Quantum scattering studies of spin–orbit effects in the Cl(2P)+HCl→ClH+Cl(2P) reaction

(Note: The full text of this document is currently only available in the PDF Version )

George C. Schatz, Patrick McCabe and J N. L. Connor


Abstract

We present quantum scattering calculations for the Cl+HCl→ClH+Cl reaction in which we include the three electronic states that correlate asymptotically to the ground state of Cl(2P)+HCl(X1Σ+). The potential surfacesand couplings are taken from the recent work of Maierle etal., J. Chem. Soc.,FaradayTrans., 1997, 93, 709. They are based on extensive abinitio calcu-lations for geometries in the vicinity of the lowest energy saddle-point, and on an electrostatic expansion (plus empirical dispersion and repulsion) for long range geometries including the van der Waals wells. Spin–orbit coupling has been included using a spin–orbit coupling parameter, λ, that is assumed to be independent of nuclear geometry, and Coriolis interactions are incorporated accurately. The scattering calculations use a hyperspherical coordinate coupled channel method in full dimensionality. A J-shifting approximation is employed to convert cumulative reaction probabilities for total angular momentum quantum number J=1/2 into state selected and thermal rate coefficients. Two issues have been studied: (i) the influence of the magnitude of λ on the fine-structure resolved cumulative probabilities and rate coefficients (we consider λ values that vary from 0 to ±100% of the true Cl value), and (ii) the transition state resonance spectrum, and its variation with λ and with other parameters in the calculations. A surprising result is the existence of a range of λ where the cumulative probability for the 2P1/2 state of Cl is larger than that for the 2P3/2 state, even though 2P1/2 is disfavoured by statistical factors and only reacts via nonadiabatic coupling. This result, which is not connected with resonance formation, may arise from coherent mixing of the Ωj=1/2 components of the 2P3/2 and 2P1/2 states in the van der Waals regions. The 2P1/2 state dominates for values of λ between the statistical and adiabatic limits when mixing converts 2P1/2 into a state that is, for linear geometries, predominantly 2Σ1/2 near the barrier. We find two significant resonances for total energies below 0.7 eV. They are associated with two quanta of asymmetric stretch excitation of the transition state and with zero or one quanta of bend excitation. These resonances are most prominent (i.e., narrowest) in the adiabatic limit of large ∣λ∣. For ∣λ∣≈0 the resonances are largely washed out due to strong mixing between attractive fine-structure states that support the resonances and repulsive ones that produce decay.


References

  1. H. Nakamura, Int. Rev. Phys. Chem., 1991, 10, 123 CrossRef CAS; M. Baer, Theory of Chemical Reaction Dynamics, ed. M. Baer, CRC Press, Boca Raton, FL, 1985, vol. II, ch. 4 Search PubMed.
  2. M. Gilibert and M. Baer, J. Phys. Chem., 1994, 98, 12822 CrossRef CAS; ibid., 1995, 99, 15748 Search PubMed; D. M. Charutz, R. Baer and M. Baer, Chem. Phys. Lett., 1997, 265, 629 Search PubMed; R. Baer, D. M. Charutz, R. Kosloff and M. Baer, J. Chem. Phys., 1996, 105, 9141 CrossRef CAS; I. Last, M. Gilibert and M. Baer, J. Chem. Phys., 1997, 107, 1451 CrossRef CAS.
  3. G. C. Schatz, J. Phys. Chem., 1995, 99, 7522 CrossRef CAS In eqn. (2) for +2N·j read –2N·j. In Table 1, for v00, v20 read V00, V20. In Section IV, for λ read |λ|. In the caption to Fig. 3, for ref. 24, read ref. 25. In ref. 25, for 91, 5496, read 93, 251.
  4. S. L. Mielke, G. J. Tawa, D. G. Truhlar and D. W. Schwenke, Chem. Phys. Lett., 1995, 234, 57 CrossRef CAS; S. L. Mielke, D. G. Truhlar and D. W. Schwenke, J. Phys. Chem., 1995, 99, 16210 CrossRef CAS; M. S. Topaler, M. D. Hack, T. C. Allison, Y.-P. Liu, S. L. Mielke, D. W. Schwenke and D. G. Truhlar, J. Chem. Phys., 1997, 106, 8699 CrossRef CAS; T. C. Allison, S. L. Mielke, D. W. Schwenke and D. G. Truhlar, J. Chem. Soc., Faraday Trans., 1997, 93, 825 RSC.
  5. J. Qi and J. M. Bowman, J. Chem. Phys., 1996, 104, 7545 CrossRef CAS; A. J. C. Varandas and H. G. Yu, Chem. Phys. Lett., 1996, 259, 336 CrossRef CAS; T. J. Martínez, Chem. Phys. Lett., 1997, 272, 139 CrossRef CAS.
  6. C. S. Maierle, G. C. Schatz, M. S. Gordon, P. McCabe and J. N. L. Connor, J. Chem. Soc., Faraday Trans., 1997, 93, 709 RSC On p. 712, for γ= 152° read θ= 152°; in eqn. (2) for +2N·j read –2N·j; below eqn. (11), for substitution of eqn. (1) read substitution of eqn. (10); in Fig. 6, for PJcum(E; 1 1/2, 1/2) read PJcum(E; 1/2, 1/2); in Figs. 4(c) and 4(d), for ClCHI read ClHCl.
  7. G. C. Schatz, D. Sokolovski and J. N. L. Connor, in Advances in Molecular Vibrations and Collision Dynamics, ed. J. M. Bowman, JAI Press, Greenwich, CT, 1994, vol. 2B, pp. 1–26 Search PubMed.
  8. J. N. L. Connor, P. McCabe, D. Sokolovski and G. C. Schatz, Chem. Phys. Lett., 1993, 206, 119 CrossRef CAS; G. C. Schatz, D. Sokolovski and J. N. L. Connor, Can. J. Chem., 1994, 72, 903 CAS; D. Sokolovski, J. N. L. Connor and G. C. Schatz, Chem. Phys. Lett., 1995, 238, 127 CrossRef CAS; J. Chem. Phys., 1995, 103, 5979 Search PubMed; Chem. Phys., 1996, 207, 461 Search PubMed; N. Rougeau and C. Kubach, Chem. Phys. Lett., 1994, 228, 207 Search PubMed; A. B. McCoy, Mol. Phys., 1995, 85, 965 Search PubMed; M. J. Cohen, A. Willetts and N. C. Handy, J. Chem. Phys., 1993, 99, 5885 CrossRef CAS; A. Laganà, A. Aguilar, X. Gimenez and J. M. Lucas, in Advances in Molecular Vibrations and Collision Dynamics, ed. J. M. Bowman, JAI Press, Greenwich, CT, 1994, vol. 2A, pp. 183–201 CAS.
  9. R. B. Metz, T. Kitsopoulos, A. Weaver and D. M. Neumark, J. Chem. Phys., 1988, 88, 1463 CrossRef CAS; R. B. Metz, A. Weaver, S. E. Bradforth, T. N. Kitsopoulos and D. M. Neumark, J. Phys. Chem., 1990, 94, 1377 CrossRef CAS.
  10. F. Rebentrost and W. A. Lester Jr., J. Chem. Phys., 1975, 63, 3737 CrossRef CAS; 1976, 64, 3879; 1976, 64, 4223; 1977, 67, 3367; F. Rebentrost, in Theoretical Chemistry: Advances and Perspectives, Theory of Scattering: Papers in Honor of Henry Eyring, ed. D. Henderson, Academic, New York, 1981, vol. 6B, pp. 1–77 Search PubMed.
  11. M.-L. Dubernet and J. M. Hutson, J. Phys. Chem., 1994, 98, 5844 CrossRef CAS.
  12. L. Visscher and K. G. Dyall, Chem. Phys. Lett., 1995, 239, 181 CrossRef CAS.
  13. D. Husain and R. J. Donovan, Adv. Photochem., 1971, 8, 1 Search PubMed; R. J. Donovan and D. Husain, Chem. Rev., 1970, 70, 489 CrossRef CAS; P. J. Dagdigian and M. L. Campbell, Chem. Rev., 1987, 87, 1 CrossRef CAS; P. J. Dagdigian, in Selectivity in Chemical Reactions, Proceedings of the NATO Advanced Research Workshop, Bowness-on-Windermere, UK, 7–11 September 1987, ed. J. C. Whitehead, Kluwer, Dordrecht, 1988, pp. 147–177 Search PubMed; A. González-Ureña and R. Vetter, J. Chem. Soc., Faraday Trans., 1995, 91, 389 Search PubMed; M. Alagia, N. Balucani, P. Casavecchia, D. Stranges and G. G. Volpi, J. Chem. Soc., Faraday Trans., 1995, 91, 575 RSC.
  14. G. C. Schatz, J. Phys. Chem., 1990, 94, 6157 CrossRef CAS.
  15. G. C. Schatz and A. Kuppermann, J. Chem. Phys., 1976, 65, 4642 CrossRef CAS; G. C. Schatz, L. M. Hubbard, P. S. Dardi and W. H. Miller, J. Chem. Phys., 1984, 81, 231 CrossRef CAS.
  16. L. M. Delves, Nucl. Phys., 1959, 9, 391 Search PubMed; 1960, 20, 275.
  17. G. C. Schatz, Chem. Phys. Lett., 1988, 150, 92 CrossRef CAS.
  18. H. Koizumi and G. C. Schatz, in Advances in Molecular Vibrations and Collision Dynamics, ed. J. M. Bowman and M. A. Ratner, JAI Press, Greenwich, CT, 1991, vol. 1A, pp. 139–164 Search PubMed.
  19. Q. Sun, J. M. Bowman, G. C. Schatz, J. R. Sharp and J. N. L. Connor, J. Chem. Phys., 1990, 92, 1677 CrossRef CAS; M. C. Colton and G. C. Schatz, Int. J. Chem. Kinet., 1986, 18, 961 CrossRef CAS.
  20. D. K. Bondi, J. N. L. Connor, J. Manz and J. Römelt, Mol. Phys., 1983, 50, 467 CAS.
  21. G. G. Balint-Kurti and G. C. Schatz, J. Chem. Soc., Faraday Trans., 1997, 93, 755 RSC.
  22. N. A. Besley and P. J. Knowles, 1998, personal communication.
Click here to see how this site uses Cookies. View our privacy policy here.