First observation of vibration–rotation drift spectra of para- and ortho-hydrogen adsorbed at 77 K on LiX, NaX and CsX zeolites

(Note: The full text of this document is currently only available in the PDF Version )

V. B. Kazansky, F. C. Jentoft and H. G. Karge


Abstract

A comparison of the DRIFT spectra of conventional hydrogen (with a ratio of o-H2 to p-H2 equal to 3) and those of the para-enriched hydrogen adsorbed at 77 K on LiX and CsX zeolites, confirms the earlier assignment of the weak high-frequency bands to the vibration–rotation transitions. The results obtained indicate almost free rotation of the hydrogen adsorbed on CsX, but substantially hindered rotation for hydrogen adsorption on the LiX form. However, the adsorption isotherms for LiX, NaX and CsX zeolites are almost identical indicating close lying values of heats of adsorption. To explain this discrepancy, it is suggested that the interaction of the adsorbed hydrogen with the cations provides only a part of the adsorption energy, to which the interaction with the basic oxygen of the zeolite framework also substantially contributes. The frequency of the oscillations of the adsorbed hydrogen relative to the adsorption sites, as obtained from the positions of the satellites in the DRIFT spectra, is used to discuss the motion of the hydrogen inside the zeolite micropores.


References

  1. H. Förster and M. Schuldt, J. Chem. Phys., 1977, 66, 5237 CrossRef.
  2. H. Förster, in Spectroscopic and Computational Studies on Supramolecular Systems, ed. J. E. D. Davies, Kluwer, Amsterdam, 1992, p. 29 Search PubMed.
  3. V. B. Kazansky, V. Yu Borovkov and L. M. Kustov, Proc. 6th Int. Congress Catal., Berlin, 1984, DECHEMA, Frankfurt/Main, 1984, vol. 3, p. 3 Search PubMed.
  4. V. B. Kazansky, in Catalysis and Adsorption by Zeolites, ed. G. Ohlmann, H. Pfeifer and R. Fricke, Elsevier, Amsterdam, 1991, p. 117 Search PubMed.
  5. V. B. Kazansky, V. Yu. Borovkov and H. G. Karge, J. Chem. Soc., Faraday. Trans., 1997, 93, 1843 RSC.
  6. K. F. Bonhoeffer and P. Harteck, Z. Phys. Chem. B., 1929, 4, 113 Search PubMed.
  7. W. N. Delgass, G. L. Haller, R. Kellerman and J. H. Lunsford, Spectroscopy in Heterogeneous Catalysis, Academic Press, New York, 1979, ch. 4, p. 109 Search PubMed.
  8. D. H. Olson, Zeolites, 1995, 15, 439 CrossRef CAS.
  9. D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, London, 1974, p. 133 Search PubMed.
  10. J. Weitkamp, M. Fritz and S. Ernst, Proc. 11th Int. Zeolite Conf., Montreal, 1992, ed. R. van Ballmoos, J. B. Higgins and M. J. Treacy, Butterworth-Heinemann, Boston, 1993, vol. 2, p. 11 Search PubMed.
  11. R. E. Miller and J. C. Decuis, J. Chem. Phys., 1973, 59, 4871 CAS.
  12. A. F. Devonshire, Proc. R. Soc., London, Ser. A, 1936, 153, 601.
  13. H. M. Cundy, Proc. R. Soc., London, Ser. A, 1938, 164, 420.
  14. T. B. MacRury and J. R. Sams, Mol. Phys., 1970, 19, 337 CAS.
  15. N. K. Bär and J. Kärger, 9th Deutsche Zeolith-Tagung, 3–5 March, 1997, Poster 59, University Press, Halle-Wittenberg; Proc. 12th Int. Zeolite. Conf., Baltimore, July 5–10, 1998; submitted Search PubMed.
  16. J. Kärger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, Wiley, New York, London, 1992, p. 24 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.