Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Structural integration of two synthetic water soluble receptors for Ca2+ and Mg2+, namely 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) and o-aminophenol-N,N,O-triacetic acid (APTRA), respectively, gave novel di- and tritopic ionophores (1 and 2). As Mg2+ and Ca2+ cannot be simultaneously complexed by the receptors, allosteric control of complexation results. Potentiometric measurements established stepwise protonation constants and showed high affinity for Ca2+ (log K = 6.08 and 8.70 for 1 and 2, respectively) and an excellent selectivity over Mg2+ (log K = 3.70 and 5.60 for 1 and 2, respectively), which is compatible with magnesium–calcium ion exchange. While ion-exchange of a single Mg2+ for a single Ca2+ is possible in both 1 and 2, the simultaneous binding of two Mg2+ by 2 appears prohibitive for replacement of these two ions by a single Ca2+. Ion-binding and exchange was further rationalized by DFT calculations.

Graphical abstract: Synthetic water soluble di-/tritopic molecular receptors exhibiting Ca2+/Mg2+ exchange

Page: ^ Top