Highly conductive Cu-deposited basalt fiber fabric for high-performance electromagnetic interference shielding and Joule heating†
Abstract
Addressing the escalating demand for lightweight, highly conductive, thin, large-area, and mechanically flexible materials with high electromagnetic interference (EMI) shielding effectiveness, alongside superior electrical and mechanical properties crucial for advanced wireless electronics and next-generation telecommunications (6G), we introduce a novel Cu-deposited basalt fiber fabric (BFF) fabricated via electroless Cu deposition across varying temperatures (room temperature to 60 °C). This material exhibits exceptional EMI shielding performance, achieving 81.7 dB in the X-band (8.2–12.4 GHz) at a minimal thickness of approximately 7.69 μm. Furthermore, it demonstrates significantly high electrical conductivity, reaching a peak of 4.81 × 105 S m−1, coupled with a low density of 3.08 g cm−3, substantially lighter than bulk Cu (8.96 g cm−3). The Cu-deposited BFF also possesses excellent mechanical properties, with breaking forces of 665 N (weft) and 3343 N (warp) achieved at the optimized deposition temperature of 50 °C, and superior Joule heating efficiency, reaching temperatures up to 136 °C at an applied voltage of 1.0 V. Integrating lightweight, high strength, thermal stability (up to 950 °C), and electrical conductivity, the Cu-deposited BFF presents itself as a sustainable and high-performance EMI shielding material with significant potential for scalable industrial applications.