A hybrid flowing water-based energy generator inspired by a rotatable waterwheel

Abstract

The ever-increasing global demand for low-carbon energy underscores the urgency of water energy harvesting. Despite intensive progress, achieving continuous and efficient water energy harvesting—particularly from abundant, distributed, and low-frequency water flows such as rain, streams, and rivers—remains a critical challenge. Herein, inspired by the classical waterwheel that spatially decouples the gravitational force of flowing water into orthogonal directions for continuous rotation, we report a hybrid, rotatable flowing water-based energy generator (R-FEG) capable of continuous and efficient water energy harvesting at both low and high frequencies. The R-FEG device consists of transistor-like multilayer blades to harvest the kinetic energy of water at the liquid–solid interface via the bulk effect which is favorable at low frequency, and a magnetic rotor on a symmetrical blade array to harvest rotational energy via the electromagnetic effect at high frequency. As a result, the R-FEG device enables self-sustained operation in a wide range of flow rates, collectively delivering an enhanced power of 1131.3 μW at a typical flow rate of 2.0 L min−1. Moreover, the R-FEG exhibits potential versatility as a battery-independent power solution for environmental sensing and outdoor electronics by harvesting water energy across fluctuating flow regimes. This work provides a prospective prototype for water flow energy harvesting, paving a new avenue for scalable, maintenance-free power solutions for applications in remote, offshore, and distributed water energy harvesting.

Graphical abstract: A hybrid flowing water-based energy generator inspired by a rotatable waterwheel

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 May 2025
Accepted
20 Aug 2025
First published
21 Aug 2025

Lab Chip, 2025, Advance Article

A hybrid flowing water-based energy generator inspired by a rotatable waterwheel

H. Wang, H. Liu, Y. Song, X. Qin, Y. Li, K. Tang, H. Zheng, W. Xu, Z. Wang and B. Zhang, Lab Chip, 2025, Advance Article , DOI: 10.1039/D5LC00476D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements