Di-tert-butyl peroxide (DTBP) promoted dehydrogenative coupling: an expedient and metal-free synthesis of oxindoles via intramolecular C(sp2)–H and C(sp3)–H bond activation

Biplab Mondal and Brindaban Roy*
Department of Chemistry, University of Kalyani, Kalyani, Nadia-741235, West Bengal, India. E-mail: broybsku@gmail.com; Fax: +91 3325828282; Tel: +91 3325828750

Received 15th May 2015 , Accepted 29th July 2015

First published on 29th July 2015


Abstract

An efficient di-tert-butyl peroxide (DTBP) promoted synthesis of oxindole has been developed. This methodology involves C(sp3)–H and C(sp2)–H bond activation under metal-free conditions. This synthetic approach towards oxindole synthesis avoids bases and hazardous iodine reagents unlike other methodologies developed so far. This metal- and base-free protocol is operationally simple and ecofriendly. It provides an expedient approach to access oxindoles in moderate to very good yields in DCE at 110 °C.


Oxindoles are important heterocyclic scaffolds with unique biological activity found in a wide variety of bioactive compounds,1 natural alkaloids,2 and pharmaceutically active molecules.3 For example, oxindole derivatives have been demonstrated to have significant potential for use in a wide range of biological applications such as an NMDA antagonist4 and calcium channel blockers5 as well as antiangiogenic,6 anticancer agent7 (sunitinib8 I, Fig. 1), and vasopressin V2 receptor antagonist (satavaptan9 II, Fig. 1). Oxindole derivatives show analgesic effect,10 and antimalarial effect (III, Fig. 1)11 also.
image file: c5ra09055e-f1.tif
Fig. 1 Some biologically and pharmaceutically important oxindole derivatives.

Efficient methodologies to switch C–H bonds directly to other functionalities remains a key challenge to modern synthetic organic chemists.12 Therefore, new and efficient methods that could be carried out under milder and eco-friendly conditions always demand special importance to the field of synthetic organic chemistry. In this context, creation of carbon–carbon (C–C) bonds via oxidative coupling of carbon–hydrogen (C–H) bonds has gained acute attention in the development of different new synthetic methods.13

Since last decade, palladium-catalyzed C–C coupling reaction14 was shown to be useful for the synthesis of oxindole derivatives. Recently, copper-catalysed15a–g oxindole synthesis via intramolecular oxidative coupling (intramolecular dehydrogenative coupling, IDC)15 of C(sp2)–H and C(sp3)–H bond have been developed by different groups. Besides IDC, oxindole synthesis via cyclizations of N-arylacrylamides have received special attention in recent years.14j,16,17 Nowadays transition-metal-free organic transformation is the topic of growing interest.18 Very recently transition metal and iodine (molecular and hypervalent)-free synthesis of oxindole have gained more importance due to their low toxicity and more eco-friendly nature.19 These ground-breaking efforts led to the synthesis of a broad range of 2-oxindoles. Our interest has focused on the development of transition metal-free methodologies for carbon–carbon bond formation.20 In this perspective, we planned a transition-metal-free protocol for the intramolecular dehydrogenative C(sp2)–C(sp3) coupling of β-N-arylamido nitrile and esters to generate substituted oxindoles. Pioneering work15a–d in this field by Taylor and Kündig showed that Cu-catalysed IDC reaction follows a radical pathway (SET), hence we envisioned a metal-free radical source to initiate the reaction. Thus we performed the reaction in presence of di-tert-butyl peroxide (DTBP) in 1,2-dichloroethane (DCE) at 110 °C in a sealed tube, without any base and iodine or metal based oxidant to establish the hypothesis (Scheme 1).


image file: c5ra09055e-s1.tif
Scheme 1 Base-, metal- and iodine-free synthesis of oxindoles.

We started our initial studies with β-N-arylamido nitrile (1a) as the model substrate (Table 1). To our delight, a 43% yield of product 2a was obtained using di-tert-butyl peroxide (DTBP) (2 mmol) in toluene (Table 1, entry 1) for 10 h at 110 °C under nitrogen atmosphere. Lower yields of 2a were isolated when DTBP was replaced by other peroxides such as tert-butyl peroxybenzoate (TBPB) and benzoyl peroxide (BPO) (28% and 32%, respectively) (Table 1, entry 2 and 3). Trace amounts of 2a were found in the presence of H2O2 (35% aqueous solution) and tert-butyl hydroperoxide (TBHP, 5.0–6.0 M in decane) (Table 1, entry 4 and 5). Solvent effect on the model reaction was also examined (Table 1, entries 6–11). Relatively lower yields were observed when the reactions were performed in acetonitrile, ethyl acetate and under solvent-free condition (14%, 24% and 36% respectively) (Table 1, entries 6–8). No sign of 2a was found in THF and dioxane, total recovery of starting material (1a) was observed (Table 1, entry 9 and 10). Trace amount of 2a was found in DMF and most of the starting material remained unchanged (Table 1, entry 11).

Table 1 Optimization of reaction conditionsa

image file: c5ra09055e-u1.tif

Entry Oxidant Solvent t (h) Yieldb (%)
a Reaction conditions: 1a (1.0 mmol), radical initiator (2.0 mmol) (DTBP = di-tert-butyl peroxide, TBHP = tert-butyl hydroperoxide, TBPB = tert-butyl peroxybenzoate, BPO = benzoyl peroxide), solvent (4.0 mL), under nitrogen atmosphere, sealed tube.b Isolated yield. NR = no reaction.c DTBP (3.0 mmol).d DTBP (4.0 mmol).e Under air.f Reaction performed at 120 °C.g Reaction performed at 100 °C.h Reaction performed in 6 mL DCE. Bold row implies optimized reaction conditions.
1 DTBP Toluene 10 43
2 TBPB Toluene 10 28
3 BPO Toluene 10 32
4 H2O2 Toluene 10 Trace
5 TBHP Toluene 10 Trace
6 DTBP CH3CN 10 14
7 DTBP EtOAc 10 24
8 DTBP 10 36
9 DTBP THF 10 NR
10 DTBP Dioxane 10 NR
11 DTBP DMF 10 Trace
12 DTBP DCE 10 64
13 DTBP DCE 15 73
14 DTBP DCE 20 71
15 DTBP DCE 15 83c
16 DTBP DCE 15 78d
17 DTBP DCE 15 80e
18 DTBP DCE 15 78f
19 DTBP DCE 15 58g
20 DTBP DCE 15 76h


A steep rise in yield (64%) of 2a with full consumption of starting material was observed when the reaction was performed in 1,2-dichloroethane (DCE) (Table 1, entry 12). The reaction afforded 73% yield of desired product 2a on prolonged heating for 15 h, but gave 71% yield when heated for 20 h under the same reaction conditions (Table 1, entry 13 and 14). On increasing DTBP loading to 3 mmol the yield of 2a increased to 83% (Table 1, entry 15), while somewhat lower yield (78%) was obtained with 4 mmol of DTBP (Table 1, entry 16). Finally, change of reaction atmosphere from nitrogen to air (Table 1, entry 17) and different reaction temperature showed that nitrogen and 110 °C were the optimal reaction atmosphere and temperature (Table 1, entry 18 and 19). With increasing the volume of solvent from 4 mL to 6 mL yield of this coupling reaction decreased slightly (Table 1, entry 20).

With the optimized reaction conditions in our hand, we explored the scope and validity of this methodology with different β-N-arylamido nitrile and esters (Table 2). A range of oxindoles (2a–r, Table 2) were synthesized in moderate to very good yields (59–86%).

Table 2 Substrates scope for intramolecular dehydrogenative coupling (IDC)
image file: c5ra09055e-u2.tif


When the phenyl ring was substituted with a chloro group which has a mild electron withdrawing effect went smoothly in this reaction conditions and gave 68% and 71% yield of 2e and 2f respectively (Table 2, entry 5 and 6). A lower yield (59%) of 2g was isolated when the phenyl ring was substituted with strong electron withdrawing nitro-group (Table 2, entry 7). This reaction equally responded with a long chain alkenyl group (2q, 63%) and phosponate ester (2r, 67%). The reaction failed for the substrate with NH functionality (2s, substrate decomposed under this reaction conditions). However, the substrate 1a′ (Scheme 2, eqn (3)) remained unchanged under this reaction conditions.


image file: c5ra09055e-s2.tif
Scheme 2 Control experiments.

Some control experiments were also performed to establish the mechanism, (Scheme 2). The reaction did not proceed at all in absence of radical initiator DTBP (Scheme 2, eqn (1)). When 2 mmol of 2,2,6,6-tetramethylpiperidine N-oxide (TEMPO) and butylated hydroxytoluene (BHT) were added under optimized reaction conditions separately and a trace amount of coupling product (2a) was isolated (Scheme 2, eqn (2)). These facts support that the reaction follows a radical pathway. The reaction did not occur with substrate 1a′ (Scheme 2, eqn (3)), this experiment suggest that the reaction goes through the generation of a more stable tertiary radical.

Based on literature21 and above experimental results, a plausible mechanism is postulated in Scheme 3. Initially, on heating, homolytic cleavage of DTBP produces tert-butoxy radical A. This tert-butoxy radical (A) abstracts one H atom from α-position of nitrile or ester group of β-N-arylamido nitrile or esters (1) to give B, which then produces resonance stabilized aryl radical C′ which eliminates one hydrogen radical and rearomatization leads to the final product 2.


image file: c5ra09055e-s3.tif
Scheme 3 Plausible mechanismistic pathway.

In conclusion, we have developed a di-tert-butyl peroxide (DTBP) promoted transition-metal-free, atom economical and ecofriendly intramolecular dehydrogenative coupling (IDC) of C(sp2)–H and C(sp3)–H bond. This protocol provides a simple approach for the synthesis of a variety of oxindoles. This methodology avoided base and hazardous iodine reagent unlike other metal-free oxindole synthesis strategy. Further development of transition-metal-free strategy for the synthesis of bioactive heterocycles is being explored in our laboratory.

Acknowledgements

We thank DST (FIST, PURSE New Delhi, Govt of India), CSIR (New Delhi, Govt of India) and University of Kalyani for financial assistance.

References

  1. For selected papers: (a) A. B. Dounay and L. E. Overman, Chem. Rev., 2003, 103, 2945–2964 CrossRef CAS PubMed; (b) L.-l. Wang, J.-j. Li, Z.-b. Zheng, H.-y. Liu, G.-j. Du and S. Li, Eur. J. Pharmacol., 2004, 502, 1–10 CrossRef CAS PubMed; (c) G. C. Bignan, K. Battista, P. J. Connolly, M. J. Orsini, J. Liu, S. A. Middletona and A. B. Reitz, Bioorg. Med. Chem. Lett., 2005, 15, 5022–5026 CrossRef CAS PubMed.
  2. (a) C. Marti and E. M. Carreira, Eur. J. Org. Chem., 2003, 2209–2219 CrossRef CAS PubMed; (b) C. V. Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007, 46, 8748–8758 CrossRef CAS PubMed; (c) A. Millemaggi and R. J. K. Taylor, Eur. J. Org. Chem., 2010, 4527–4547 CrossRef CAS PubMed; (d) M. S. C. Pedras, E. E. Yaya and E. Glawischnig, Nat. Prod. Rep., 2011, 28, 1381–1405 RSC; (e) H. Lin and S. J. Danishefsky, Angew. Chem., Int. Ed., 2003, 42, 36–51 CrossRef CAS PubMed.
  3. (a) J. E. M. N. Klein and R. J. K. Taylor, Eur. J. Org. Chem., 2011, 6821–6841 CrossRef CAS PubMed; (b) F. Zhou, Y.-L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 352, 1381–1407 CrossRef CAS PubMed; (c) B. M. Trost and M. K. Brennan, Synthesis, 2009, 3003–3025 CrossRef CAS.
  4. T. H. Kang, Y. Murakami, K. Matsumoto, H. Takayama, M. Kitajima, N. Aimi and H. Watanabe, Eur. J. Pharmacol., 2002, 455, 27–34 CrossRef CAS.
  5. A. M. Swensen, J. Herrington, R. M. Bugianesi, G. Dai, R. J. Haedo, K. S. Ratliff, M. M. Smith, V. A. Warren, S. P. Arneric, C. Eduljee, D. Parker, T. P. Snutch, S. B. Hoyt, C. London, J. L. Duffy, G. J. Kaczorowski and O. B. McManus, Mol. Pharmacol., 2012, 81, 488–497 CrossRef CAS PubMed.
  6. J. L. Whatmore, E. Swann, P. Barraja, J. J. Newsome, M. Bunderson, H. D. Beall, J. E. Tooke and C. J. Moody, Angiogenesis, 2002, 5, 45–51 CrossRef CAS.
  7. G. Chen, Q. Weng, L. Fu, Z. Wang, P. Yu, Z. Liu, X. Li, H. Zhang and G. Liang, Bioorg. Med. Chem., 2014, 22, 6953–6960 CrossRef CAS PubMed.
  8. C. le Tourneau, E. Raymond and S. Faivre, Ther. Clin. Risk Manage., 2007, 3, 341–348 CrossRef CAS.
  9. L. Foulon, G. Garcia, C. S.-L. Gal and G. Valette, French Patent WO1997015556 A1, May 1, 1997.
  10. C. Abbadie, O. B. McManus, S. Y. Sun, R. M. Bugianesi, G. Dai, R. J. Haedo, J. B. Herrington, G. J. Kaczorowski, M. M. Smith, A. M. Swensen, V. A. Warren, B. Williams, S. P. Arneric, C. Eduljee, T. P. Snutch, E. W. Tringham, N. Jochnowitz, A. Liang, D. Euan MacIntyre, E. McGowan, S. Mistry, V. V. White, S. B. Hoyt, C. London, K. A. Lyons, P. B. Bunting, S. Volksdorf and J. L. Duffy, J. Pharmacol. Exp. Ther., 2010, 334, 545–555 CrossRef CAS PubMed.
  11. M. Rottmann, C. McNamara, B. K. S. Yeung, M. C. S. Lee, B. Zou, B. Russell, P. Seitz, D. M. Plouffe, N. V. Dharia, J. Tan, S. B. Cohen, K. R. Spencer, G. E. Gonzalez-Paez, S. B. Lakshminarayana, A. Goh, R. Suwanarusk, T. Jegla, E. K. Schmitt, H.-P. Beck, R. Brun, F. Nosten, L. Renia, V. Dartois, T. H. Keller, D. A. Fidock, E. A. Winzeler and T. T. Diagana, Science, 2010, 329, 1175–1180 CrossRef CAS PubMed.
  12. (a) Handbook of C–H Transformations: Applications in Organic Synthesis, G. Dyker, Wiley-VCH, Weinheim, 2005, vol. 2 Search PubMed; (b) D. R. Stuart and K. Fagnou, Science, 2007, 316, 1172–1175 CrossRef CAS PubMed; (c) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39, 540–548 RSC; (d) J. le Bras and J. Muzart, Chem. Rev., 2011, 111, 1170–1214 CrossRef CAS PubMed; (e) R. Rossi, F. Bellina and M. Lessi, Synthesis, 2010, 4131–4153 CrossRef CAS; (f) C. J. Scheuermann, Chem.–Asian J., 2010, 5, 436–451 CrossRef CAS PubMed; (g) S.-l. You and J.-B. Xia, Top. Curr. Chem., 2010, 292, 165–194 CrossRef CAS; (h) T. Newhouse, P. S. Baran and R. W. Hoffmann, Chem. Soc. Rev., 2009, 38, 3010–3021 RSC.
  13. For reviews describing oxidative C–C bond-forming reactions see: (a) C. S. Yeung and V. M. Dong, Chem. Rev., 2011, 111, 1215–1292 CrossRef CAS PubMed; (b) P. Siemsen, R. C. Livingston and F. Diederich, Angew. Chem., Int. Ed., 2000, 39, 2632–2657 CrossRef CAS; (c) Z. Li, D. S. Bohle and C.-J. Li, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 8928–8933 CrossRef CAS PubMed; (d) W.-J. Yoo and C.-J. Li, Top. Curr. Chem., 2010, 292, 281–302 CrossRef; (e) Y. Zhang and C.-J. Li, J. Am. Chem. Soc., 2006, 128, 4242–4243 CrossRef CAS PubMed; (f) M. Uyanik and K. Ishihara, ChemCatChem, 2012, 4, 177–185 CrossRef CAS PubMed.
  14. For Pd-catalysed oxindole synthesis: (a) K. H. Shaughnessy, B. C. Hamann and J. F. Hartwig, J. Org. Chem., 1998, 63, 6546–6553 CrossRef CAS; (b) S. Lee and J. F. Hartwig, J. Org. Chem., 2001, 66, 3402–3415 CrossRef CAS PubMed; (c) E. P. Kündig, T. M. Seidel, Y.-X. Jia and G. Bernardinelli, Angew. Chem., Int. Ed., 2007, 46, 8484–8487 CrossRef PubMed; (d) L. Wu, L. Falivene, E. Drinkel, S. Grant, A. Linden, L. Cavallo and R. Dorta, Angew. Chem., Int. Ed., 2012, 51, 2870–2873 CrossRef CAS PubMed; (e) A. B. Dounay, K. Hatanaka, J. J. Kodanko, M. Oestreich, L. E. Overman, L. A. Pfeifer and M. M. Weis, J. Am. Chem. Soc., 2003, 125, 6261–6271 CrossRef CAS PubMed; (f) E. J. Hennessy and S. L. Buchwald, J. Am. Chem. Soc., 2003, 125, 12084–12085 CrossRef CAS PubMed; (g) L. Liu, N. Ishida, S. Ashida and M. Murakami, Org. Lett., 2011, 13, 1666–1669 CrossRef CAS PubMed; (h) X. Luan, L. Wu, E. Drinkel, R. Mariz, M. Gatti and R. Dorta, Org. Lett., 2010, 12, 1912–1915 CrossRef CAS PubMed; (i) Y.-X. Jia, D. Katajev, G. Bernardinelli, T. M. Seidel and E. P. Kündig, Chem. Eur. J., 2010, 16, 6300–6309 CrossRef CAS PubMed; (j) L. Ackermann, R. Vicente and N. Hofmann, Org. Lett., 2009, 11, 4274–4276 CrossRef CAS PubMed; (k) S. Ueda, T. Okada and H. Nagasawa, Chem. Commun., 2010, 46, 2462–2464 RSC.
  15. Oxindole synthesis via IDC (a) A. Perry and R. J. K. Taylor, Chem. Commun., 2009, 3249–3251 RSC; (b) J. E. M. N. Klein, A. Perry, D. S. Pugh and R. J. K. Taylor, Org. Lett., 2010, 12, 3446–3449 CrossRef CAS PubMed; (c) Y.-K. Jia and E. P. Kündig, Angew. Chem., Int. Ed., 2009, 48, 1636–1639 CrossRef CAS PubMed; (d) C. Dey and E. P. Kündig, Chem. Commun., 2012, 48, 3064–3066 RSC; (e) C. Dey, E. Larionov and E. P. Kündig, Org. Biomol. Chem., 2013, 11, 6734–6743 RSC; (f) P. Drouhin, T. E. Hurst, A. C. Whitwood and R. J. K. Taylor, Org. Lett., 2014, 16, 4900–4903 CrossRef CAS PubMed; (g) T. E. Hurst, R. M. Gorman, P. Drouhin, A. Perry and R. J. K. Taylor, Chem.–Eur. J., 2014, 20, 14063–14073 CrossRef CAS PubMed; (h) B. Roy, S. Hazra, B. Mondal and K. C. Majumdar, Eur. J. Org. Chem., 2013, 4570–4577 CrossRef CAS PubMed; (i) J. Wang, Y. Yuan, R. Xiong, D. Zhang-Negrerie, Y. Du and K. Zhao, Org. Lett., 2012, 14, 2210–2213 CrossRef CAS PubMed; (j) S. Ghosh, S. de, B. N. Kakde, S. Bhunia, A. Adhikary and A. Bisai, Org. Lett., 2012, 14, 5864–5867 CrossRef CAS PubMed.
  16. Oxindole synthesis via cyclizations of N-arylacrylamides (a) C.-W. Chan, P.-Y. Lee and W.-Y. Yu, Tetrahedron Lett., 2015, 56, 2559–2563 CrossRef CAS PubMed; (b) H. Egami, R. Shimizu and M. Sodeoka, J. Fluorine Chem., 2013, 152, 51–55 CrossRef CAS PubMed; (c) J. Liu, S. Zhuang, Q. Gui, X. Chen, Z. Yang and Z. Tan, Eur. J. Org. Chem., 2014, 3196–3202 CrossRef CAS PubMed; (d) W.-T. Wei, M.-B. Zhou, J.-H. Fan, W. Liu, R.-J. Song, Y. Liu, M. Hu, P. Xie and J.-H. Li, Angew. Chem., Int. Ed., 2013, 125, 3726–3729 CrossRef PubMed; (e) S.-L. Zhou, L.-N. Guo, H. Wang and X.-H. Duan, Chem.–Eur. J., 2013, 19, 12970–12973 CrossRef CAS PubMed; (f) W. Wei, J. Wen, D. Yang, J. Du, J. You and H. Wang, Green Chem., 2014, 16, 2988–2991 RSC; (g) C.-C. Li and S.-D. Yang, Org. Lett., 2015, 17, 2142–2145 CrossRef CAS PubMed.
  17. Oxindole synthesis via cyclizations of N-arylacrylamides (a) X. Li, X. Xu, P. Hu, X. Xiao and C. Zhou, J. Org. Chem., 2013, 78, 7343–7348 CrossRef CAS PubMed; (b) W. Fu, F. Xu, Y. Fu, M. Zhu, J. Yu, C. Xu and D. Zou, J. Org. Chem., 2013, 78, 12202–12206 CrossRef CAS PubMed; (c) K. Matcha, R. Narayan and A. P. Antonchick, Angew. Chem., Int. Ed., 2013, 52, 7985–7989 CrossRef CAS PubMed; (d) D. C. Fabry, M. Stodulski, S. Hoerner and T. Gulder, Chem.–Eur. J., 2012, 18, 10834–10838 CrossRef CAS PubMed; (e) H.-L. Wei, T. Piou, J. Dufour, L. Neuville and J. Zhu, Org. Lett., 2011, 13, 2244–2247 CrossRef CAS PubMed; (f) Z. Ni, S. Wang, X. Huang, J. Wang and Y. Pan, Tetrahedron Lett., 2015, 56, 2512–2516 CrossRef CAS PubMed.
  18. A. Studer and D. P. Curran, Angew. Chem., Int. Ed., 2011, 50, 5018–5022 CrossRef CAS PubMed.
  19. For metal and iodine-free oxindole synthesis (a) A. Beyer, J. Buendia and C. Bolm, Org. Lett., 2012, 14, 3948–3951 CrossRef CAS PubMed; (b) S. Bhunia, S. Ghosh, D. Dey and A. Bisai, Org. Lett., 2013, 15, 2426–2429 CrossRef CAS PubMed.
  20. B. Mondal and B. Roy, Isopropanol and potassium tert-butoxide promoted intramolecular direct sp2 C–H functionalization: an expedient synthesis of 1,2,3-triazole annulated chromens and quinolones, Tetrahedron Lett. Search PubMed , submitted..
  21. (a) L. Yu, M. Wang and L. Wang, Tetrahedron, 2014, 70, 5391–5397 CrossRef CAS PubMed; (b) L. Wang, J. Cao, Q. Chen and M. He, J. Org. Chem., 2015, 80, 4743–4748 CrossRef CAS PubMed; (c) J.-J. Cao, T.-H. Zhu, S.-Y. Wang, Z.-Y. Gu, X. Wang and S.-J. Ji, Chem. Commun., 2014, 50, 6439–6442 RSC; (d) J. Zhao, H. Fang, R. Song, J. Zhou, J. Han and Y. Pan, Chem. Commun., 2015, 51, 599–602 RSC.

Footnote

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ra09055e

This journal is © The Royal Society of Chemistry 2015
Click here to see how this site uses Cookies. View our privacy policy here.