Issue 24, 2020

Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect

Abstract

The increasing emergence and spread of antimicrobial resistance are urgent and important global challenges today. The clinical pipeline is lacking in innovative drugs that avoid the development of drug resistance. Macromolecular antimicrobials kill bacteria and fungi through physical disruptions to the cell membrane, which is difficult for microbes to overcome. Recently, we reported antimicrobial polycarbonates that kill microbes via two different mechanisms. Polycarbonates functionalized with quaternary ammonium disrupted the lipid bilayer membrane of the microbes, while polycarbonates functionalized with guanidinium translocated the membrane and precipitated cytosolic components. We hypothesized that the combination of these two distinct mechanisms would result in a more than additive increase in antimicrobial efficacy. Block and random copolymers containing both cationic groups had similar minimum inhibitory concentrations (MICs) as the guanidinium homopolymer on 5 representatives of the ESKAPE pathogens. Interestingly, the random copolymer killed P. aeruginosa and A. baumannii more rapidly than the block copolymer and the guanidinium homopolymer with the same number of guanidinium groups. Like quaternary ammonium homopolymer, the copolymers killed the bacteria via a membrane-disruptive mechanism. Then, we simply mixed quaternary ammonium homopolymer and guanidinium homopolymer, and studied antimicrobial activity of the combination at various concentrations. Checkerboard assay results showed that the combination of the polymers, in general, achieved a synergistic or additive effect in inhibiting the growth of bacteria. At concentrations where it exibited a synergistic or additive effect in inhibiting bacterial growth, the combination killed the bacteria effectively (99%–99.9% killing efficiency) although the individual polymers at these concentrations did not exert bactericidal activity. Therefore, it is essential to have the two functional groups on separate molecules to provide synergism. This study provides a basic understanding of polymer design with different cationic groups.

Graphical abstract: Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect

Supplementary files

Article information

Article type
Paper
Submitted
11 may. 2020
Accepted
07 sep. 2020
First published
10 sep. 2020

Biomater. Sci., 2020,8, 6920-6929

Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect

J. Leong, C. Yang, J. Tan, B. Q. Tan, S. Hor, J. L. Hedrick and Y. Y. Yang, Biomater. Sci., 2020, 8, 6920 DOI: 10.1039/D0BM00752H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements