displaced in Fig. 2 and Table S2 of the ESI† le.
On average, these ligands adopted 1.2 � 0.2 HB to the protease,
in which ligands favorably contact with the residue Thr26,
Cys44, Ser46, Leu141, Asn142, Gly143, and Glu166. Besides,
interestingly, T34 and T180 compounds can directly disturb the
catalytic dyad since forming HB to Cys145. Moreover, the
docking energy of these ligands falls in the range from �7.6 to
�8.9 kcal mol�1 with a mean of �7.93 � 0.05 kcal mol�1. The
RSC Adv., 2021, 11, 38495–38504 | 38497
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Fig. 2 The two-dimensional interaction diagrams between SARS-CoV-2 Mpro and their ligands. (A), (B), and (C) are T82, T17, and T56 binds to
SARS-CoV-2 Mpro obtained by AutoDock Vina, respectively. (D), (E), and (F) are T82, T17, and T56 binds to SARS-CoV-2 Mpro obtained by MD-
refined simulations, in which the described structure is the clustered shape over the last snapshots of the relaxation simulations.
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obtained affinities are larger than that of the other inhibitors
reported in previous studies using AutoDock Vina such as a-
ketoamide inhibitors 11n (�6.4 kcal mol�1), 11r
(�6.9 kcal mol�1), and 11s (�7.0 kcal mol�1).67 Azo imidazole
derivatives was also docked to SARS-CoV-2 Mpro via AutoDock
Vina, in which the docked energies ranged from �6.7 to
�8.1 kcal mol�1.68 Consequently, it is better than the docking
energy of 26 inhibitors of SARS-CoV-2 Mpro (ranging from �5.1
to �7.2 kcal mol�1) mentioned in the recent work.65 However,
the obtained affinities were smaller than the top-lead
compounds of Natural Product Arlats, which the docking
energies adopted in the range from �8.2 to �9.4 kcal mol�1.69
Unbinding ligand to rene binding affinity

AutoDock Vina uses numerous approximations such as
acquired united-atom model, rigid receptor, and rarely tested
ligand positions, the obtained results are thus required to rene
via MD simulations.23,58,71 In this work, FPL simulations were
employed to rene the docking outcome,58 because the
approach formed a good correlation coefficient to the respective
experiments with a value, RFPL, ranging from �0.74 � 0.11 to
�0.76 � 0.01.25,58 It should be noted that the correlation coef-
cient is a negative mean that required larger pulling work
38498 | RSC Adv., 2021, 11, 38495–38504
corresponding to the smaller binding free energy. Besides, with
the correlation coefficient, the FPL scheme is only behind the
free energy perturbation method,72 which is known as the most
accurate method and required huge computing resources, in
ranking ligand-binding affinity.25 In the FPL scheme, the system
was relaxed to reach equilibrium states before the ligand was
forced to dissociate with the protease via an external force.
During relaxation simulations, the ligand-binding pose was
cleared (cf. Fig. 2 and Table S2 of the ESI† le). Interestingly, the
number of HBs between ligands and the protease was increased
over MD-rened simulations, in which the counted contact is
1.9 � 0.3. The residue Thr24, Thr26, Cys44, Ser46, Asn142,
Gly143, Ser144, and Glu166 popularly adopted HB contact to
ligands. The change of the important residue list implies the
incorrect part of molecular docking simulations.

The ligand would be then forced to mobilize from bound to
unbound states. The recorded work of pulling forceW would be
used as a critical term to estimate the ligand-binding free energy
according to the formula DGPre

FPL ¼ �0.056 �W � 5.512 reported
in previous work.58 The larger workWmeans the stronger ligand
binder. In order to predict the binding free energy of 40 ligands,
320 independent FPL calculations were carried out. The ob-
tained results are reported in Table 1. The recorded pulling
© 2021 The Author(s). Published by the Royal Society of Chemistry
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forces along the dissociated pathways are mentioned in Table
S3 of the ESI† le. The mean rupture force FMax, which is the
maximum pulling force, is also mentioned in Table 1 since it
could be used as a metric to rank ligand-binding affinity.73 The
FMaxvalues were measured in a range from 376.8 � 29.2 to 721.5
+ 38.2 pN. Besides, the average of pulling works dropped in the
range from 29.1 � 2.6 to 108.6 � 5.7 kcal mol�1 corresponds to
the predicted binding free energy DGPre

FPL ranging from �7.14 to
�11.59 kcal mol�1, respectively. The predicted value of the half-
Table 1 The calculated results of 41 compounds to SARS-CoV-2 Mpro

No. Code
PubChem
ID Name DGDock F

1 T82 28523 Tomatine �8.9 7
2 T17 159331 Thevetine �7.7 6

3 T56 10175330 Tribuloside �7.9 7

4 T117 5282160 Quercimeritrin �7.7 6
5 T25 31310 Scillaren �8.3 5
6 T61 73568 Corilagin �8.1 7
7 T44 6325292 Gomphrenin III �7.6 5
8 T26 222154 Proscillaridin �8.2 5
9 T33 185586 Melianotriol �7.7 6
10 T52 441840 Adynerin �8.1 5
11 T24 5317157 Equisetrin �7.9 5
12 T3 5281627 Hinokiavone �8.6 5
13 T202 441295 Ginkgolide C �7.9 6
14 T55 5316647 Cynarine �7.7 4
15 T126 5280805 Rutin �7.6 5
16 T34 185617 Scutellarin �7.7 5
17 T19 10028469 Melianodiol �7.8 5
18 T13 5281600 Amentoavone �8.6 5
19 T121 32024 Alpha-antiarin �7.9 5
20 T27 11013 Rhodexin A �7.8 5
21 T115 15515703 Jujubogenin �7.7 6
22 T182 3032482 Ecdysterone �7.7 5
23 T14 65071 Limonin �8.9 5
24 W22 3000706 Valinomycin �7.6 4
25 T179 73432 Brusatol �7.7 4
26 T58 10494 Oleanolic acid �7.6 4
27 T65 131900 Peimine �8.1 4
28 T35 3083631 Chlorogenin �7.8 4
29 T119 65064 (�)-Epigallocatechin

3-gallate (EGCG)
�7.5 5

30 T23 72307 Sesamin �7.7 5
31 T107 4970 Protopine �8.1 5
32 T20 167691 Peiminine �8.1 4
33 T7 5270604 Taraxasterol �7.7 4
34 T50 119041 Obacunone �7.8 4
35 T180 98570 Allocryptopine �8.4 4
36 T30 470259 Arnidiol �7.6 4
37 T4 15560423 Kulactone �7.6 4
38 T8 91453 Hecogenin �7.7 4
39 T102 442814 Pachyrrhizone �7.7 4
40 T1 31342 Salasodine �7.7 3
41 T11 5154 Sanguinarine �8.2 4

a The predicted binding free energy DGPre
FPL ¼ �0.056 � W � 5.512 kcal mo

using hypothesis that IC50 equals inhibition constant ki.
c The experiment

with an assumption that the IC50 equal to ki (inhibition constant). The calcu
energy in pN and kcal mol�1, respectively.

© 2021 The Author(s). Published by the Royal Society of Chemistry
maximal inhibitory concentration ICPre
50 was thus computed via

the formula , where R is the gas constant and T is the absolute
temperature. The ICPre

50 of ligands falls in the range from
micromolar to nanomolar affinity (cf. Table 1), in which three
compounds T82, T17, and T56 adopted a strong binding to
SARS-CoV-2 Mpro. The obtained results are well consistent with
the HB analyses, in which T82, T17, and T56 formed 6, 5, and 6
HBs to the protease. Consequently, there are 25, 19, and 23
residues that formed SC contacts to T82, T17, and T56,
using molecular docking and FPL simulations

Max W DGPre
FPL

a ICPre
50 rangeb DGEXP

c

21.5 � 38.2 108.6 � 5.7 �11.59 Nanomolar
35.7 � 34.6 86.3 � 2.3 �10.35 High-

nanomolar
01.2 � 45.1 80.5 � 4.2 �10.02 High-

nanomolar
34.7 � 35.0 75.4 � 4.1 �9.73 Sub-micromolar
99.2 � 44.4 72.1 � 3.9 �9.55 Sub-micromolar
00.2 � 40.5 72.2 � 3.8 �9.55 Sub-micromolar
97.7 � 27.5 65.6 � 1.7 �9.19 Sub-micromolar
78.7 � 28.1 63.0 � 4.3 �9.04 Sub-micromolar
86.1 � 36.9 61.8 � 4.1 �8.98 Sub-micromolar
42.3 � 24.9 61.1 � 2.3 �8.93 Sub-micromolar
57.0 � 29.2 59.1 � 4.7 �8.82 Sub-micromolar
74.4 � 41.0 57.7 � 3.8 �8.74 Sub-micromolar
39.4 � 23.8 55.3 � 2.4 �8.61 Sub-micromolar
88.7 � 33.5 55.3 � 6.1 �8.61 Sub-micromolar
39.7 � 39.7 55.2 � 4.4 �8.60 Sub-micromolar
43.9 � 34.8 55.0 � 4.7 �8.59 Sub-micromolar
63.8 � 23.4 54.8 � 2.9 �8.58 Sub-micromolar
08.0 � 35.7 53.4 � 3.0 �8.50 Micromolar
58.6 � 28.0 53.2 � 3.4 �8.49 Micromolar
09.3 � 37.7 51.6 � 3.3 �8.40 Micromolar
03.8 � 24.0 51.3 � 2.5 �8.39 Micromolar
44.1 � 37.3 50.3 � 4.0 �8.33 Micromolar
40.0 � 13.0 49.9 � 1.5 �8.31 Micromolar
93.2 � 35.4 47.0 � 3.1 �8.14 Micromolar
83.7 � 34.3 43.6 � 3.4 �7.95 Micromolar
95.0 � 39.1 42.2 � 1.7 �7.87 Micromolar
60.9 � 29.4 42.0 � 2.1 �7.86 Micromolar
86.4 � 42.1 42.0 � 3.5 �7.86 Micromolar
17.5 � 24.1 41.9 � 3.4 �7.86 Micromolar �8.30

14.2 � 34.5 39.8 � 3.0 �7.74 Micromolar
46.0 � 35.2 37.5 � 2.4 �7.61 Micromolar
41.9 � 34.8 36.9 � 4.2 �7.58 Micromolar
61.9 � 32.3 36.9 � 2.3 �7.58 Micromolar
40.2 � 19.1 35.9 � 1.9 �7.52 Micromolar
32.8 � 22.7 34.6 � 1.8 �7.45 Micromolar
07.9 � 31.5 34.4 � 1.4 �7.44 Micromolar
34.8 � 16.9 34.3 � 2.6 �7.43 Micromolar
22.4 � 26.1 33.9 � 2.8 �7.41 Micromolar
49.3 � 28.9 32.9 � 2.8 �7.35 Micromolar
76.8 � 29.2 31.5 � 2.7 �7.28 Micromolar
24.6 � 30.5 29.1 � 2.6 �7.14 Micromolar

l�1.58 b The predicted ICPre
50 was calculated via formula ICPre

50 ¼ eðDG
Pre
FPL=RTÞ

al affinity DGEXP was approximately calculated via the IC50 value (ref. 70)
lated error is the standard error of the average (SE). The unit of force and
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respectively. Therefore, three compounds probably play as
highly potent inhibitors for SARS-CoV-2 Mpro. Moreover, 14
compounds adopting sub-nanomolar affinity (Table 1) could
efficiently prevent SARS-CoV-2 Mpro. Especially, the binding
affinity of 17 top-lead compounds is signicantly larger than
that of EGCG, which formed a binding affinity of DGPre

FPL ¼
�7.86 kcal mol�1 in FPL calculations. Besides, it should be
noted that the compound formed an IC50 value of 0.874 mM
versus SARS-CoV-2 Mpro.70 The DGEXP of EGCG was thus calcu-
lated as �8.30 kcal mol�1 in an assumption that the IC50 is
equal to ki. Furthermore, it should be noted that T82, tomatine,
is a glycoalkaloid extracted from the tomato plant. Tomatine is
popularly used as a plant fungicide and as a precipitating agent
for cholesterol.74 T17, thevetine, is cardiac glycosides obtained
from yellow oleander (Thevetia peruviana) seeds.75 T56, tribulo-
side, is a avonoid that can be isolated from Tribulus
terrestris L.76

Design of stronger binding ligand via DL + FPL calculations

Although the compound T82 formed the strongest binding
affinity to SARS-CoV-2 Mpro, the molecule is too big and the
steroid group is located outside the binding cavity and fully
exposed to the solvent (Fig. 2). Besides, the rest of the molecule
fully tted in the protease binding cavity. The steroid group was
Fig. 3 The interaction diagram between truncated T82 and T17 with
SARS-CoV-2 Mpro. The diagram was analyzed from MD-refined
structures by Maestro free package.

38500 | RSC Adv., 2021, 11, 38495–38504
thus proposed to be removed from the molecule, resulting in
the compound T82_cut fully tting the binding cavity (Fig. 3).
FPL calculations were then performed to predict the ligand-
binding affinity. The calculated metrics including FMax and W
were found to be 748.3 � 48.4 pN and 96.3 � 5.2 kcal mol�1,
respectively. The binding free energy was predicted to be
�10.90 kcal mol�1. Although the binding affinity of T82_cut is
smaller than that of T82, the term is larger than that of T17 and
T56. Moreover, we also proposed to remove the triterpenoids
saponin group from the compound T17 since the group is
located outside the binding cavity and fully exposed to the
solvent (Fig. 2). FPL calculations indicated that the predicted
binding free energy between T17_cut and SARS-CoV-2 Mpro of
�9.47 kcal mol�1 (Fig. 3). Therefore, in the next step, a deep
convolutional neural network, DeepFrag,32 was employed to
chemically modify the three compounds T82_cut, T17_cut, and
T56 with the expectation that the altered compounds will form
a stronger binding affinity to the protease.

Total 60 modied compounds were proposed via DeepFrag
package that probably forms a larger binding affinity to SARS-
CoV-2 Mpro. Initially, the compound name was denoted with
a type of T82_x, T17_x, and T56_x, in which x is the index of the
replaced atom (Fig. 4 and S1 of the ESI† le). The MD-rened
structure of these compounds T82_cut and T17_cut is
described in Fig. 3 and Table S4 of the ESI† le. The binding
affinity of DL-predicted compounds would be also revealed via
FPL calculations. Moreover, the compound T82_22 in the
complex with SARS-CoV-2 Mpro was used as the initial structure
for DeepFrag prediction because of adopting the largest binding
affinity to the protease. Ten compounds, whose names are set as
T82_22_x, where x is the index of the replaced atom, were
proposed (cf. Fig. S1 of the ESI† le). Two compounds
T82_22_16 and T82_22_8 formed a strong interaction with the
protease (cf. Table S5 of the ESI† le). Furthermore, the
Fig. 4 Critical compounds were predicted by DeepFrag calculations.
Group atoms, which are noted with the blue curve, are the modified
positions.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table 3 The calculated results of top-lead compounds to SARS-CoV-
2 Mpro using DL and FPL calculations

No. Code FMax W DGPre
FPL

a ICPre
50 rangeb

1 T56_2 705.2 � 18.9 87.9 � 2.6 �10.43 High-nanomolar
2 T56_18 717.4 � 51.6 81.8 � 5.3 �10.09 High-nanomolar
3 T56_8 655.1 � 22.9 79.7 � 3.4 �9.98 High-nanomolar

a The predicted binding free energy DGPre
FPL ¼ �0.056 � W �

5.512 kcal mol�1.58 b The predicted ICPre
50 was calculated via the

formula ICPre
50 ¼ eðDG

Pre
FPL=RTÞ using hypothesis that IC50 equals to

inhibition constant ki. The calculated error is the standard error of
the average (SE). The units of force and energy are pN and kcal mol�1,
respectively.
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DeepFrag package was continuously employed to design 18
modied compounds from the ligands T82_22_16 and
T82_22_8, in which these compounds were denoted as
T82_22_16_x and T82_22_8_x, where x is the index of the
replaced atom (cf. Fig. S1 of the ESI† le). The interaction
diagram of these ligands with SARS-CoV-2 Mpro was described
in Table S6 of the ESI† le. Unfortunately, these compounds
formed a lower binding affinity than T82_22_16 and T82_22_8.
Therefore, the DeepFrag package would not be used to improve
the ligands T82_22_16_x and T82_22_8_x. In addition, six
proposed compounds T117_x, where x is the index of the
replaced atom (cf. Table S7 and Fig. S1 of the ESI†) were also
predicted. However, the affinity of T117_x compounds was not
improved comparised to T117.

The obtained binding affinity of the modied ligand via FPL
simulations is mentioned in Tables 2 and S8 of the ESI† le. The
ICPre

50 of 62 compounds fall in the range from micromolar to
nanomolar affinity. 16 compounds formed a strong binding free
energy to SARS-CoV-2 Mpro with the ICPre

50 value in the range of
nanomolar value (Table 2). In particular, the pulling work of the
top-lead compounds adopted in the range from 105.2 � 6.8 to
121.6 � 6.1 kcal mol�1 corresponding to the predicted binding
free energy ranging from �11.40 to �12.32 kcal mol�1. More-
over, the MD-rened structure of the complex was obtained via
the clustering method with an all-atom cutoff of 0.2 nm. More
details in the interaction between the protease and top-lead
compounds are shown in Fig. S2 of the ESI† le. In particular,
the ligands formed 4.8 � 0.3 HB and 23.4 � 0.4 SC contacts to
Mpro. Four residues Ser46, His164, Glu166, and Arg188
frequently adopted HB to inhibitors, especially, His164 and
Glu165 having contact to >88% ligands. Furthermore, three
ligands T82_22, T82_22_40, and T82_22_16_18 gave HB contact
with Cys145, which is one of the most important residues
located in the binding cavity of the protease. It should be noted
Table 2 The calculated results of top-lead compounds to SARS-CoV-
2 Mpro using DL and FPL calculations

No. Code FMax W DGPre
FPL

a

1 T82_22_16 953.0 � 54.0 121.6 � 6.1 �12.32
2 T82_22_8 940.4 � 44.8 120.8 � 2.7 �12.28
3 T82_22_8_14 931.1 � 28.6 117.0 � 5.2 �12.06
4 T82_22_30 930.1 � 39.7 112.4 � 5.8 �11.81
5 T82_22 870.8 � 61.6 111.6 � 6.7 �11.76
6 T82_22_16_40 888.7 � 39.8 109.7 � 5.4 �11.65
7 T82_32 857.9 � 41.9 108.9 � 3.4 �11.61
8 T82_22_10 881.9 � 25.3 108.6 � 3.9 �11.59
9 T82_22_40 919.0 � 47.6 108.5 � 5.8 �11.59
10 T82_22_12 818.3 � 30.5 107.8 � 3.6 �11.55
11 T82_22_8_24 860.1 � 45.3 107.6 � 4.8 �11.54
12 T82_22_16_38 856.3 � 33.1 106.9 � 4.0 �11.50
13 T82_22_16_18 856.3 � 50.3 106.8 � 6.6 �11.49
14 T82_22_14 835.6 � 50.8 105.9 � 5.2 �11.44
15 T82_22_24 880.4 � 41.2 105.5 � 2.9 �11.42
16 T82_22_16_10 855.6 � 58.7 105.2 � 6.8 �11.40

a The predicted binding free energy DGPre
FPL ¼ �0.056 �W � 5.512.58 The

calculated error is the standard error of the average (SE). The unit of
force and energy in pN and kcal mol�1, respectively.

© 2021 The Author(s). Published by the Royal Society of Chemistry
that numerous ligands were designed to be able to form
a contact with the catalytic dyad (Cys145 and His41) to inhibit
the SARS-CoV-2 Mpro biological activity.9,77,78 Therefore, it is an
additional positive point of the ligands T82_22, T82_22_40, and
T82_22_16_18. However, the other ligands also play a potent
inhibitor for SARS-CoV-2 Mpro.

Although a compound forms a large binding affinity to SARS-
CoV-2 Mpro, the permeability of this compound might be more
benecial in allowing the compound to “meet” the viral protease
Fig. 5 2D interaction diagram of T56_2 and T56_18 compounds to
SARS-CoV-2 Mpro. The MD-refined structure of the complexes was
obtained using the clustering method with a cutoff of 0.12 nm.

RSC Adv., 2021, 11, 38495–38504 | 38501
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inside the cells.9 The permeability of trial compounds can be
predicted via logP value,79 thus, the logP of designed inhibitors was
predicted using PreADMET webserver.62 The obtained results are
mentioned in Tables S9 and S10 of the ESI† le. Therefore, it may
be argued that 11/17 top-lead compounds, which formed
nanomolar/sub-micromolar affinity, were suggested to penetrate
themselves into the human lung cell and then inhibit viral repli-
cation (Table S9 of the ESI† le). Moreover, interestingly, T82 and
T17-based compounds showed large solubility, which logP diffuses
in the range from �6.35 to �1.32. These compounds would play
like a-ketoamide compound 14b, which forms a large binding
affinity to SARS-CoV-2 Mpro but is almost inactivated as it inhibits
SARS-CoV-2 replication in human lung cells. It is quite reasonable
since T82 and T17-based compounds are essentially poly-
saccharides, which would not adopt much pharmacological
potential. However, T56-based compounds formed appropriate
permeability with the logP value falls in the range from 1.09 to 2.69
supporting that T56-based compounds can inhibit the SARS-CoV-2
replication in human lung cells. Moreover, HIA and toxicity of the
designed inhibitors were also estimated (Table S10 of the ESI† le).
The obtained toxicity suggested that all of the designed inhibitors
would not poison rats. Besides, all T56-based compounds would
be orally absorbed sinceHIA values are higher than 39%. However,
it is hard to orally absorb T17 and T82-based compounds because
their HIA values are mostly smaller than 10%.

In addition, three T56_x compounds including T56_2,
T56_18, and T56_8 formed a high-nanomolar affinity to SARS-
CoV-2 Mpro (Table 3). In particular, T56_2 and T56_18 bind
to the protease with a larger affinity in comparison with the T56
compound, DGPre

FPL ¼ �10.02 kcal mol�1. As the interaction
diagram in Fig. 5 shows, both T56_2 and T56_18 rigidly formed
HBs to Glu166 and Val186 residues. Forming only SC contacts to
the Cys145 residue, two compounds probably play as non-
covalent binding inhibitors of SARS-CoV-2 Mpro.

Conclusions

Using a reasonable combination of DL calculations and atomistic
simulations could lead to a new approach for developing SARS-
CoV-2 Mpro inhibitors. In this context, we have demonstrated
that natural compounds can bind to SARS-CoV-2 Mpro with
a strong binding affinity, which ranges from micromolar to
nanomolar values. Tomatine (T82), thevetine (T17), and tribulo-
side (T56) could form rigid HB and SC contacts to SARS-CoV-2
Mpro. Three compounds thus exhibit nanomolar/high-
nanomolar affinities and 14 compounds form a sub-micromolar
affinity. However, the permeability of compounds might be
advantageous in preventing SARS-CoV-2 replication.9 Only 11/17
top-lead compounds were suggested that they can insert them-
selves into the human lung cell and then inhibit viral replication.
These compounds involve tribuloside (T56), quercimeritrin (T117),
corilagin (T61), gomphrenin III (T44), proscillaridin (T26), melia-
notriol (T33), adynerin (T52), hinokiavone (T3), cynarine (T55),
rutin (T126), and melianodiol (T19). The ADME prediction also
indicated that they are less toxic substances.

Because tomatine and thevetine are very big compounds
with the steroid and triterpenoid saponin groups fully exposed
38502 | RSC Adv., 2021, 11, 38495–38504
in the solvent, respectively, two truncated compounds T82_cut
and T17_cut were proposed by removing the respective groups.
Interestingly, two compounds also exhibit strong binding to the
protease. Moreover, DL calculations using the DeepFrag
package were applied to chemically alter four compounds
T82_cut, T17_cut, T56, and T117 with the expectation that the
modied compounds would adopt a larger binding affinity. 60
modied compounds were thus suggested. All of the designed
compounds formed a large binding affinity to SARS-CoV-2
Mpro, in which DGPre

FPL falls in the range from sub-micromolar
to nanomolar affinities. However, only T56 and T117 based
compounds adopted an appropriate permeability, suggesting
that they are able to inhibit the SARS-CoV-2 replication in the
human lung cells. Three modied compounds including T56_2,
T56_8, and T56_18 are highly potent inhibitors since adopting
high-nanomolar affinities to SARS-CoV-2 Mpro. In addition, the
other T56_x and T117_x compounds inhibit the protease with
sub-micromolar affinity. They would thus play the roles of
potential inhibitors preventing SARS-CoV-2 replication.
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F. V. González, K. Świderek and V. Moliner, Chem. Sci.,
2021, 12, 1433–1444.

18 G. R. Marshall, Annu. Rev. Pharmacol. Toxicol., 1987, 27, 193–
213.

19 N. Homeyer, F. Stoll, A. Hillisch and H. Gohlke, J. Chem.
Theory Comput., 2014, 10, 3331–3344.

20 W. Yu and A. D. MacKerell, in Antibiotics: Methods and
Protocols, ed. P. Sass, Springer New York, New York, NY,
2017, vol. 5, pp. 85–106, DOI: 10.1007/978-1-4939-6634-9.

21 S. T. Ngo, T. H. Nguyen, N. T. Tung, P. C. Nam, K. B. Vu and
V. V. Vu, J. Comput. Chem., 2020, 41, 611–618.

22 S. Decherchi and A. Cavalli, Chem. Rev., 2020, 120, 12788–
12833.

23 D. T. Cao, T. M. Huong Doan, V. C. Pham, T. H. Minh Le,
J.-W. Chae, H.-y. Yun, M.-K. Na, Y.-H. Kim, M. Q. Pham
and V. H. Nguyen, RSC Adv., 2021, 11, 20173–20179.

24 Z. Li, X. Li, Y.-Y. Huang, Y. Wu, R. Liu, L. Zhou, Y. Lin, D. Wu,
L. Zhang, H. Liu, X. Xu, K. Yu, Y. Zhang, J. Cui, C.-G. Zhan,
X. Wang and H.-B. Luo, Proc. Natl. Acad. Sci. U. S. A., 2020,
117, 27381–27387.

25 S. T. Ngo, N. M. Tam, M. Q. Pham and T. H. Nguyen, J. Chem.
Inf. Model., 2021, 61, 2302–2312.

26 G. Sliwoski, S. Kothiwale, J. Meiler and E. W. Lowe,
Pharmacol. Rev., 2014, 66, 334–395.

27 S. Kumar, P. P. Sharma, U. Shankar, D. Kumar, S. K. Joshi,
L. Pena, R. Durvasula, A. Kumar, P. Kempaiah, Poonam
and B. Rathi, J. Chem. Inf. Model., 2020, 60, 5754–5770.

28 M. Kandeel and M. Al-Nazawi, Life Sci., 2020, 251, 117627.
29 N. T. Nguyen, T. H. Nguyen, T. N. H. Pham, N. T. Huy,

M. V. Bay, M. Q. Pham, P. C. Nam, V. V. Vu and S. T. Ngo,
J. Chem. Inf. Model., 2020, 60, 204–211.
© 2021 The Author(s). Published by the Royal Society of Chemistry
30 V. Limongelli,Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2020,
10, e1455.

31 M. J. Lamberti, M. Wilkinson, B. A. Donzanti,
G. E. Wohlhieter, S. Parikh, R. G. Wilkins and K. Getz,
Clin. Ther., 2019, 41, 1414–1426.

32 H. Green, D. R. Koes and J. D. Durrant, Chem. Sci., 2021, 12,
8036–8047.

33 H. Green and J. D. Durrant, J. Chem. Inf. Model., 2021, 61,
2523–2529.

34 G. Subramanian, B. Ramsundar, V. Pande and R. A. Denny, J.
Chem. Inf. Model., 2016, 56, 1936–1949.

35 J.-Q. Chen, H.-Y. Chen, W.-j. Dai, Q.-J. Lv and C. Y.-C. Chen, J.
Phys. Chem. Lett., 2019, 10, 4382–4400.

36 K. Gao, D. D. Nguyen, J. Chen, R. Wang and G.-W. Wei, J.
Phys. Chem. Lett., 2020, 11, 5373–5382.

37 A. G. Atanasov, S. B. Zotchev, V. M. Dirsch, I. E. Orhan,
M. Banach, J. M. Rollinger, D. Barreca, W. Weckwerth,
R. Bauer, E. A. Bayer, M. Majeed, A. Bishayee, V. Bochkov,
G. K. Bonn, N. Braidy, F. Bucar, A. Cifuentes, G. D'Onofrio,
M. Bodkin, M. Diederich, A. T. Dinkova-Kostova, T. Efferth,
K. El Bairi, N. Arkells, T.-P. Fan, B. L. Fiebich,
M. Freissmuth, M. I. Georgiev, S. Gibbons, K. M. Godfrey,
C. W. Gruber, J. Heer, L. A. Huber, E. Ibanez, A. Kijjoa,
A. K. Kiss, A. Lu, F. A. Macias, M. J. S. Miller, A. Mocan,
R. Müller, F. Nicoletti, G. Perry, V. Pittalà, L. Rastrelli,
M. Ristow, G. L. Russo, A. S. Silva, D. Schuster,
H. Sheridan, K. Skalicka-Woźniak, L. Skaltsounis,
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