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Despite its potential significance, “cluster chemistry” remains a somewhat marginalized topic within the

chemistry field. However, atomic clusters with their unusual and unique structures and properties rep-

resent a novel material group situated between molecules and nanoparticles or solid matter, judging from

both scientific standpoints and historical backgrounds. Surveying an entire material group, including all

substances that can be regarded as a cluster, is essential for establishing cluster chemistry as a more pro-

minent chemistry field. This review aims to provide a comprehensive understanding by categorizing, sum-

marizing, and reviewing clusters, focusing on their constituent elements in the periodic table. However,

because numerous disparate synthetic processes have been individually developed to date, their straight-

forward and uniform classification is a challenging task. As such, comprehensively reviewing this field

from a chemical composition viewpoint presents significant obstacles. It should be therefore noted that

despite adopting a synthetic method-based classification in this review, the discussions presented herein

could entail inaccuracies. Nevertheless, this unorthodox viewpoint unfolds a new scientific perspective

which accentuates the common ground between different development processes by emphasizing the

lack of a definitive border between their synthetic methods and material groups, thus opening new

avenues for cementing cluster chemistry as an attractive chemistry field.

1. Introduction

Atomic clusters comprising a few, a few dozen, or hundred
atoms, with particle diameters of typically ∼1 nm and reaching
up to ∼3 nm fall under an ultrasmall particulate material
group (Fig. 1).

Compared to conventional nanoparticles (5–500 nm), their
atypical smallness exhibits certain eccentric properties not
found in nanoparticles, originating from the remarkable
quantum size effect. Regarding general nanoparticles, physical
properties and chemical reactivities are determined by their
surface structures and geometrical shapes.1–3 On the other
hand, their electronic states of clusters resemble more closely
those of molecules than bulk materials (including nano-
particles), leading to their unique characteristics.4–8 Such clus-
ters contribute to the manifestation of highly efficient and
sophisticated biological functions in nature, such as water oxi-
dation in photosynthesis, electron transfer, nitrogen fixation,
and breathing.9–13 Moreover, clusters possess various struc-
tural characteristics that are not observed in other chemicals,

including the number of constituent atoms, types of constitu-
ent elements, elemental ratios, atomic arrangements, and geo-
metrical symmetry. Such a feature affords a great degree of
freedom in terms of material design. Furthermore, their steric
and electronic structures on a molecular scale offer significant
potential for achieving novel properties and functions.
Therefore, this sub-nanometer material group has attracted
worldwide attention as a candidate for next-generation post-
nanotechnology materials.

However, the desired progress in the cluster chemistry field
has been hindered by the inherent challenges entailed in
synthesizing clusters, as compared to nanoparticles. This issue
originates from the critical factors differentiating the pro-

Fig. 1 Classification of materials based on the size scale.
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perties of nanoparticles and clusters. Particularly, in contrast
to nanoparticles, the structures, properties, and stabilities of
clusters depend significantly on the number of constituent
atoms. Since precise atom manipulation techniques (within
1 nm of the space in cluster particles) are necessary for the
synthesis of clusters, applying conventional synthetic methods
lacking atomic-level precision is unsuitable for forming such

sub-nanosized materials. Therefore, developing new clustering
techniques that are independent of these methods is essential.
Atomic-level synthesis is significantly influenced by the nature
of the constituent elements; however, in many cases, the types
of elements that can be treated using a single method tend to
be limited. By considering this aspect, synthetic methods dedi-
cated to certain elements or elemental groups have been estab-
lished, with the regions of the corresponding elements distrib-
uted on the periodic table like islands (Fig. 2). Notable devel-
opments in cluster chemistry have been achieved using these
methods as starting points.

As noted above, synthetic methods for clusters, unlike
those for nanoparticles, tend to be inflexible in terms of
element selectivity and applicability, despite their high efficacy
for a certain region in the periodic table. This limitation has
hindered cross-cutting discussions focusing on constituent
elements in the topic of cluster synthesis. In this review, with
the aim of providing a comprehensive discussion and under-
standing of the entire field of cluster synthesis, we categorize,
summarize, and review these methods by focusing on the con-
stituent elements of clusters in the periodic table.

2. Methods for cluster synthesis

Metal carbonyl clusters composed of single or multiple tran-
sition metal elements and carbonyl ligands represent one of
the most well-established material groups among chemical
clusters. They possess the most fundamental structures in
coordination chemistry and serve as precursors in various
chemistry fields, typified by organometallic chemistry.14 These
clusters are synthesized by common chemical reactions and
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Fig. 2 A rough sketch of a map for the classification of suitable methods for atomic cluster synthesis depending on the chemical element
composition.
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their reaction formulas are relatively simple. Moreover, borane
clusters are also well synthesized mainly by the pyrolysis of
diborane, and their atomicity and shape are classified as
obeying the Wade–Mingos rule15,16 or the Jemmis mno rule.17

However, in such cases, the degrees of freedom of design
and synthesis are reduced and limited from the perspective of
expanding the applicable elements. For example, in thermo-
dynamically stable clusters obtained as metal carbonyls, the
number of metal atoms, carbonyl ligands, and structures (hap-
ticity) are uniquely determined by the electronic state of the
transition metals. Therefore, the introduction of new factors
that can be actively added or modified into the synthesis
process of clusters is key for obtaining clusters composed of
the desired number of atoms and element types. Based on this
concept, various synthetic approaches using gas-, liquid-, and
solid-phase reactions have been investigated.

3. Gas-phase synthesis

Fullerenes stand as the most well-known clusters synthesized in
the gas-phase.18–20 In an arc reactor or through laser vaporization
in vacuum, fullerenes, typified by commercially available C60,
C70, and C84 are obtained from carbon sources as a mixture and
subsequently separated and purified by chromatography.

Endohedral fullerenes in which other elements are con-
strained in their cages, such as [Li@C60]

+, can also be prepared
using carbon mixed with metal sources.21,22

Although gas-phase synthesis is also effective in the case of
heavier metal elements,23 metal clusters tend to easily
undergo aggregation and particle enlargement after pro-
duction, in contrast to lighter elements. Therefore, techniques
for separating clusters from mixtures directly after synthesis
are crucial. In particular, gas-phase reaction systems combined
with mass-separation units are often employed, leading to
numerous reports on metal clusters typified by Nax.

24 This
method not only effectively yields single elemental clusters
such as superatomic [Al13]

−,25 stannaspherene [Sn12]
2−,26 boro-

spherene [B40]
−,27 and tetrahedral Au20,

28 but also heteroele-
mental clusters such as M@Sn12

26 and M@Si16.
29 On the other

hand, stable extraction of clusters produced from the gas
phase has recently been investigated, including the soft-
landing method, in which clusters are deposited intact on a
self-assembled monolayer (SAM) of alkyl groups formed on a
substrate.30

As mentioned above, gas-phase preparation techniques
offer the merit of involving the use of many elements, includ-
ing both metal and nonmetal elements, but are fundamentally
not conducive to mass production. Therefore, although these
methods are significantly effective for analyzing physical pro-
perties, including electronic states, they are not suitable for
investigations requiring large amounts of clusters, such as
chemical reactivity. Additionally, because it is necessary to
provide a positive or negative charge to clusters for mass separ-
ation, the properties of charged clusters are preferentially
observed. The latter can be addressed by establishing a neu-

tralization method for obtaining neutral clusters after mass
separation.31

4. Liquid-phase synthesis

Various liquid-phase synthesis methods have been explored
due to their practicality. The principal approaches for stabiliz-
ing clusters involve methods adopting ligand protection,
employing polyoxometalate anions, and applying the Zintl
phase. Each method targets specific regions of elements in the
periodic table, leading to differences in the properties of the
obtained clusters. These disparities often arise from variations
in the chemical states of the clusters’ surface or interior.
Therefore, given the present circumstances, a suitable syn-
thetic method should be carefully selected that not only con-
siders the employed elements, but that can also induce the
desired properties.

4.1. Clusters stabilized by ligand protection

In this method, the clusters are chemically stabilized by the
steric and electronic protection effect of the organic ligands,
which cover their surface atoms with functional groups.
Applicable metal elements vary depending on the functional
groups of the ligands. Negatively charged alkylthiolate-type
(SR−) ligands typically used for group 11 element clusters (Au,
Ag, Cu) are among the most well-investigated representatives
of this method.32–36 Alkyl selenide-type analog structures
(SeR−) have also been reported.37 The steric structure of
ligands modifies the number of constituent atoms and their
geometric arrangements, which are often based on highly sym-
metric core structures.38 In this regard, Au102(SR)44,

39

Au144(SR)60,
40,41 [Ag180(SR)90(CH3SO3)44]

46+,42 and
Ag374(SR)113Br2Cl2

43 stand as the largest well-known clusters
with numerous constituent atoms (Fig. 3A). Recent reports
have revealed that this method is also applicable to the syn-
thesis of alloy clusters composed of group 11 elements, such
as [Au12Ag32(SR)30]

4− (ref. 44) (Fig. 3B), despite the compo-
sition and arrangement of multiple elements in these clusters
tending to be uncontrollable because of the preferential gene-
ration of energetically stable clusters. Additionally, an alloying
method for doping with other metal elements has been devel-
oped by utilizing the stability of ligand-protected Au or Ag clus-
ters.45 This approach enables the use of metals that do not
achieve ligand stabilization, such as [M@Au25(SR)18]

− (M = Pd,
Pt, Cd, Hg)46 and Pd@Ag20(S2PR2)12

47 (S2P(OR)2
− = dialkoxyl-

dithiophosphinate). A recently reported anion-templated syn-
thesis method of such clusters (especially for Ag clusters) also
provides various geometric structures containing non-metallic
elements or anionic species (atomic anion: H−, D−, F−, Cl−,
Br−, I−, S2−, Se2−, and Te2−; oxoanion: CO3

2−, C2O4
2−, C4O4

2−,
C5O5

2−, NO3
−, AsO4

3−, SO3
2−, SO4

2−, SeO3
2−, SeO4

2−, TeO3
2−,

TeO6
6−, ClO4

−, VO4
3−, CrO4

2−, MoO4
2−, and WO4

2−; polyoxo-
metalate anion: [V10O28]

6−, [Mo6O22]
8−, [EuW10O36]

9−, etc.) in
the center of the structure,48 such as [X@Ag8(S2P(OR)2)6]

+/0

(X = F, Cl, Br, S).49,50 Other elements in group 11 have also
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been investigated, such as [Cl@Cu14(S(CH3)2(CH2NH2))12]
7+.51

Thiolate-type ligands have also been used to stabilize metal
sulfide clusters. For example, group 10 elements (Ni, Pd, Pt)
form tiara-shaped cluster complexes, such as [M(SR)2]n (M =
Ni, Pd, Pt)52–54 (Fig. 3C), that often encapsulate guest metal
ions or molecules in their ring centers (I2, Ag

+).55,56 In the case
of other group elements typified by Mn, Co, Zn, and Cd, a
combination of monoanionic SR− and dianionic S2− provides
sulfide clusters including tetrahedral [Mn8Se(SePh)16]

2−,57

octahedral [Co8S6(SPh)8]
4−,58 tetrahedral [Zn10S4(SPh)16]

4−,59

and [Cd54S32(SPh)48(DMF)4]
4− (ref. 60) (Fig. 3D).

Among other functional groups used for ligand protection,
various neutral, cationic, and anionic ligands have been inves-
tigated. Neutral ligands typically include monodentate or mul-
tidentate organophosphines (PR3), amines (NR3), and imines
(NR(vR)). Analogs with heavier atoms, such as organostibines
(SbR3), have recently been reported.61 In the case of phos-
phines, clusters with group 11 elements, especially gold62–65

(sometimes group 10 elements, such as Ni3(PPh)
(PPh2)2(PPh3)3

66), typified by commercially available [Au3O
(PPh3)3]

+ and icosahedral [Au13(Ph2PCH2PPh2)6]
5+ (ref. 67) are

principally explored in the same manner as alkylthiolate
(Fig. 3E). In particular, precisely designed multidentate phos-
phine ligands provide and control unique arrangements of
metal atoms in a cluster, such as icosahedron-based
[Au20(P(CH2CH2PPh2)3)]

4+,68 linear [Au4(Ph2P(CH2PPh)2
CH2PPh2)2]

4+ (ref. 69) and linear [Pd8(Ph2P(CH2PPh)2
CH2PPh2)4]

4+ with tetraphosphines70 (Fig. 3F). Anion-tem-

plated synthesis is also used for clusters with phosphine
ligands such as Cl@Ag12@Ag48(Ph2PCH2PPh2)12.

71 Another
example is transition-metal chalcogenide clusters with protec-
tive ligands, such as Co6Te8(PR3)6.

72 The clusters were stabil-
ized by amine or imine ligands: cubic Cu4I4(C5H5N)4 with pyri-
dine ligands,73 rhombic [In4(C10H8N2)6]

4+ with bipyridyl
ligands,74 and [Be4(NH2)6(NH3)4]

2+ with ammonia ligands75

(Fig. 3G).
Anionic ligands, including carboxylate (OCOR−), represent

a well-known example, especially for clusters with low atomic-
ity. Examples include dinuclear clusters such as
M2(OCOR)4(L)2 (where M = Cr, Mo, Rh, Cu, Bi)76 and trinuclear
clusters such as [M3O(OCOR)6(L)3]

+ (where M = V, Cr, Fe, Ru,
Co, Rh, Ir).77,78 Notably, such clusters are often commercially
available. For the formation of these complex clusters, the oxi-
dation number of the transition metal ions is an important
factor; for example, dinuclear and trinuclear carboxylate clusters
require metal ions with stable valences of +II and +III, respect-
ively. In this regard, square-planar V4(OCOCH3)4(OH)4(H2O)8,

77

tetrahedral Zn4O(OCOCH3)6, Zn10O4(OCOCH3)12
79 and

In37P20(OCOCH2Ph)51
80 have been successfully reported.

Alkoxides (OR−), amides (NR2
−), and methides (CR3

−) have also
been used as simple protecting ligands. In particular, research
has primarily focused on group 13 and 14 elements (Al, Ga, In,
and Sn).81 Examples include [Al77(N(SiMe3)2)20]

2− (ref. 82) and
Sn15(NR2)6,

83 while transition metal elements with structures
resembling oxides are often crucial for alkoxides, as seen in com-
pounds like W4(OR)16.

84

Fig. 3 Crystal structures of: (A) Ag374(SR)113Br2Cl2 (R = 4-tert-butylphenyl),43 Ag: gray, S: yellow, Cl: green, Br: brown, and C: grayish bone; (B)
[Au12Ag32(SR)30]

4− (R = 4-fluorophenyl),44 Au: orange-yellow, Ag: gray, S: yellow, C: gray bone, and F: pale blue bone; (C) Ni10(SR)20 (R = 2-pyridy-
lethyl),52 Ni: gray, S: yellow, C: grayish bone, and N: pale blue bone; (D) [Mn8Se(SePh)16]

2−,56 Mn: violet, Se: yellow-green, C: gray bone; (E)
[Au13(Ph2PCH2PPh2)6]

5+,66 Au: orange-yellow, P: grayish pink, and C: grayish bone; (F) [Pd8(Ph2P(CH2PPh)2CH2PPh2)4]
4+,70 Pt: gray, P: grayish pink,

C: grayish bone; and (G) [Be4(NH2)6(NH3)4]
2+,75 Be: green, N: pale blue, and H: white. Figures are reproduced from (A) CCDC 1496141, (B) CCDC

953881, (C) CCDC 743607, (D) CCDC 612696, (E) CCDC 1577669, (F) CCDC 1023572, and (G) CCDC 1982295.
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Organometallic approaches are also effective in stabilizing
clusters, with the formation of tetrahedral Li4R4 or octahedral
Li6R6 clusters standing as a typical example.85 In particular,
cyclopentadienyl-type or pentamethylcyclopentadienyl-type
ligands (C5H5

− or C5Me5
−) have been extensively investigated

for the stabilization of clusters composed of various elements.
Typically, clusters of group 11, 12, and 13 elements (Cu, Zn, Al,
Ga, and In) tend to have structures with large atomicity com-
pared to transition metal elements (Co, Rh, Ir, etc.),86 such as
trigonal-bipyramidal Zn9(C5Me5)6

87 and tetrahedral
Al4(C5Me5)4

88 (Fig. 4A). Alloy clusters have also been obtained
using this method, such as trigonal-bipyramidal
Cu3Zn4(C5Me5)5,

89 with icosahedral Cu43Al12(C5Me5)12 being
one of the largest clusters reported to date90 (Fig. 4B and C).
Moreover, some transition metal halides, chalcogenides, and
pnictogenides are also stabilized by cyclopentadienyl ligands
like pseudo-tridecahedral La9I18(C5Me5)9,

91 trigonal-bipyrami-
dal Rh3Se2(C5EtMe4)9,

92 and tetrahedral Cr4P4(C5Me5)4
93 or

Mn4P4(C5H5)4
94 (Fig. 4D and E). Using this synthetic

approach, model clusters mimicking the biochemical func-
tions associated with nitrogen fixation were recently created
(e.g., FeMo3S4(C5H4SiR3)3).

95 Additionally, the aromatic rings
with large π-conjugated systems also serve as a planar protec-
tion ligand and often provide sophisticated highly-symmetric
clusters such as cuboctahedral [Pd13(C7H7)6]

2+ stabilized by
cycloheptatrienylium (C7H7

+)96 and square-planar [Pd4(C8H8)

(C9H9)]
+ stabilized by cyclooctatetraene (C8H8) and cyclonona-

tetraenyl (C9H9
−)97 (Fig. 5A). Conversely, bridged aromatic

ligands can effectively stabilize group 11 elements (Au, Ag, and
Cu), yielding star-shaped clusters typified by pentagonal
planar Au5(C6H3Me3)5, Cu5(C6H3Me3)5, and square-planar
Ag4(C6H3Me3)4 with mesityl anions (C6H2Me3

−)98,99 (Fig. 5B).
Additionally, tetramesityl diiron Fe2(C6H3Me3)4 has also been
reported, albeit not among group 11 elements.100 Recently, by
utilizing such bridged aromatic ligands, other atomic arrange-
ments including alloys are obtained, like octahedral
[Au4Ag2(C6H4PR2)4]

2+.101 In contrast, aromatic ligands with
bulky substituents also stabilize unique cluster structures by
the steric protection effect, such as adamantane-shaped
Al4(PH)6(2,6-C6H4(C6Me3H2)2)4.

102

Other organometallic approaches for controlling the
number and arrangement of metal atoms in clusters have also
been developed. For example, organosilicon or organogerma-
nium ligands containing Si and Ge as metalloid elements yield
group 10 metal clusters with unusual geometric structures,
such as hexagonal planar Pd4(SiPh2)3((CH2PH2)2)3 and hexag-
onal-bipyramidal Pd6(GePh2)2(CNC6H3Me2)10

103–106 (Fig. 5C).
Otherwise, the organometallic ligands form clusters, such as
cyclic (GeMes2)3, (GePh2)4, and (GePh2)5 with Ge–Ge
bonds107–109 (Fig. 5D). Organic or organosilicon ligands have
also been employed to synthesize clusters comprising nonme-
tallic C and semimetallic Si. For example, employing a low-

Fig. 4 Crystal structures of (A) Zn9(C5Me5)6.
87 (B) Cu3Zn4(C5Me5)5,

89 (C) Cu43Al12(C5Me5)12,
90 (D) La9I18(C5Me5)9,

91 and (E) Cr4P4(C5Me5)4.
93 Zn: gray,

Cu: blue, Al: light blue, La: green, I: violet, Cr: dark blue, P: grayish pink, and C: grayish bone. Figures are reproduced from (A) CCDC 1434844, (B)
CCDC 1854852, (C) CCDC 1845365, (D) CCDC 1992039, and (E) CCDC 984791.

Fig. 5 Crystal structures of (A) [Pd13(C7H7)6]
2+,96 (B) Au5(C6H3Me3)5,

98 (C) Pd4(SiPh2)3((CH2PMe2)2)3,
103 (D) Ge5Ph10,

109 and (E) Ir4Au2(CO)11(PPh3)2.
118

Pd: gray, Au: orange-yellow, Si: blue-violet, P: grayish pink, Ge: grayish blue-violet, Ir: light green-yellow, C: gray bone, and O: red bone. Figures are
reproduced from (A) CCDC 1813458, (B) CCDC 1119882, (C) CCDC 702935, (D) CCDC 1137518, and (E) CCDC 924993.
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temperature photochemical process or a pure organometallic
process in a solvent can yield tetrahedral structures such as
C4(CR3)4

110 and Si4(SiR3)4.
111

In other cases, methods for achieving both the stabilization
and alloying of metal clusters using transition metal carbonyl
complexes as ligands have been reported, such as octahedral
[Ag13Fe8(CO)32]

4− (ref. 112) and three pentagonal-antiprismatic
[Sb3Rh20(CO)36]

3− (ref. 113) complexes. It is worth mentioning
that as a technique for clustering certain metals or mixing
different metal elements in a cluster, the method using mul-
tiple ligands with different functional groups has been investi-
gated, such as Fe8(N[o-H2NC6H4NH(CH2)2]3)2(PMe2Ph)2 with
tetraamine and phosphine ligands,114 Ga6(C6Me3H2)4
(C3N2Me2Pr2)2 with mesityl and tetraalkylimidazol-2-ylidene
ligands,115 [Mg16(C5Me5)8(NEt3)2Br4]

2− with cyclopentadienyl and
amine ligands,116 Cu10Zn2(C6Me3H2)6(C5Me5)2 with mesityl
and cyclopentadienyl ligands,117 Ir4Au2(CO)11(PPh3)2,

118

Pt13Au4(CO)10(PPh3)8,
119 and Pd145(CO)x(PEt3)30 (x ≈ 60)120 with

carbonyl and phosphine ligands (Fig. 5E), and co-crystalized
[(AuAg)267(SPhMe2)80]·[(AuAg)45(SPhMe2)27(PPh3)6] with thiolate
and phosphine ligands.121 This approach has recently led to the
development of model clusters for photosynthetic systems
(Mn3Ca clusters with carboxylate and pyridine ligands).122

By surveying ligand protection methods, we can broadly
summarize the tendencies of the applicable elements for each
method. The most extensively studied elements in ligand pro-
tection methods are noble metals (Pd, Pt, Au, and Ag).
Following closely are other late transition metal elements (Fe,
Co, Rh, Ni, Cu) and post-transition elements (Zn, Cd, Al, Ga,
and In). Remarkably, the bond type between the metal atoms
directly influences the diversity of the cluster structures. The
fact that the most varied cluster structures were found for the
metal elements in group 11 could be rationalized by their
valence s-electrons forming relatively free bonds and resistance
to oxidation. In contrast, other elements tend to be in charged
states with the ligands. Although there are relatively few
reports on minor elements, a few atoms are often
implemented in a cluster by doping the surrounding environ-
ment where the stabilization effect of cluster structures com-
posed of major elements is dominant. The types of elements
stabilized as a cluster significantly differ by and depend on the
functional groups of the organic ligands, which are frequently
observed in the case of clusters with single-bond-mediated
ligand protection. However, only cyclopentadienyl ligands
differ from these ligands and are utilized for applying a broad
range of elements by stabilizing clusters with both electrostatic
and steric effects. Therefore, such an approach, without
obvious single-bond-mediated ligand protection, is expected to
be effective for developing versatile synthetic methods from
the viewpoint of applicable elements.

Although simple functional groups such as thiolates, car-
boxylates, and phosphines are used in conventional methods,
suitable ligands for this approach are being explored and
developed. In particular, new ligands with more complicated
structures and compositions containing multidentate ligands
afford unique stability to cluster structures.123 Such a method

to stabilize a certain geometric structure using custom-
designed multidentate ligands is similar to the approach for
controlling crystal polymorphs of nanoparticles, in which
modification of the surface of a nanoparticle by multidentate
ligands induces unusual crystal structures in the whole nano-
particle.124 These reports also indicated that an approach that
induces multipoint interactions between a cluster and its
ligands is effective for developing versatile synthetic methods.

4.2. Clusters stabilized as ionic compounds

Clusters solely stabilized without protecting ligands have also
been reported. They are generally obtained as ionic com-
pounds that undergo electronic stabilization by bonding with
pnictogens, chalcogens, halides, and metals with lower electro-
negativity. Polyoxometalate (POM) clusters are well-known
materials. These clusters are almost negatively charged metal
oxides and tend to be composed of metal atoms with high oxi-
dation numbers.125–127 In many cases, group 5 and 6 elements
(V, Nb, Ta, Mo, and W) in the +V or +VI state prefer a six-
coordination state. Some species such as paramolybdate
[Mo7O24]

6−, decatungstate [W10O32]
4−, metatungstate

[W12O40]
8−, paratungstate [W12O42]

12−, molybdenum blue
reagents [Mo154O462H14(H2O)70]

14− and
[Mo152O457H14(H2O)68]

16− are commercially available.128

[HxMo368O1032(H2O)240(SO4)48]
48− was one of the largest POM

clusters129 (Fig. 6A). Similarly, group 3 superheavy elements
(U, Np, Pu, and partially Am) in the +V or +VI state also form
POM structures, such as [U60O240(OH)60]

60− with fullerene
topologies130–132 (Fig. 6B). The atomicity and arrangement of
POM clusters can often be tuned by introducing other
elements as the central core. For example, 4-coordinating
species mainly in group 13, 14, and 15 elements (B, Al, Ga, C,
Si, Ge, P, and As), such as PO4

−, SiO4
2−, and AlO4

3− species,
form unique structures typified by tungstophosphate
[PMo12O40]

3− called Keggin-type structures.125,126 Fe, Co, Cu,
and Zn in the +II or +III state, and S and Se in the +VI state
have also been reported as tetrahedral centers. In the case of
6-coordinating species of elements (Cr, Mn, Fe, Co, Rh, Ir, Ni,
Pd, Pt, Cu, Zn, Al, Ga, Sb, Te, I), more planar Anderson–Evans-
type POM clusters are constructed by a central EO6 unit that is
often in highly oxidized states, such as [CoMo6O18(OH)6]

6−

with Co(+III), [PtW6O24]
8− with Pt(+IV), and [IMo6O24]

8− with
I(+VII).124,133 Moreover, icosahedrally 12-coordinating EO12

central units containing group 3 and 4 heavy elements (Ce, Th,
U, Np, and Zr in the +IV or +V state) provide unique Dexter–
Silverton-type structures such as pyritohedral
[CeMo12O42]

8−.134 By introducing two or more core units,
POMs lead to the construction of more complicated structures
called Wells–Dawson-type or Preyssler–Pope–Jeannin-type
structures.125 Additionally, multiple POMs form sandwich-type
or capsule-type structures intercalating group 1, 2, and 3
elements and low valent transition metals as a cation,125,135

and they are also found in natural minerals, typified by the
[Zn2Mn2(H2O)2(FeW9O34)2]

12− cluster in ophirite.136 By apply-
ing this unique property that partially incorporates other
elements in or between POMs, it is possible to synthesize
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rarer, larger and more complicated structures, such as tetra-
pod-shaped [Ti4Cl(OH)12(P2W15Ti3O62)4]

45− where Ti atoms are
sandwiched by four POM cluster units,137 wheel-shaped
[Cu20Cl(OH)24(H2O)12(P8W48O184)]

25− where Cu atoms are
encapsulated in a circular POM cluster host,138 and a tetra-
hedral layered superstructure of [La10Ni48W140Sb16-
P12O568(OH)24(H2O)20]

86−.139 Recently, it was reported that
large capsule-like POM clusters can also incorporate other
small metal clusters into their centers, such as [Ag27@
(Si2W18O66)3]

31−.140

With the exception of V, Mo, and W, advanced synthesis
techniques have been developed. In particular, the polycatio-
nic Keggin-type structures of aluminum
[Al30O8(OH)56(H2O)24]

18+ containing 6-coordinating AlO6 sites
and central 4-coordinating AlO4 sites are well known.141

However, in such cases, co-adoption of the concept of ligand
protection in these clusters is also effective in synthesizing
POMs composed of minor elements, such as Keggin-type
[Fe13O16(OH)12(OCOR)12]

17− containing an Fe(+II) center and

Fe(+III) shells with carboxylate ligands142 (Fig. 6C), Keggin-
type [Mn13O6(OH)2(OMe)4L6]

4+ containing a Mn(+III) center
and Mn(+IV) shells with alkoxylate and imine ligands (L = 2,6-
bis[N-(2-hydroxyethyl)iminomethyl]-4-methylphenol),143

Ti17O24(OiPr)20 with alkoxylate ligands,144 and octahedral
[(BuSn)12O14(OH)6]

2+ with alkyl ligands.145 In contrast, a few
POMs composed of only four-coordinating units are reported
including [Mn39O55]

26− (ref. 146) (Fig. 7A). Interestingly, the
anion-templated synthesis described in the section on ligand-
protected noble metal clusters is also effective for the synthesis
of POM clusters. The geometries and charges of the template
anion provide clusters with various sophisticated core–shell
structures, such as [(SCN)@HV22O54]

6−, [(CH3COO)
@H2V22O54]

7−,147 [Cl@Eu15(OH)20]
24+,148 and [(SO4)

@As4Mo6V7O39]
4−.149 Even electronically neutral chemical

species, such as solvent molecules, often serve as templates.
For example, water and acetonitrile molecules compose [(H2O)
@V18O42]

12− (ref. 150) and [(CH3CN)@V12O32]
4−,151

respectively.

Fig. 6 Crystal structures of (A) a unit in [HxMo368O1032(H2O)240(SO4)48]
48− with a structure showing molybdenum oxide polyhedra,129 (B) a unit in

[U60O240(OH)60]
60− with a structure showing uranium oxide polyhedra,130 and (C) a unit in [Fe13O16(OH)12(OCOR)12]

17− with a structure showing iron
oxide polyhedra (below).142 Mo: reddish gray polyhedron, O: red, U: bluish gray polyhedron, Fe: brown, and O: red. Figures are reproduced from (A)
CCDC 1727624, (B) CCDC 1732644, and (C) CCDC 1525080.

Fig. 7 Crystal structures of (A) a unit in [Mn39O55]
26− with a structure showing manganese oxide polyhedra (right),146 (B) [Nb6Cl18]

2−,152 (C) a unit in
[In35S48O8(Im)2]

9−,153 and (D) [AsNi12As20]
3−.155 Mn: reddish violet, O: red, Nb: bluish green, Cl: light green, In: pale magenta, S: yellow, Ni: gray, As:

green, C: grayish bone, and N: light blue bone. Figures are reproduced from (A) CCDC 1728352, (B) CCDC 654117, (C) CCDC 1862551, and (D) CCDC
206301.

Nanoscale Minireview

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 10533–10550 | 10539

Pu
bl

is
he

d 
on

 1
1 

ab
ri

l 2
02

4.
 D

ow
nl

oa
de

d 
on

 0
1/

11
/2

02
5 

02
:2

2:
47

 p
. m

.. 
View Article Online

https://doi.org/10.1039/d3nr06522g


Except for the stabilization of clusters, such as the oxides
mentioned above, other pnictogenides, chalcogenides, and
halides can induce such stabilization. Polyhalometalate clus-
ters, especially of early transition metals (Zr, Hf, Nb, Ta, Mo,
W, Re), are well-known, such as [Nb6Cl18]

2− (ref. 152) (Fig. 7B).
The compound clusters also often have larger layered struc-
tures, such as tetrahedral [In35S48O8(Im)2]

9−,153 tetrahedral
[Sn10O4S20]

8−,154 icosahedral [AsNi12As20]
3−,155 and tetrahedral

Sc4C10Sc20I30
156 (Fig. 7C and D). Additionally, it has been

reported that the cation-templated synthesis of some chalco-
genide clusters provides rare geometric structures, such as
[(NH4)@Pd2S28]

4− (ref. 157) and [Na2@Fe18S30]
8−.158

In summary, in the case of clusters obtained as ionic com-
pounds, the oxide clusters of the early transition metals (V,
Mo, and W) are the most investigated, and the runner-up is
another base metal element with a relatively high valence (Al,
Ti, Mn, Fe, and U). Halide clusters of early transition metals
(Zr, Nb, Mo, Hf, Ta, W, and Re) are the main compounds used
in this field. Similar to ligand-protected clusters, the introduc-
tion of minor elements is achieved by doping a few atoms into
the cluster structure composed of major elements. Particularly
for POM clusters, it appears that metal elements in remarkably
high oxidation states play an important role in diversifying
their steric structures. One factor is that metals with high oxi-
dation states maintain the charge balance of the entire cluster
structure by reducing the negative charge on their own meta-
late units. If the metalate anion is represented as
{MnO6}

(12−n)−, its total negative charge is smaller when oxi-
dation state n is higher. On the other hand, because the stabi-
lity of these clusters is significantly associated with the affinity
of the metal elements for pnictogens, chalcogens, and halo-
gens, clusters composed of noble metals have rarely been
reported. As represented by POMs, these clusters often have
unique symmetric structures, whereas in the case of different
metal elements, these metal oxide units tend to undergo
atomic-level phase separation in a cluster and do not form true
complex oxides with a uniform atomic co-arrangement. This
suggests that the variety of ionic compound clusters can be
expanded by improving the synthetic schemes.

4.3. Naked elementary clusters

In contrast, naked clusters composed only of icosagens,
tetrels, pnictogens, chalcogens, and halogens (groups 13, 14,

15, 16, and 17) are also well known. Although white phos-
phorus (tetrahedral P4) is the most famous example, it is gen-
erally an ionic species called Zintl clusters or Zintl ions that is
stabilized in crystals.159 In particular, there are many reports
of Zintl clusters of group 13, 14, 15, and 16 metal elements
with various polyhedral structures, such as icosahedral
[Tl13]

10−,160 trigonal-bypyramidal [Sn5]
2−,161 bicapped-square-

antiprismatic [Pb10]
2−,162 square antiprismatic [Bi8]

2+,163

square-planar [Te4]
2+, and barrel-shaped [Te8]

2+ (ref. 164)
(Fig. 8A–C). In other cases, examples of clusters made of group
11, 12, and 17 elements are slightly known like icosahedral
[Ag13]

4+ (ref. 165) or polyhalogen cations and anions typified
by rectangular [Cl4]

+ (ref. 166) and trigonal-pyramidal [I7]
− (ref.

167) (Fig. 8D and E). Similar to other methods, Zintl clusters
also form molecular alloys (intermetalloids) of such elements
including [BiIn8Bi12]

3−/5− (ref. 168) and [K2Zn20Bi16]
6−,169 or

clusters incorporating a few other transition metal elements170

including [Sn9Pt2(PPh3)]
2−, [Sn9Ni2(CO)]

3− (ref. 171) and
[Th@Bi12]

4− (ref. 172) with and without protecting ligands,
respectively (Fig. 8F and G).

As mentioned above, these clusters are mainly composed of
post-transition elements with many valence electrons, and in
many cases, they are positively or negatively charged struc-
tures. This tendency is rationalized by the thermodynamic
stability based on the electronic configurations unique to clus-
ters typified by superatoms.6–8,25,32,36,47,90 These clusters gener-
ally have relatively rigid structures with large bond angles of
up to 90° originating from p-electrons and the ability to
contain a few atoms of other group elements in electronically
stabilized skeletons. In particular, the endohedral structures
typified by stannaspherenes mentioned in the gas-phase syn-
thesis section enable the incorporation of other groups of
elements without ligands. It should be noted that the accurate
choice of counter ions is an important factor in the stable
design of these clusters because most clusters are obtained
only in the crystal form.

4.4. Clusters obtained by nanospace-assisted template
synthesis

The third method utilizes nanospace as reaction fields for
cluster synthesis. Because the aforementioned synthetic
methods depend on the thermodynamic stability of the cluster
structure, only certain clusters with energetically suitable

Fig. 8 Crystal structures of (A) [Pb10]
2−,162 (B) [Bi8]

2+,163 (C) [Te8]
2+,164 (D) [Ag13]

4+,165 (E) [Cl4]
+,166 (F) [K2Zn20Bi16]

6−,169 and (G) [Th@Bi12]
4−.172 Pb:

black, Bi: purple, Te: grayish yellow, Ag: pale gray, Cl: light green, K: violet, Zn: gray, and Th: bluish green. Figures are reproduced from (A) CCDC
288640, (B) CCDC 1728864, (C) CCDC 1471867, (D) CCDC 1728248, (E) CCDC 1726993, (F) CCDC 1969162, and (G) CCDC 1983072.
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atomicity, atomic arrangement, and composition ratios were
obtained. However, in this method, the reaction field is con-
fined within a nanosized space using various approaches, and
unique clusters in metastable states that are not found using
other methods are forcibly obtained. The pores of zeolites
serve as typical capsules for cluster synthesis, such as tetra-
hedral [Ag4(H2O)4]

2+ in their cages.173–177 Metal–organic frame-
works (MOFs) are also used for nanosized cages, and tem-
plated synthesis of various clusters, including Pt quasi-linear
[Pd4]

2+,178 tetrahedral Ir4,
179 Pt12±x,

180 and triple-decker trigo-
nal [Au3L3-Ag-Au3L3-Ag-Au3L3]

2+,181 has been reported.
Recently, MOFs have been used to cluster carbon as a nonme-
tal element through selective template synthesis of polyacenes
using reactants.182 Flexible supramolecular capsules realize
the synthesis of such metastable clusters, including some allo-
tropes of nonmetal elements, such as phosphorus P4

183 and
sulfur S6 or S12,

184 where the catenation behavior is controlled.
In other cases, cages of crystalline proteins and nanospaces of
macromolecules have been used as templates and protectors
for clusters.185,186 In such cases, because the precision of
cluster synthesis depends on the operation of the atomic
assembly, it is expected that only one method will allow us to
use a broad range of elements by adopting the same chemical
principle for the assembly. Indeed, the atom hybridization
method utilizing multimetallic multinuclear complexes of den-
drimers as macromolecular templates for cluster synthesis
affords the highest degrees of freedom in the design of multie-
lemental clusters.187–191 Because it adopts the coordination be-
havior of guests for metal assembly based on the simple prin-
ciple of acid–base chemistry, all elements can be treated under
the same conditions during cluster synthesis. This approach
led to the first synthesis of multimetallic clusters containing
five or six metal elements like GaInAu3Bi2Sn6.

187

In contrast to other liquid-phase synthesis methods, tem-
plate synthesis provides clusters with relatively metastable
structures, which are also regarded as intermediates in the
process producing more stable clusters. Capsules need to be
individually designed for each chemical element, while this
approach, which reduces the direct influence originating from
the properties of the elements, enables the use of a broad
range of elements. Alternatively, in this method, the inter-
action between the capsules and precursor compounds, such
as electrostatic interactions, acid–base reactions (including
coordination), and hydrophobic interactions, is a key factor for
accumulating atoms. However, it is important to stabilize such
clusters in order to hold them in capsules or fix them on/in
support materials. Moreover, in many cases, it is difficult to
conduct the usual identification analyses, such as single-
crystal X-ray diffraction and direct observation by STEM, SPM,
and MS, which are often effective.

5. Solid-phase synthesis

Several methods have been reported for the synthesis of clus-
ters in the solid phase. The mechanochemical synthesis of

general nanoparticles has already been established, but that of
clusters remains limited.192 For instance, Keggin-type POM of
aluminum [Al13O4(OH)24(H2O)12]

7+ can be obtained by a
mechanochemical reaction between the [Al(H2O)6]Cl3 and
(NH4)2CO3 reactants.193 Dimensional reduction of solid-state
precursors is effective for the precise synthesis of clusters.
Some metal chalcogenide or halide clusters typified by
[Re6S6Cl8]

2− are stoichiometrically synthesized by dimensional
reduction of an extended solid-state structure.194,195 As an ulti-
mate physical method, a technique for the mechanical syn-
thesis of clusters by directly manipulating atoms using scan-
ning probe microscopy was recently developed. Indeed, metal
clusters such as Au12, Ag12, and Au5Pb have been synthesized
directly on Si surfaces.196

As mentioned previously, the advantages of synthetic
methods involving solid-phase processes are extremely limited
in terms of the selectability of elements. However, bottom–up
synthesis involving mechanochemical reactions and top–down
synthesis involving dimensional reduction are significantly
more effective for mass production than liquid-phase syn-
thesis. This suggests that expanding the applicable elements
in solid-phase synthesis will contribute to promoting clusters
as more general and valuable materials in the future.

6. Conclusions and perspectives

As discussed above, the optimal method for synthesizing clus-
ters varies significantly depending on the chemical element
involved. Consequently, research on cluster synthesis has been
pursued individually, with each method serving as a starting
point. Notably, in liquid-phase processes, doping other group
elements using the stable structures and atomic-level space
obtained by each method has proven highly effective. Recently,
these methods have been increasingly interconnected based
on this approach.

However, according to the classification of clusters based
on chemical elements, it is evident that there is no accurate
border between cluster structures, even though each adopts a
different synthetic method. For example, certain representa-
tives among ligand-protected clusters and ionic compound
clusters, namely [Be4(NH2)6(NH3)4]

2+,75 [Zn10S4(SR)16]
4−,59

Zn10O4(OCOR)12,
79 In37P20(OCOCH2Ph)51,

80

[Mn13O6(OH)2(OMe)4L6]
4+,143 and [In35S48O8(Im)2]

9−,153 par-
tially contain both their two structural factors for cluster stabi-
lization. [Sn9Pt2(PPh3)]

2− (ref. 171) can be regarded as a cluster
undergoing stabilizing effects by both ligand-protection and
Zintl anions. Interestingly, the clusters developed using
different methods often exhibit similar structures with
reversed atomic arrangements and elemental ratios. Some of
the simplest examples are [Co8S6(SPh)8]

4− (ref. 58) and
Co6Te8(PR3)6,

72 where the transition metal and chalcogen
atoms occupy reversed positions in the same symmetric struc-
ture. Moreover, [Sb3Rh20(CO)36]

3− reported as a ligand-pro-
tected cluster with a few free post-transition metal atoms113

and [Sn9Ni2(CO)]
3− reported as a Zintl cluster with a few
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ligand-protected transition metal atoms171 have a complemen-
tary relationship (Fig. 9A). Additionally, the
[Mo6O22@Ag58S2(SPhtBu)36(OCOCF3)10] cluster obtained by the
anion-template synthesis of ligand-protected clusters48,197 and
the [Ag27@(Si2W18O66)3]

31− clusters obtained by the expansion
of the synthesis method of POMs140 also have complementary
structures. In their skeletons, where the [Mo6O22]

8− POM unit
was encapsulated in a ligand-protected Ag58 cluster and the
[Ag27]

17+ unit was encapsulated in three open-Dawson-type
POMs [Si2W18O66]

16−, the core and shell structures were com-
pletely inverted (Fig. 9B). Ag6@(MoO4)7@Ag56(MoO4)2
(SiPr)28(p-SO3PhMe)14 with a nested structure was recently syn-
thesized.198 This similarity and reversibility of the cluster
structures indicate that the area of elements covered by each
synthetic method has been extended widely enough to be close
to each other in recent investigations. This suggests that a
more flexible cluster design can be realized in the future by
improving synthetic techniques.

However, there are uninvestigated clusters for which precise
synthetic methods that allow mass production, such as multi-
metallic clusters, have not yet been established. In light of the
tendencies mentioned above, blending these individually
developed synthetic methods is expected to make a break-
through in revealing as-yet-unknown clusters. Although such
an attempt has already been made, for example, the combi-
nation of ligand protection and nanospace-assisted synthesis
methods,199 reports are still rare.

The electronic analogy between the clusters obtained using
different methods suggests the possibility of new cluster struc-
tures by isomorphic substitution. For example, the ligand-pro-
tected [M(SR)2]n (M(II) = Ni, Pd, Pt) in section 4.1 might
provide as-yet-unknown tiara-type bimetallic clusters, such as
[M(SR)2]n[M’S2]x (M(III) = Mn, Fe, In), by doping based on the
concept of chalcogenide clusters. Borane and Zintl clusters
often have very similar geometric structures according to the

Wade–Mingos rule,15,16 such as square pyramidal B5H9
200 and

[In5]
9− (ref. 201) or bicapped-square-antiprismatic [B10H10]

2−

(ref. 202) and [Pb10]
2−.162 As some transition-metal elements

doped with ligands have been reported,171,203 mutual feedback
from each chemistry associated with the synthetic methods
will become an effective approach for designing new cluster
structures. Cation- or anion-templated methods will also con-
tribute to the creation of such hybridized clusters because they
are reported in both ligand-protected clusters and ionic com-
pound clusters. Although conventional clusters obtained by
ion-templated synthesis are composed of relatively simple
anions as core structures, undeveloped ionic species of metals
or metal oxides allow expandability in their structures. For
example, by tracing these methods, the templated synthesis of
clusters adopting uninvestigated ions, such as Ni2+, Zn2+,
VO2+, RuO4

−, and [Pt(OH)6]
2−, may contribute to creating clus-

ters with new combinations of elements. Additionally, the sec-
ondary chemical treatment of these clusters, inspired by nano-
space-assisted synthesis, is expected to add new lineups, even
in Zintl clusters. Unrevealed pure metal clusters typified by
such Zintl clusters will be obtained by the reduction of ionic
compound clusters with diverse structures typified by POMs as
precursors.

In contrast to clusters, synthesis methods for nanoparticles
cover a broad range of chemical elements and chemical fields.1

Therefore, hybridizing conventional synthesis methods for nano-
particles and clusters is expected to contribute significantly and
provide new guidelines for cluster synthesis. As described in the
sections on ligand-protected clusters, modifying the cluster struc-
tures with multidentate ligands is a strong candidate.123,124 The
effectiveness of such an approach following the methods for
nanoparticles might ultimately be extended to bulk materials
containing clusters as partial structures, such as clathrate com-
pounds, gas hydrates, or minerals204–208 and cluster units in
metallic glasses or quasi-crystals.209–213

Fig. 9 (A) Crystal structures of [Sb3Rh20(CO)36]
3− (ref. 113) and [Sn9Ni2(CO)]3−,171 C: gray, O: red, Ni: light gray, Rh: grayish green, Sn: pale purple,

and Sb: brown. (B) Crystal structures of Mo6O22@Ag58S2(SPhtBu)36(OCOCF3)10 showing molybdenum oxide polyhedra197 and [Ag27@(Si2W18O66)3]
31−

showing silicon oxide and tungsten oxide polyhedra.140 C: grayish bone, O: red, Si: pale blue polyhedron, S: yellow, Mo: reddish gray polyhedron, Ag:
pale gray, and W: gray polyhedron. Part A reproduced from CCDC 1960490 and 185824. Part B reproduced from CCDC 1050793 and 1949947.
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In conclusion, a comprehensive categorization of clusters
based on their constituent chemical elements allowed us to
understand which method covered which elements and
revealed the common points of the structures synthesized by
different methods. It is suggested that blending chemical con-
cepts for stabilizing clusters by combining these methods or
introducing them into nanoparticles will enable the synthesis
of as-yet-unknown clusters not obtained by conventional tech-
niques, affording us many bridgeheads for the next stage of
developing cluster fields. Finally, the one-size-fits-all synthetic
method constructed using such an approach is a new strategy
to promote this cluster chemistry to a more central and larger
chemistry field in the future, leading to the creation of next-
generation functional materials, such as quantum-sized
catalysts.
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