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Tuning ligand field strength with pendent Lewis
acids: access to high spin iron hydridesy

James P. Shanahan,? Matthias Zeller®
and Nathaniel K. Szymczak @ *

Geometrically flexible 9-borabicyclo[3.3.1]lnonyl units within the secondary coordination sphere enable
isolation of high-spin Fe(i)-dihydrides stabilized by boron—hydride interactions and a rare example of an
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isolable S = 3/2 reduction product. The borane-capped Fe(i)-dihydride: (1) rapidly deprotonates E-H (E

=N, O, P, S) bonds to afford borane-stabilized Fe adducts and (2) releases H, upon exposure to m-acids.

DOI: 10.1039/c9sc00561g

rsc.li/chemical-science for N, reduction in nitrogenase.

Iron-dihydrides are intermediates in myriad homogenous
catalytic reactions and the recent push to develop earth-
abundant transition metal catalysts has fueled many research
groups to explore their reactivity." Beyond relevance to homog-
enous catalysis, iron-dihydrides have been implicated in bio-
logical reduction sequences. Whereas strong-field hydride
ligands typically enforce low-spin configurations, metal-
locofactors including nitrogenase contain high-spin hydrides.>
To account for the modest conditions used by nitrogenase
enzymes for N, reduction, one proposal to accumulate reducing
power at a near constant potential is to store reducing equiva-
lents as Fe-p-H-Fe intermediates.>* For example, the E, state of
the FeMoco center of nitrogenase is proposed to eliminate H,
from accumulated bridging hydrides concomitant with N,
binding/reduction (Fig. 1).

Well characterized synthetic examples of open-shell Fe-p-H-
Fe complexes are rare,* and thus, despite their relevance in
biology, the synthesis and reactivity of such species remain
largely unknown. This disparity is likely due to the mismatched
requirements of the ligand/metal combination - strong-field
hydride donor ligands rarely afford high-spin electronic
configurations.

Our group is working to evaluate how the precise structural,
electronic, and cooperative modes in the secondary coordina-
tion sphere can be used to regulate reactivity.® One way in which
the ligand-field strength of otherwise strong-field hydride
ligands can be attenuated (accommodating high-spin states) is
by introducing acidic groups to form bridging hydrides. The
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The Lewis acids provide an avenue for redox-leveling in analogy to the near constant operating potential

multiple Fe-centers in the E, state may serve this role.® To model
these intermediates with redox-inactive acids, we targeted the
synthesis of ferrous-dihydride compounds in the presence of
appended boron Lewis acids. Herein, we report Lewis acid
enabled isolation of a high-spin Fe(u)-di(boro)hydride as well as
its reduction product, an S = 3/2 Fe-di(boro)hydride, and
subsequent reactivity.

The complex, (**~PDP™")FeBr,, contains a pair of moderately
acidic 9-borabicyclo[3.3.1]nonyl (9-BBN) substituents that are
capable of interacting with nitrogenous substrates independent
of the metal center (N,H,) or cooperatively with the metal center
(NH,").” Treatment of a freshly-thawed orange THF solution of
(**NPDP®")FeBr, with two equiv. KBHEt; affords an olive-tan
powder, assigned as (*®*PDP®")FeH, (1) (70%, Fig. 2). 1 is
modestly stable with a half-life of ~24 h in THF at room
temperature. Investigation by 'H-NMR spectroscopy (THF)
revealed a paramagnetically shifted spectrum with resonances
ranging —16.9-63.6 ppm. The decrease in solution symmetry

from E, state
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Fig.1 FeMo-cofactor and our approach to hydride accumulation with
boron Lewis acids.
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Fig. 2 Synthesis of borane-capped metal-dihydrides.

from C,, to C, is consistent with the trialkylboranes interacting
with the hydride ligands at the Fe-center. Infrared spectroscopy
(KBr) supported this formulation with a broad Fe-H-B stretch at
~1839 cm ™ .* Notably, the energy of this absorption is at
significantly lower energy than bis(tris(mercaptoimidazolyl)
hydroborato)-Fe(i1) species that display a bridging borohydride.’
Solution magnetic susceptibly studies (25 °C, THF) establish 1 as
high-spin Fe(u) (uefr = 4.6 & 0.2 up).

Single-crystal X-ray diffraction (XRD) experiments confirmed
1 as an iron-dihydride with each hydride capped by pyr-
amidalized trialkylboranes (Fe-B = 2.970 A; >_B, = 318.6°;
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Fig. 3 (A) Reduction of 1. (B) Molecular structures of 1 and 1-K(crypt)
(50% probability ellipsoids). For clarity, the 9-BBN substituents are
displayed in wireframe. (C) Electrochemical comparison between 1
and (®BNPDP™®Y)FeCl,. (D) X-band EPR of 1-K(crypt) at 10 K in 1:1
toluene/THF. (E and F) Spin-density isosurface plots (0.002 a.u.) of 1
and 1-K(crypt), respectively.
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Fig. 3B). The geometry about iron is best described as square
pyramidal (t5s = 0.31). Complex 1 is a rare example of a mono-
metallic high-spin Fe(u)-dihydride (or Fe(n)-diborohydride).'“%°

The requirements of the intramolecular acids to stabilize 1
were assessed with a control ligand, ®'PDP™", where the
—(CH,);BBN fragments are replaced with n-butyl groups
(Fig. 2).” Treating (*"PDP"®")FeBr, with 2 equiv. KBHEt; affor-
ded intractable mixtures, precluding characterization (see
ESI{). We propose that the appended trialkylboranes in 1 serve
two important roles: (1) to stabilize the hydride ligands, and (2)
to decrease the entropic penalty for stabilization (intra-
molecular 9-BBN vs. exogenous BEt;). Attempts to install
another donor ligand to 1 and enforce a low-spin configuration
were unsuccessful: 1 was unreactive toward stoichiometric 1,4-
diazabicyclo[2.2.2]Joctane, NMe;, and PMe;, but decomposed
when treated with 4-dimethylaminopyridine.

To assess the requirements of the metal center and provide
additional spectroscopic characterization, we synthesized the
zinc analogue, (**"PDP"®")ZnH,, from (**"PDP**")Znl, (Fig. 2).
""B-NMR spectroscopy (THF) of (**"PDP"®")ZnH, revealed an
upfield resonance at 5.43 ppm, consistent with a tetrahedral
boron center.' IR spectroscopy (KBr) revealed a broad Zn-H-B
stretch at ~1775 cm ™" that shifts upon deuterium labeling to
~1300 cm™".'* *H-NMR spectroscopy established the assign-
ment of the hydride resonance at 0.65 ppm, which is compa-
rable to other k'-Zn(BH,)/Zn(BH;R) complexes."? The molecular
structure of (*®™PDP™®")ZnH, displays bonding metrics analo-
gous to 1 (see ESIT).

Electrochemical investigation of 1 using cyclic voltammetry
(0.2 M [BuyN][PFs], THF) revealed a quasi-reversible reductive
event at —2.06 V vs. F¢/F¢" which is minimally shifted from
(**NPDP®")FeCl, (4 = +10 mV),*® despite their different X-type
donors (Fig. 3C)."* The similar redox potentials suggest that,
in analogy to the E, state of nitrogenase, reducing equivalents
can be delivered at a near constant potential to a Fe(u) state,
when stored as bridging hydride equivalents.”® To prepare the
reduced complex, 1 equiv. of KCg was added to a freshly thawed
THF solution of 1 in the presence of 2,2,2-cryptand, resulting in
an immediate color change to a vibrant green species assigned
as [K(2,2,2-cryptand)][(*®*“PDP*")FeH,] (1-K(crypt); Fig. 3A).'
Investigation of 1-K(crypt) by 'H-NMR spectroscopy (THF)
revealed a paramagnetically shifted spectrum with resonances
ranging —70.6-95.0 ppm with solution C, symmetry. Samples of
1-K(crypt) are less stable than 1 and have an approximate half-
life of 12 h in THF at room temperature. Upon reduction, the
Fe-H-B infrared absorption shifts to higher energy
(~1866 cm™'; KBr). Solution magnetic susceptibly studies
(25 °C, THF) of 1-K(crypt) are consistent with an S = 3/2 complex
(uetr=4.1 £ 0.1 up)."” X-band EPR spectroscopy was employed to
confirm the spin-state. Regardless of coordination environment
or geometry, S = 1/2 iron complexes, typically exhibit g values
near the free electron value,'® while high-spin complexes exhibit
gr-tensors > 3.5.2" 1-K(crypt) displays a broad rhombic signal
with g values of 5.6, 3.97, and 1.82 at 10 K in 1 : 1 THF/toluene
glass (Fig. 3D), which suggests 1-K(crypt) is best described as
high-spin.*® Reduced iron complexes with low coordination
numbers (2, 3, occasionally 4) are often high-spin,'#***#** while

This journal is © The Royal Society of Chemistry 2019
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those stabilized by strong-field ligands (i.e. NHC, porphyrin,
phosphines) are low-spin. 1-K(crypt) is a rare example of a high-
spin complex with a coordination number = 5.1

For structural comparison, 1-K(crypt) was examined by XRD.
Data refinement revealed the anionic portion of 1-K(crypt) to be
geometrically similar (t5 = 0.36) to 1 (Fig. 3B). The interacting
trialkylboranes are equidistant from the metal center in 1 and 1-
K(crypt). Upon reduction, the Fe-Npyrgine bond distance
decreases from 2.178(5) to 2.021(6) consistent with enhanced -
backbonding.?” DFT optimized geometries for the high-spin
configuration of 1 and 1-K(crypt) are in agreement with their
crystallographic structures.> The spin-density for 1 is localized
on iron, consistent with a high-spin Fe(u) description (Fig. 3E).
For 1-K(crypt), significant spin-density is localized on the
pyridyl-moiety of the chelate. The calculated B-SOMO for 1-
K(crypt) corresponding to reduction is primarily comprised of
ligand-w* orbitals on the pyridyl moiety with minimal Fe
contribution (19%). This analysis is consistent with reduction of
1 affording an S = 3/2 system through antiferromagnetic
coupling of high-spin Fe(m) with [**PDP®"]'~.2* The calculated
electronic structure is consistent with crystallographic bond
metrics.”® Pyridyl-* population is reflected by C;-C, bond
elongation (1: 1.377(6); 1-K(crypt): 1.433(12).ve A; Fig. S857).

We sought to examine the generality of the trialkylborane
Lewis acids to stabilize both the accumulated hydrides and
other small molecules. Addition of E-H substrates (E = NH,,
NHMe, NHPh, OH, PHPh, SPh) to freshly thawed THF solutions
of 1 afford 2-E as orange-tan powders with production of H,
(Fig. 4).>° 2-E are high-spin Fe(u)-species with solution magnetic
susceptibilities ranging peg = 4.5-5.5 ug (THF, 25 °C). 2-OH and
2-PHPh provide diagnostic infrared handles with sharp vomy/
ven) absorptions observed at 3630 and 2340 cm ' (KBr),
respectively—each consistent with previously reported M-OH-
BR; ¥ and Fe-phosphides.?® "H-NMR spectroscopy revealed 2-
NHMe, 2-NHPh, 2-OH, and 2-PHPh are C, symmetric in solu-
tion—consistent with Fe-E-B interactions remaining intact in
solution. In contrast, 2-SPh exhibits a solution C,y symmetric
spectrum that broadens upon cooling to —80 °C, consistent
with reversible B-S binding; likely a consequence of a weaker
B-S interaction.” This observation was supported by DFT
analyses. In contrast to the strong B-O interaction in 2-OH
(favored by ~10 kcal per mol per interaction), the calculated B-S
interaction is thermodynamically disfavored by ~9 keal per mol
per interaction. In solution, the B-SPh binding equilibria in 2-
SPh were arrested by treating 2-SPh with two equiv. NH;.
Competitive binding with NH; afforded the ammonia-borane
species, (**NPDP*®")Fe(SPh),(NH3), (3), highlighting the utility
of moderately acidic groups to reversibly interact with small
molecule substrates (Fig. 5).

To assess the structural similarities, 2-E were examined by
XRD (Fig. 4). Each displays a pentacoordinate iron best
described as distorted square-pyramidal with interacting tri-
alkylboranes. The B-heteroatom distances range from 1.592(2)-
2.0504(19) A following the trend B-OH < B-NHMe < B-NHPh <
B-PHPh = B-SPh. The same trend is observed for the Fe-
heteroatom distance with 2-OH displaying the shortest bond
(1.9812(13) A) and 2-PHPh/2-SPh displaying the longest bond

This journal is © The Royal Society of Chemistry 2019
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Fig. 4 Formation of 2-E and molecular structures (50% probability
ellipsoids) and averaged bond distances. For clarity, the 9-BBN
substituents are displayed in wireframe.

Fig. 5 Reversible acid/base interaction in 2-SPh and molecular
structure of 3 (50% probability ellipsoids). For clarity, the 9-BBN and
phenyl substituents are displayed in wireframe.
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(2.408(4) and 2.4134(5) A, respectively). The Fe-E bonds are
longer than most reported examples, and we attribute this
difference to due to quenching the ligand lone-pair by the tri-
alkylborane.*#*»283¢ Upon substituting the B-S bond of 2-SPh
with NH; to afford 3, the Fe-S bond distance slightly decreases
(0.02 A) while the Fe-S-Ph angle expands (90.06(6) to
110.5(3)ave’). The ability of the appended trialkylborane to
stabilize various sizes of small molecules at the metal center is
highlighted by comparing the Fe-B distances of 1 and 2-PHPh
which vary by nearly 0.9 A (2.97 vs. 3.91 A). The isolation of 2-E
highlights the utility of secondary coordination sphere inter-
actions to not only stabilize hydrides at a metal center, but also
to stabilize intermediate species following H, loss. Attempts to
synthesize most compounds analogous to 2-E from (*"PDP*")
FeBr, through established methods were unsuccessful (see
ESIt).19%2839031 The (*'pDP™")Fe(SPh), complex was the only
isolable compound, which is consistent with the observed
stability of 3 in the absence of Lewis acid/base interactions.

The acid/base interactions can be viewed as an avenue for
redox-leveling: the reduction potentials vary by 340 mV across
the series of compounds (1, 2-E, and (*®*"PDP™")FeX, (X = Cl,
Br); Table S31) despite their disparate ligand donor properties.*>
Upon sequestering the Lewis acid of 2-SPh with NH; to form 3,
the redox potential shifts more negative by 80 mVv (—2.21 V vs.
Fc/Fc"). This modest shift is consistent with the weak or dynamic
B-S interaction of 2-SPh. Further description of the Fe-E-B
interactions were obtained from their DFT optimized struc-
tures.* The LUMOs of the B manifold for 2-E provide insight into
their reduction potentials.** The boron Lewis acids temper the
donor properties of the X-type donor ligand, lowering their
energy and percent composition in the frontier orbitals (see ESIT
for details). The LUMOs of 1 and 2-E span a modest range of
0.51 eV. In contrast, their computationally investigated trun-
cated (M°PDP*®")Fe(E), counterparts range 1.72 eV. In analogy to
the near constant operating potential for N, reduction in nitro-
genase where H™/N,H, components are present throughout the
sequence, the [(*®“PDP®")Fe] system accommodates small
molecule substrates whose donor properties are regulated
through Lewis acid/base interactions.

Given the unusual electronic and structural properties of 1,
1-K(crypt), and (*®*NPDP™®")ZnH,, Wiberg bond-indices for were
investigated for each of these complexes to gauge the bonding
contribution of the M-H-B interaction (i.e. metal-Aydride or
metal-borohydride character). For each, the interaction is
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predominantly borohydride in character with B-H indices
ranging 0.65-0.78 and M-H indices ranging 0.14-0.22.%°
(*®*NPDP™")ZnH, displays the most M-H character whereas 1-
K(crypt) displays the most B-H character—consistent with IR
spectroscopy. While the data suggest the electronic structures
are best described as borohydride, the M-H character varies
across the series, indicating M-H reactivity may be accessible.

A key difference between metal-hydrides and borohydrides
is the ability of the former to undergo reductive elimination. To
test the hydride accumulation hypothesis, i.e. whether the
bridging hydrides in 1 provide access to Fe(0) by eliminating H,,
1 was treated with a m-acid (Fig. 6). Addition of two equiv. 2,4,6-
tri-tert-butylphenylisocyanide to 1 expels H, in 90(2)% yield and
affords (*® PDP"™")Fe(CNAr),.** In contrast, when subjecting
the redox-inactive zinc variant, (**PDP*®")ZnH,, to analogous
conditions, only 7(3)% H, was detected. These results implicate
that 1 contains accessible Fe-H character that is available for
reactions. In contrast, the reactivity of (**PDP*®")ZnH, illus-
trates the inability to extrude H, from a borohydride when
access to a low-valent metal is not possible.

Conclusions

In summary, we have described a system capable of accumu-
lating hydride equivalents at iron. Intramolecular borane Lewis
acid serve a prominent role to not only impart stability to Fe-
dihydrides, but also enable previously unobserved electronic
structures at iron by regulating the Fe-X-type ligand interac-
tions. Similarities can be drawn between our system and the E,
state of nitrogenase, where hydrides are accumulated at a near
constant potential and addition of small molecule substrates
induce H, elimination concomitant with substrate stabiliza-
tion. The geometric flexibility of the appended Lewis acids were
previously shown to enable interactions both independent and
cooperatively with a metal; here the geometric flexibility is
highlighted by their ability to stabilize small molecules of varied
sizes. Work is ongoing to interrogate how Lewis acids can be
used to further regulate redox transformations at the metal.
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