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Accurate and efficient screening of retired lithium-ion batteries from electric vehicles is crucial to guarantee
reliable secondary applications such as in energy storage, electric bicycles, and smart grids. However,
conventional electrochemical screening methods typically involve a charge/discharge process and
usually take hours to measure critical parameters such as capacity, resistance, and voltage. To address
this issue of low efficiency for battery screening, scanned X-ray Computed Tomography (CT) cross-
sectional images in combination with a computational image recognition algorithm have been employed
to explore the gradient screening of these retired batteries. Based on the Structural Similarity Index
Measure (SSIM) algorithm with 2000 CT images per battery, the calculated CT scores are closely

correlated with their internal resistance and capacity, indicating the feasibility of CT scores to sort retired
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Accepted 12th May 2020 batteries. We find out that when the CT scores are larger than 0.65, there is high potential for

a secondary application. Therefore, this pioneering and non-destructive CT score method can reflect the

DOI: 10.1039/d0ra03602a internal electrochemical properties of these retired batteries, which could potentially expedite the
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1. Introduction

Researchers have paid considerable attention to the degrada-
tion and ageing of lithium-ion batteries owing to their
increasing demand in electric vehicles (EV), commercial aero-
space, cell phones and laptops.* In addition, the revenues from
the secondary application of retired lithium-ion batteries will
indeed reduce the cost of battery production, which will, in
turn, accelerate the development of energy storage and the EV
industry.> However, the retired batteries usually need to be
tested and sorted first so that suitable applications with lower
requirements can be further explored to maximize the lifetime
and safety of the battery.® In a recycling facility where tens of
thousands of Li-ion cells need to be processed every day, sorting
all the battery cells in an efficient way is one of the primary
obstacles to be overcome in the retired battery market. In the
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battery reuse industry for a sustainable energy future.

meantime, the existing methods to sort out the retired batteries
are inefficient, complicated and high cost since it typically
involves with a charging and discharging process for several
hours to complete.*” Nowadays the systematic studies on the
retired battery pack are very limited. Moreover, the capacity is
heavily influenced by the depth of discharge,®” the tempera-
ture,® the electrolyte’ and usually several factors need to be
taken into consideration together.'®'* Therefore, it is in great
need to explore a new and efficient sorting method to separate
retired batteries into different levels for appropriately secondary
applications such as in energy storage and electric motorcycles
et al.

During the charging-discharging cycles for a battery, lithium
ions move from the negative electrode to the positive electrode,
which may lead to the battery expansion,'” structural collapse,*®
lithium dendrite precipitation™ and electrolyte decomposition
to generate air bubbles.” These side reactions could cause
damage to the battery internal structure, which is a potential
indicator to represent the health or degradation of the batteries.

Generally, X-ray computed tomography (CT) is a powerful
non-destructive examination technique that has applications in
a variety of industrial and medical application, many previous
studies have researched the structure of lithium ion battery,
such as CT images can reflect the quality of newly produced
lithium ion battery’® and characterize the lithium movement
with the help of Sn lithiation."” Also, X-ray CT is applied to
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acquire high-spatial resolution three-dimensional (3D) images
of materials and devices, allowing researchers to visually
inspect and quantitatively analyze material structural properties
due to its scan reconstructing capabilities.'®'® X-ray CT images
has previously been used to explore the microstructural prop-
erties of electrode materials in Li-ion batteries and has been
shown to be an effective tool for diagnosing battery failure
mechanisms post-mortem.”>* What's more, consecutive 3D
images during in situ analyses can be used to quantify the
microstructural evolution process, facilitating identification of
potential failure and degradation mechanisms.*> Due to the
wide-spread of lab-based stand-alone CT systems, lots of
researchers report that the CT can analyze the structure of the
current collector,>® the electrode structure,® the thermal
runaway, gas production® and capacity.”® Especially, CT images
are useful for the examination of degraded cells,” structural
deformations®® can also facilitate post-mortem analysis by
providing guidance for the mechanical degradation and indi-
rect tracking of lithium diffusion in a commercial battery.®
However, to date, this has all been conducted at the electrode-
length scale, during normal operation, not used for quantita-
tive detection of internal structural changes of the battery.*

Thus, this work aims to explore a non-destructive method to
sort the retired batteries for secondary use. Because the CT
images can visually show the structural defects on the cross-
section images of the battery. A comprehensive analysis of the
similarities of the cross sections of battery can obtain the CT
score based on computational image recognition algorithm,
which can reflect the state of health of the battery. We find that
the CT scores are intrinsically correlated to the capacity and
resistance of the batteries from a selection of retired cells. The
electrochemical performance is closely related to the internal
structure so that we can sort out the batteries retired from
a battery pack based on the post-mortem analysis of CT images.
Electrochemical test results have further validated the reliability
of the CT score. In short, the correlation between CT score and
electrochemical performance illustrate the power of computer
image recognition algorithm assisted CT score to gradient
screening of retired lithium-ion batteries.

2. Experiments

All the lithium ion batteries used in this work are from the
dissembled pack of a motorcycle. Each cell is scanned in an
industrial CT system (Werth TomoScope XS). Scanning resolu-
tion is between 10 to 20 micrometers. The X-ray tube is operated
at 130 kv and 120 pA, corresponding to a spot size of 20 pm and
the image intensifier is a 2D panel with 1024 x 144 elements.
Distortion correction and computed tomography processing of
the raw radiographs are performed using the BIR ACTIS 5
software package.

Sample preparation is accomplished by affixing them to
a rotating platform. Each sample is affixed so that the longer
axis of the object was parallel to the axis of rotation. For
convention, we consider the axis of rotation the Z-axis and the
perpendicular the X-Y plane. Each sample is positioned so that
its radiograph, taken at its sample is point, fills approximately

19118 | RSC Adv, 2020, 10, 19117-19123

View Article Online

Paper

80-90% of the image intensifier width. Since the image inten-
sifier has 1024 elements of width, the in-plane (X-Y plane)
resolution of an object is approximately given by: (widest
dimension of the object)/(percentage of image intensifier
utilized)/1024. For a new 18650 cell, that is approximately
18 mm in diameter, the typical in-plane resolution in this
configuration would be approximately 22 um. The samples are
then rotated through platform, and a series of radiographs were
collected by the ACTIS 5 software at each angle of rotation. This
process is repeated at all necessary Z-height positions until each
location throughout the height of the sample had been scanned
which could be finished in one hour.

In total, each battery sample is imaged using 3000 views per
full rotation. The ACTIS 5 software process the thousands of raw
radiographs to reconstruct a series of two-dimensional “slices”.
A slice is a virtual cross-section of an object in an X-Y plane that
represents a portion of the object's overall Z height; it is
perpendicular to the axis of rotation. Each slice in the resulting
data set is a gray scale 16 bit TIFF image file. In the case of the
18650 cell, the slice thickness was 30 um, for a total of 2215
slices, and the resulting X-Y pixel dimensions were 22.46 pm for
their cross-section images.

3. Results and discussions

In this work, we dismantled a retired battery pack used in an
electric motorcycle to study the degradation of commercial
lithium ion battery. Fig. 1 shows a schematic diagram of
a typical 18650 lithium-ion battery with cylinder shape (18 mm
in diameter and 65 mm in length), whereas the positive and
negative electrodes are separated by a separator to prevent short
circuit. The capacity of the pack is 8 A h and the voltage is 36 V
and the pack is formed with 4 cells in parallel and 10 in series.
Usually, retired batteries have internal structural defects that
could affect their performance. However, these broken internal
structures are not easily observed using conventional charac-
terization methods.

Herein, we use CT technology to characterize the internal
battery structures, as shown in Fig. 2, internal defects can be
clearly expressed. From the longitudinal CT image shown in
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Fig. 1 Schematic diagram of a typical 18650 lithium ion battery.
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Fig. 2 CT images of retired lithium ion battery: longitudinal section (a) and different cross-sections (b—e). Position 1 and 2 are the weak parts in

the battery internal structure.

Fig. 2(a), we can see whether the internal structure of the battery
is deformed. From the perspective of safety, it can't be reused if
the battery were deformed. Fig. 2(b)—(e) shows CT images from
different cross-section locations labeled at b, ¢, d and e in one
battery, we can clearly observe the layer-to-layer variation in
position 1 in the center of the battery. The position 1, 2 is the
position of the current collector, which belongs to the weak
position in the battery, and there is obvious deformation. There
are also many defects such as the shedding of the active mate-
rial and the change between the electrode layers, which can't be
directly seen by the naked eyes. These changes can cause
damage to the battery and affect the battery life.

In this work, we perform electrochemical analysis on forty
cells of the dismantled battery pack with 10 series group labeled
from A to J (four batteries in each group). Fig. S1(a)T shows the
open-circuit voltage (OCV) of the forty cells, there is little
difference between each group. On the contrary, the resistance
in Fig. S1(b),} the discharge capacity in Fig. S1(c)t and the
capacity have a huge difference among the forty dismantled
cells. The trend is the higher the resistance, the worse capacity,
which means the failure of the cells. The capacity of four cells in
one parallel is similar. The voltage is different in different series
shown in Table S1.7 And in Table S2,7 it shows the distribution
of the capacity. We sort the ten groups of cells with different
electrochemical parameters shown in Table S1.} Capacity and
internal resistance reflect aging of lithium ion battery better
than the voltage. Cells in group C, D, G, H and J are close to zero.
Table S21 shows most of the cells' capacity is less than 600
mA h. Only the capacity is above 1000 mA h, the battery could be
chosen to further utilization. Therefore, the performance of

This journal is © The Royal Society of Chemistry 2020

these 40 dismantled batteries is different. In order to better
utilize the retired battery, effective sorting of retired batteries is
particularly important.

To quantitatively characterize the state health of the retired
battery, we firstly use CT score, calculated by the Structural
Similarity Index Measure (SSIM) method with multiple CT
images.** SSIM was initially designed to evaluate the structural
similarity of original and distorted images to evaluate the
quality of distorted images, here we apply this approach to
evaluate the similarity of two images from different cross
sections of a battery.

In the fundamental basis of using Structural Similarity Index
Measure (SSIM) lies in the fact that the mathematical method of
SSIM (Fig. 3), mining structural similarity information among
images by constructing a formula through the mean value,
variance and covariance, mainly does not require images being
from an original image. In this method, the luminance and
contrast related to the structure of battery are defined as the
structure information in the image, which is based on the idea
that pixels of each CT image have strong inter-dependencies
especially when they are spatially close. Therefore, the key
point is to calculate its similarity for the measured CT images.

The similarity measurement obtained by the SSIM
measurement system can be composed of three comparison
measurement between the samples of x and y: luminance (J),
contrast (¢), and structure (s) which will be defined as followed:

First, for discrete signals, we use the average grayscale as an
estimate of the luminance measurement:

RSC Adv, 2020, 10, 19117-19123 | 19119
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Fig. 3 CT score calculation flow chart. Each two CT images could get
a CT score, the average of them are the output CT score of the tested
battery.
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Here x; and y; are two discrete non-negative signals that have
been aligned with each other from two adjacent CT images of
the tested battery (herein, these two image patches extracted
from the same spatial location from two CT images being
compared, respectively).

Therefore, the measurement system knows that the average
gray value should be removed from the signal. For discrete
signals x—pu,, the standard deviation can be used as the contrast
estimate.

D=

7= (N‘_l > - M) @

i=1

The contrast function c(x,y) is a function of o,0,,.

Next, the signal is divided by its own standard deviation, and
the structure contrast function is defined as a function of
(r-w) G-w)

Oy ay

Finally, the three comparison modules are combined into
a complete similarity measurement function:

S(x.p) = fl(x.p).c(x.p).5(x.)) (3)

S(x,y) should satisfy the following three conditions:

(1) Symmetry;

(2) Boundedness;

(3) Maximum uniqueness: S(x,y) = 1 if and only if x = y.

The brightness contrast function [(x,y) is a function about
My Moy
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2p ey, + C

/ =
(x.7) e+’ + G

(4)

The constant C; is to avoid system instability when u,” + u,”
approaching zero.

In particular, we choose C; = (KL)%, L is the number of gray
levels of the image, for 8 bit grayscale images, L = 255, K; < 1.
Eqn (4) satisfies the above three conditions.

Contrast function is defined by its own standard deviation:

20,0, 4+ C,
O’XZ + O’yz + Cz

c(x,y) = (5)

Constant C, = (K,L)* and K, < 1. Eqn (5) still satisfies the
above three conditions.
Structure comparison function:

20, + C;
S = v 6
()= 2 (©)
Among them
1 N
Oy = o Z(xi — te) (i — 1) )
N-143

Finally, the three functions are combined to obtain the SSIM
index function:

SSIM(x,y) = [ICe. ) [e(x ) sCx.p)]” (8)
Here «, 8, v > 0, it is used to adjust the importance between the
three modules.

To get the simplified form, leta ==y =1,C; = %, get:

2wy + C1) (204 + Co)

SSIM(x,y) = (,LLXZ N “yz N Cl) (sz o+ C2>

©)

In this experiment, we tried « = 8 = v = 1. The CT score of
good battery and bad battery is not very different, and the
discrimination is relatively small. So these parameters are
adjusted further. When o = 1, § = 7 and v = 2, CT score can
better distinguish the batteries in this pack. In this work, we
found « =1, =7 and y = 2 are the most suitable and chosen to
calculate the CT score. To note, for the values of «, § and v in
this test, it is difficult to find a universally applicable standard
value. When it comes to distinguish a batch of batteries, several
times needs to be tried to obtain a more ideal value which needs
to be all positive numbers.

The CT score calculation flow chart is shown in Fig. 3. Firstly,
we use former introduced industrial CT system to collect CT
scan images of a retired battery. In this work, 2000 CT images
are taken for each cell, that is, one taken every 100 times, and
a total of 20 effective images could be obtained. Then the SSIM
algorithm to compare the luminance (1), contrast (2) and
structure (3) of each two images and get a score each time.

This journal is © The Royal Society of Chemistry 2020
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20 x 19

Hence, there are 190 <0202 = = 190> CT scores using

formula (4) for a single battery and the CT score is the average of
the 190 scores. It should be noted that in formula (4), due to the
influence of luminance, contrast and structure are different, «,
6 and v are parameters used to adjust the relative importance of
the three components to the CT score. Among the three
features, the contrast is the most important while the lumi-
nance is the least important.

Among the dismantled 40 cells, most of them have poor
capacity without any value of reusing. Only the batteries from
group B and group E have the capacity more than 50% of the
initial capacity. So we select four used cells (named as B1, B2,
E1, E3) to take their CT images and calculate the CT score
shown in Fig. 4(a), and their electrochemical performance were
measured to reflect the state of the retired batteries. The CT
score of E1, E3, B1, and B2 are 0.566, 0.597, 0.752 and 0.854,
respectively, suggesting that the health status of the battery
increases in turn. The cycle performance of the resistance is
tested to check the detail capability of these four cells at 1C rate
on a battery testing system (LAND CT2001A, China) shown in
Fig. 4(b)-(d). It shows B2 has the highest remaining capacity
(Fig. 4(b)) and it is the most stable one (Fig. 4(c)). In contrast, E1
is the worst and most unstable. Correspondingly, the B2 has the
minimum internal resistance with the charge-discharge cycling

()
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numbers (Fig. 4(d)). The internal resistance of E1 increased with
the cycling numbers sharply.

The incremental capacity is shown in Fig. 5(a), from B1, B2,
E1 to E3, it can clearly see that the peak moving from left to right
and disappearing in the bad cells, reflecting the loss of live
lithium with the degradation of capacity. From Fig. 5(b) the
open-circuit voltage (OCV) is closely connected with the state of
charges (SOC). When the SOC is less than 30%, the OCV of the
bad battery is higher than the better cells. When the SOC is
more than 90%, the OCV of the better cells is higher than the
bad ones.

It is obvious that the CT score is intrinsically correlated to
the capacity, resistance and live lithium of the battery. However,
as shown in Fig. 5(c), even if the capacity of the dismantled
battery is close to that of the new battery, the CT score is only
90%, not 100%, because each cross-section of the new battery is
also fundamentally different. When the CT score is 0.65-0.90,
the capacity of the retired battery is about 95% of the new
battery, and the capacity does not change much with the CT
score. This type of battery has a great prospect of secondary
utilization. When the CT score is 0.50-0.68, the battery capacity
increases with the approximate CT score. This part of the
battery also needs to test the internal resistance to determine
further whether it can be used further. Comparing the CT score
with the internal resistance in Fig. 5(d), the CT score of aged
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Fig. 4 CT score (a) and electrochemical performance of selected B1, B2, E1, E3: (b) discharge capacity; (c) cycle performance; (d) resistance.
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battery is less than 0.65 with a sharp change as well as its
internal resistance is above 100 mQ. For those battery with a CT
score above 0.70, the internal resistance is below 85 mQ.
Obviously, the worse the battery performance, such as the lower
the capacity, the greater the internal resistance, is indicating the
more severe CT score attenuation and worse battery consis-
tency. In other words, the more stable and higher CT score
indicates the better battery performance and consistency.
Therefore, the calculated CT score based on our proposed SSIM
algorithm has been effectively reflected the state of health for
the lithium batteries.

4. Conclusions

In this study, the non destructive X-ray computed tomography
(CT) technology is chosen to obtain the internal images of
retired lithium ion battery. And CT images can clearly show the
defects in battery structure caused by charging and discharging
process, which is closely related to the state-of-life the battery.
The CT score of lithium ion battery is calculated using SSIM
method by analyzing the CT image, which can quantitatively
reflect the state-of-life the battery, including its capacity,
internal resistance, open circuit voltage. The data shows that
when the CT score is lower than 0.55, the battery can be directly
scrapped. Moreover, the battery with the CT score is higher than
0.68 shows higher capacity and smaller internal resistance,

19122 | RSC Adv, 2020, 10, 19117-19123

suggesting it could be reused. Compared with the traditional
electrochemical screening method, CT scan technology is non-
destructive and quantitative, and can comprehensively reflect
different electrochemical indexes.
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