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Abstract

Recently, machine learning (ML) has established itself in various worldwide benchmarking competitions in computational
biology, including Critical Assessment of Structure Prediction (CASP) and Drug Design Data Resource (D3R) Grand Chal-
lenges. However, the intricate structural complexity and high ML dimensionality of biomolecular datasets obstruct the efficient
application of ML algorithms in the field. In addition to data and algorithm, an efficient ML machinery for biomolecular predic-
tions must include structural representation as an indispensable component. Mathematical representations that simplify the
biomolecular structural complexity and reduce ML dimensionality have emerged as a prime winner in D3R Grand Challenges.
This review is devoted to the recent advances in developing low-dimensional and scalable mathematical representations of
biomolecules in our laboratory. We discuss three classes of mathematical approaches, including algebraic topology, differ-
ential geometry, and graph theory. We elucidate how the physical and biological challenges have guided the evolution and
development of these mathematical apparatuses for massive and diverse biomolecular data. We focus the performance anal-
ysis on the protein-ligand binding predictions in this review although these methods have had tremendous success in many
other applications, such as protein classification, virtual screening, and the predictions of solubility, solvation free energy,
toxicity, partition coefficient, protein folding stability changes upon mutation, etc.
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I Introduction
Recently, Google’s DeepMind has caught the world’s breath in winning the 13th Critical Assessment of Structure Prediction
(CASP13) competition using its latest artificial intelligence (AI) system, AlphaFold1. The goal of the CASP is to develop and
recognize the state-of-the-art technology in constructing protein three-dimensional (3D) structure from protein sequences,
which are abundantly available nowadays. While many people were surprised by the power of AI when AlphaGo beat
humans for the first time in the highly intelligent Go game a few years ago, it was not clear whether AI could tackle sci-
entific challenges. Since CASP has been regarded as one of the most important challenges in computational biophysics,
AlphaFold’s dominant win of 25 out of 43 contests ushers in a new era of scientific discovery.

The algorithms underpinning ALphaFold’s AI system are machine learning (ML), including deep learning (DL). Indeed,
ML is one of the most transformative technologies in history. The combination of big data and ML has been referred to as
both the “fourth industrial revolution”2 and the “fourth paradigm of science”3. However, this two-element combination may
not work very well for biological science, particularly, biomolecular systems because of the intricate structural complexity
and the intrinsic high dimensionality of biomolecular datasets4. For example, a typical human protein-drug complex has
so many possible configurations that even if a computer enumerates one possible configuration per second, it would still
take longer than the universe has existed to reach the right configuration. The chemical and pharmacological spaces of
drugs are so large that even all the world’s computers put together do not have enough power for automated de novo drug
design due to additional requirements in solubility, partition coefficient, permeability, clearance, toxicity, pharmacokinetics,
and pharmacodynamics, etc.
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Figure 1: Illustration of es-
sential elements for machine
learning (ML) based discov-
ery from complex biomolecular
data.

An appropriate low-dimensional representation of biomolecular structures is required4–9 to
translate the complex structural information into machine learning feature vectors or mathemati-
cal representations as shown in Fig. 2. As a result, various machine learning algorithms, partic-
ularly relatively simple ones without complex internal structures, can work efficiently and robustly
with biomolecular data.

Descriptors or fingerprints are indispensable even for small molecules – they play a fun-
damental role in quantitative structure-activity relationship (QSAR) and quantitative structure-
property relationships (QSPR) analysis, virtual screening, similarity-based compound search,
target molecule ranking, drug absorption, distribution, metabolism, and excretion (ADME) pre-
diction, and other drug discovery processes. Molecular descriptors are property profiles of a
molecule, usually in the form of vectors with each vector component indicating the existence, the
degree or the frequency of one certain structure feature10–12. Various descriptors have been de-
veloped in the past few decades13–15. Most of them are 2D ones that can be extracted from molecular simplified molecular-
input line-entry system (SMILES) strings without 3D structure information. High dimensional descriptors have also been
developed to utilize 3D molecular structures and other chemical and physical information16. There are four main categories
of 2D descriptors: 1) substructure keys-based fingerprints, 2) topological or path-based fingerprints, 3) circular fingerprints,
and 4) pharmacophore fingerprints. Substructure keys-based fingerprints, such as molecular access system (MACCS)17,
are bit strings representing the presence of certain substructures or fragments from a given list of structural keys in a
molecule. Topological or path-based descriptors, e.g., FP218, Daylight19 and electro-topological state (Estate)20, are de-
signed to analyze all the fragments of a molecule following a (usually linear) path up to a certain number of bonds, and
then hashing every one of these paths to create fingerprints. Circular fingerprints, such as extended-connectivity finger-
print (ECFP)13, are also hashed topological fingerprints but rather than looking for paths in a molecule, they record the
environment of each atom up to a pre-defined radius. Pharmacophore fingerprints include the relevant features and interac-
tions needed for a molecule to be active against a given target, including 2D-pharmacophore21, 3D-pharmacophore21 and
extended reduced graph (ERG)22 fingerprints as examples.

Protein-
ligand 

complex

Element 
specific 
groups

Machine 
learning 

prediction

Algebraic 
topology

or
Differential 
geometry

or
Graph 
theory

or
Physical 
model

or

......

…

Descriptors

Figure 2: Illustration of descriptor-based learning processes.

However, typically designed for 2D SMILES strings, the aforemen-
tioned small-molecular descriptors do not work well for macromolecules
that have complex 3D structures. The complexity of biomolecular struc-
ture, function, and dynamics often makes the structural representation
inconclusive, inadequate, inefficient and sometimes intractable. These
challenges call for innovative design strategies for the representation of
macromolecules.

Popular molecular mechanics models use bonded terms for describ-
ing covalent bond interactions and non-bonded terms for representing
long-range electrostatic and van der Waals effects. As a result, the early
effort has been focused on exploring related physical descriptors to ac-
count for hydrogen bonds, electrostatic effects, van der Waals interac-
tions, hydrophilicity, and hydrophobicity. These descriptors have been
applied to many macromolecular systems, such as protein-protein inter-
action hot spots6,7,23,24. Similar physical descriptors in terms of van der
Waals interaction, Coulomb interaction, electrostatic potential, electro-
static binding free energy, reaction field energy, surface areas, volumes,
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etc, were applied by us to predictions of protein-ligand affinity25 and solvation free energy26,27. However, the major limi-
tation of physical descriptors is that they highly depend on existing molecular force fields, such as radii, partial charges,
polarizability, dielectric constant, and van der Waals well depth, and thus could inherit errors from upstream physical mod-
els. As a result, these descriptors are often not as competitive as state-of-art force-field-free models based on advanced
mathematics9,28.

D3R Grand Challenge 3 (2017-2018)
Pose Prediction
Cathepsin Stage 1A           Cathepsin Stage 1B
Pose Predictions (partials)          Pose Prediction

Affinity Rankings excluding Kds > 10 µM
Cathepsin Stage 1             Cathepsin Stage 2   
Scoring (partials)                      Scoring (partials)
Free Energy Set Free Energy Set
VEGFR2 JAK2 SC2 p38-α
Scoring (partials)                      Scoring (partials)                 Scoring
JAK2 SC3 TIE2 ABL1
Scoring Scoring Scoring (partials)    
Free Energy Set Free Energy Set 2

Active / Inactive Classification
VEGFR2                               JAK2 SC2                       p38-α 
Scoring (partials)                      Scoring (partials)                  Scoring (partials)                

JAK2 SC3                            TIE2                                ABL1 
Scoring Scoring (partials)                 Scoring (partials) 
Free Energy Set Free Energy Set 1

Affinity Rankings for Cocrystalized Ligands
Cathepsin Stage 1             Cathepsin Stage 2      
Scoring (partials)                      Scoring (partials) 
Free Energy Set Free Energy Set

(Nguyen et al, JCAMD, 2018)

19/44 3/20 1/4

2/2 2/2

1/5 1/4 1/2

1/1 4/5 1/1
1/5 1/4 1/2

4/4 4/45/5

3/3 1/2 2/4 2/34/5

3/17 9/17

4/4 4/4 4/4

D3R Grand Challenge 2         (2016-2017)
Given: Farnesoid X receptor (FXR) and 102 ligands
Tasks: Dock 102 ligands to FXR, and predict their poses, 
binding free energies and energy ranking  

Stage 1                                     Stage 2     
Pose Predictions (partials)           Scoring (partials) 
Scoring (partials)                       Free Energy Set 1 (partials)
Free Energy Set 1 (partials) Free Energy Set 2 (partials) 
Free Energy Set 2 (partials)

2/2 2/21/3

BACE Stage 1
Combined Ligand and Structure (No participation)

Ligand Based Scoring(Partials) (No participation)

Structure Based Scoring(Partials)(No participation)

Free Energy Set (No participation)

Pose Predictions
BACE Stage 1A
Pose Predictions (Partials)

BACE Stage 1B
Pose Prediction (Partials)

Affinity Predictions

Cathepsin Stage 1
Combined Ligand and Structure Based Scoring

Ligand Based Scoring (No participation)

Structure Based Scoring

Free Energy Set

2/3 2/3 2 /2 1/2

BACE Stage 2
Combined Ligand and Structure 

Ligand Based Scoring(No participation)

Structure Based Scoring (Partials)

Free Energy Set
3/4 1/4

D3R Grand Challenge 4 (2018-2019)

2/4 3/3 3/3

1/7 1/7 2/5

2/5 2/3 2/4

Figure 3: Wei team’s performance in D3R Grand Challenges 2, 3 and 4 28,29,
community-wide competition series in computer-aided drug design, with components
addressing blind predictions of pose-prediction, affinity ranking, and binding free en-
ergy. The golden medal, silver medal, and bronze medal label the contest where our
prediction was ranked 1st, 2nd, and 3rd, respectively. The numbers (a/b) right beside
each medal, say gold medal, implies we have a predictions were ranked 1st and there
was a total of b submissions sharing the first position. “No Participation” is placed in the
contests that we unintendedly did not participate due to the inconsistent announcement
from the D3R organizer.

Topology analyzes space, connectivity, dimen-
sion, and transformation. Topology offers the high-
est level of abstraction and thus could provide an
efficient tool for tackling high-dimensional biological
data30–32. However, topology typically oversimpli-
fies geometric information. Persistent homology is
a new branch of algebraic topology that is able to
bridge geometry and topology31,33,34. This approach
has been applied to macromolecular analysis35–45.
Nonetheless, it neglects critical chemical/biological
information when it is directly applied to complex
biomolecular structures. Recently, we have intro-
duced element-specific persistent homology to re-
tain critical biological information during the topolog-
ical abstraction, rendering a potentially revolutionary
representation for biomolecular data46–49.

Graph theory studies the modeling of pairwise
relations between vertices or nodes50. Geomet-
ric graphs admit geometric objects as graph nodes
while algebraic graphs utilize algebraic techniques
to study the relations between nodes. Both geo-
metric graph theory and algebraic graph theory have
been widely applied to biomolecular systems8,51–53.
For example, spectral graph theory has been used
to represent protein Cα atoms as an elastic mass-
and-spring network in Gaussian network model
(GNM)54 and anisotropic network model (ANM)55.
Extremal graph theory concerns unavoidable pat-
terns and structures in graphs with given density or
distribution. It has potential applications to chromo-
some packing and Hi-C data. However, most graph
theory methods suffer from the neglecting of criti-
cal biological information and non-covalent interac-
tions, and sometimes, inappropriate distance met-
rics for biomolecular interactions. In the past few
year, we have developed weighted graphs56–62, mul-
tiscale graphs60,63, and colored graphs64,65 for mod-
eling biomolecular systems. These new graph the-
ory methods are found to be some of the most pow-
erful representations of macromolecules64–66.

How biomolecules assume complex structures
and intricate shapes and why biomolecular com-
plexes admit convoluted interfaces between differ-
ent parts can be naturally described by differential
geometry, a mathematical subject drawing on differ-
ential calculus, integral calculus, algebra, and differ-
ential equation to study problems in geometry or dif-
ferentiable manifolds. Einstein used this approach to
formulate his general theory of relativity. Curve and
curvature analysis has been applied to the shape
analysis of molecular surfaces67 and protein folding
trajectories68,69. In the past two decades, we have
developed a variety of differential geometry mod-
els for biomolecular surface analysis70–75, solvation
modeling76–85, ion-channel study80–82,86,87, protein
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binding pocket detection88, and protein-ligand binding affinity prediction89. Differential geometry-based representations
are able to offer a high-level abstraction of macromolecular structures89.

We have pursued differential geometry, algebraic topology, graph theory and other mathematical methods, such as de
Rham-Hodge theory90,91, for modeling, analysis and characterization of biomolecular systems for near two decades. Us-
ing these representations, we have studied a number of biomolecular systems and problems, including macromolecular
electrostatics, implicit solvent models, ion channels, protein flexibility, geometric analysis, surface modeling, and multiscale
analysis. Our mathematical representations have evolved and improved over time. In 2015, we proposed one of the first
integration of persistent homology and machine learning and applied this new approach to protein classification. Since
then, we have demonstrated the superiority of our mathematical representations over other existing methods in a wide
variety of other applications, including the predictions of protein thermal fluctuations59,60,63,65, toxicity92, protein-ligand bind-
ing affinity25,47,64,66,89, mutation-induced protein stability changes46,48, solvation26,27,79,93, solubility94, partition coefficient94

and virtual screening49. As shown in Fig. 3, the aforementioned mathematical approaches have enabled us to win many
contests in D3R Grand Challenges, a worldwide competition series in computer-aided drug design28.

Due to the abstract nature of mathematical representations and the fact that our results are scattered over a large number
of subjects and topics it is difficult for the researcher who has no formal training in mathematics to use these methods.
Therefore, there is a pressing need to elucidate these methods in physical terms, provide simplified representations, and
interpret their working principles. To this end, we provide a review of our mathematical representations. Our goal is to offer
a coherent description of these methods for protein-ligand binding interactions so that the reader can better understand how
to use advanced mathematics for describing macromolecules and their interaction complexes.

Like small molecular descriptors, macromolecular representations, once designed, can be applied to different tasks in
principle. However, many different types of applications require specially designed macromolecular representations. For
example, in protein B-factor prediction, one deals with the atomic property, while in predicting protein stability changes
upon mutation, solubility, etc. one considers molecular properties. Additionally, in protein-ligand binding affinity predictions,
one deals with the property of protein-ligand complexes. Therefore, different mathematical representations are required
to tackle atomic, molecular, and molecular complex properties. Another complication is due to different systems. For
example, representations for the binding affinity of protein-ligand interactions should differ from those for the binding affinity
of protein-protein interactions or protein-nucleic acid interactions. The other hindrance arises from specific tasks. For
example, protein classification, one concerns secondary structures and needs to design macromolecular representations
to capture secondary structural differences. In general, macromolecules and their interactive complexes are inherent of
multiscale, multiphysics, multi-dynamics and multifunction. Their descriptions can vary from cases to cases. We cannot
cover all possible situations in this review.

Biologically, protein-ligand binding interactions are tremendously important for living organisms. ligand-receptor agonist
binding is known to initiate a vast variety of molecular and/or cellular processes, from transmitter-mediated signal trans-
duction, hormone or growth factor regulated metabolic pathways, stimulus-initiated gene expression, enzyme production, to
cell secretion. Therefore, the understanding of protein-ligand binding interactions is a central issue in biological sciences,
including drug design and discovery. Despite much research in the past, the molecular mechanism of protein-ligand bind-
ing interactions is still elusive. A prevalent view is that protein-ligand binding is initiated through protein-ligand molecular
recognition, synergistic corporation, and conformational changes. Computationally, the prediction of protein-ligand binding
affinity is sufficiently challenging. Consequently, we focus on mathematical representations for protein-ligand binding affinity
predictions to illustrate their design and application in the present review.
II Methods
In this section, we briefly review three classes of mathematical representations, i.e., representations constructed from alge-
braic topology, graph theory, and differential geometry.
II.A Algebraic topology-based methods
II.A.1 Background
Topology dramatically simplifies geometric complexity23,30–32,95–98. The study of topology deals with the connectivity of dif-
ferent components in space and characterizes independent entities, rings, and higher dimensional faces within the space99.
For example, simplicial homology, a type of algebraic topology, concerns the identification of topological invariants from a set
of discrete node coordinates such as atomic coordinates in a protein. For a given (protein) configuration, independent com-
ponents, rings, and cavities are topological invariants and their numbers are called Betti-0, Betti-1, and Betti-2, respectively,
see Fig. 4. To study topological invariants in a discrete dataset, simplicial complexes are constructed by gluing simplices
under various settings, such as the Vietoris-Rips (VR) complex, Čech complex or alpha complex. Specifically, a 0-simplex
is a vertex, a 1-simplex an edge, a 2-simplex a triangle, and a 3-simplex a tetrahedron, as illustrated in Fig. 4. Algebraic
groups built on these simplicial complexes are used in simplicial homology to systematically compute various Betti numbers.
There is also cubical complex99 built upon volumetric data, including those from biomolecules44.

However, conventional topology or homology is truly free of metrics or coordinates, and thus retains too little geometric
information to be practically useful. Persistent homology is a relatively new branch of algebraic topology that embeds
multiscale geometric information into topological invariants to achieve a topological description of geometric details31,33.
It creates a sequence of topological spaces of a given object by varying a filtration parameter, such as the radius of a
ball or the level set of a surface function as shown in Fig. 4. As a result, persistent homology can capture topological
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Simplices

0-simplex 1-simplex 2-simplex

Point cloud

Simplicial complexes and filtration

Persistence barcode

H0

H1

Point

Betti-0=1

Betti-1=0

Betti-2=0

Annulus

Betti-0=1

Betti-1=1

Betti-2=0

Sphere

Betti-0=1

Betti-1=0

Betti-2=1

Torus

Betti-0=1

Betti-1=2

Betti-2=1

Topological spaces and their Betti numbers

Figure 4: Topological representation of point clouds via persistent homology. Top panel: The Betti numbers for some objects. Middle panel: Many datasets
are represented as a point cloud and the simplices are the building blocks for constructing a simplicial complex to topologically characterize the point cloud.
Bottom panel: the persistence barcode of the point cloud and some example simplicial complexes at different stages of the filtration.

structures continuously over a range of spatial scales. Unlike commonly used computational homology which results in truly
metric free representations, persistent homology embeds essential geometric information in topological invariants, e.g.,
topological representations or barcodes100 shown in Fig. 4, so that “birth” and “death” of isolated components, circles, rings,
voids or cavities can be monitored at all geometric scales by topological measurements. A schematic illustration of our
persistent homology-based machine learning predictions is given in Fig. 6. Key concepts are briefly discussed below. More
mathematical detail can be found in the literature31, including ours37,38.
Simplicial complex A simplicial complex is a topological space consisting of vertices (points), edges (line segments),
triangles, and their high dimensional counterparts. Based on the simplicial complex, simplicial homology can be defined and
used to analyze topological invariants. The essential building blocks of geometry induced simplicial complex are simplices.
Specifically, let v0, v1, v2, · · · , vk be k+ 1 affinely independent points; a (geometric) k-simplex σk = {v0, v1, v2, · · · , vk} is the
convex hull of these points in RN (N ≥ k), and can be expressed as

σk =

{
λ0v0 + λ1v1 + · · ·+ λkvk |

k∑
i=0

λi = 1; 0 ≤ λi ≤ 1, i = 0, 1, · · · , k

}
.

An i-dimensional face of σk is defined as the convex hull formed by the subset of i+1 vertices from σk (k ≥ i). Geometrically,
a 0, 1, 2, and 3-simplex corresponds to a vertex, an edge, a triangle, and a tetrahedron, respectively. A simplicial complex K
is a finite set of simplices such that any face of a simplex from K is also in K and the intersection of any two simplices in K
is either empty or a face of both. The underlying space |K| is a union of all the simplices of K, i.e., |K| = ∪σ∈Kσ.
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Homology The basic algebraic structure, chain groups, are defined for simplicial complexes so that homology can be
characterized. A k-chain [σk] is a formal sum

∑
i αiσ

k
i of k-simplices σki . The coefficients αi are often chosen in an

algebraic field (typically, Z2). The set of all k-chains of the simplicial complex K together with addition operation forms
an abelian group Ck(K,Z2). The homology of a topological space is represented also by a series of abelian groups,
constructed based on these spaces of chains connected by boundary operators. The boundary operator on chains ∂k :
Ck → Ck−1 are defined by linear extension from the boundary operators on simplices. The boundary of a k-simplex σk =

{v0, v1, v2, · · · , vk} is defined to be the alternating sum of its codimension-1 faces, ∂kσk =
∑k
i=0(−1)i{v0, v1, · · · , v̂i, · · · , vk},

where {v0, v1, · · · , v̂i, · · · , vk} is the (k−1)-simplex excluding vi from the vertex set. A key property of the boundary operator
is that ∂k−1∂k = ∅ and ∂0 = ∅. The k-cycle group Zk and the k-boundary group Bk are the subgroups of Ck defined as,
Zk = Ker ∂k = {c ∈ Ck | ∂kc = ∅}, Bk = Im ∂k+1 = {∂k+1c | c ∈ Ck+1}.

An element in the k-th cycle group Zk (or the k-th boundary group Bk) is called a k-cycle (or the k-boundary, resp.).
As the boundary of a boundary is always empty ∂k−1∂k = ∅, one has Bk ⊆ Zk ⊆ Ck. Topologically, a k-cycle is a union
of k dimensional loops (or closed membranes). The k-th homology group Hk is the quotient group generated by the k-
cycle group Zk and k-boundary group Bk: Hk = Zk/Bk. Two k-cycles are called homologous if they differ by a k-boundary
element. From the fundamental theorem of finitely generated abelian groups, the k-th homology group Hk can be expressed
as a direct sum, Hk = Z⊕· · ·⊕Z⊕Zp1⊕· · ·⊕Zpn = Zβk⊕Zp1⊕· · ·⊕Zpn , where βk, the rank of the free subgroup, is the k-th
Betti number. Here Zpi is torsion subgroup with torsion coefficients {pi|i = 1, 2, ..., n}, powers of prime numbers. The Betti
number can be simply calculated by βk = rank Hk = rank Zk−rank Bk. The geometric interpretations of Betti numbers in R3

are as follows: β0 represents the number of isolated components, β1 is the number of independent one-dimensional loops
(or circles), and β2 describes the number of independent two-dimensional voids (or cavities). Together, the Betti numbers
{β0, β1, β2, · · · } describes the intrinsic topological property of a system.
Persistent homology For a simplicial complex K, a filtration is defined as a nested sequence of subcomplexes, ∅ =
K0 ⊆ K1 ⊆ · · · ⊆ Km = K. Generally speaking, abstract simplicial complexes generated from a filtration give a multiscale
topological representation of the original space, from which related homology groups can be evaluated to reveal topological
features. Specifically, upon passing the previous sequence to homology, we obtain a sequence of vector spaces connected
by homomorphisms: H∗(K0) → H∗(K

1) → · · · → H∗(K
m). Following this sequence of homology groups, sometimes

new homology classes are created (i.e., without pre-image under the map H∗(K
i) → H∗(K

i+1)), and sometimes certain
homology classes are destroyed (i.e., they have trivial image under H∗(Kj) → H∗(K

j+1)). The concept of persistence
is introduced to measure the “life-time” of such homological features. The results can be summarized in the persistence
barcodes (or equivalently persistence diagrams), consisting of a set of intervals [x, y) with the beginning and ending values
representing the birth and death of homology classes. The introduction of filtration is of essential importance and directly
leads to the invention of persistent homology. Generally speaking, abstract simplicial complexes generated from a filtra-
tion give a multiscale representation of the corresponding topological space, from which related homology groups can be
evaluated to reveal topological features. Furthermore, the concept of persistence is introduced for long-lasting topological
features. However, we have shown that short-lived topological features are also important for biomolecular systems37. The
p-persistent of k-th homology group, Ki, is

Hi,p
k = Zik/(B

i+p
k

⋂
Zik). (1)

Through the study of the persistence pattern of these topological features, the so-called persistent homology is capable of
capturing the intrinsic properties of the underlying space solely from a discrete point set.
Filtration Given a set of discrete sample points, there are different ways to construct simplicial complexes. Typical con-
structions are based on the intersection patterns of the set of expanding balls centered at the sample points, such as Čech
complex, (Vietoris-)Rips complex and alpha complex101,102. The corresponding topological invariants, e.g., the Betti num-
bers, could be different depending on the choice of simplicial complexes. A common filtration for a set of atomistic data of a
macromolecule is constructed by enlarging a common atomic radius r from 0. As the value of r increases, the solid balls will
grow and new simplices can be defined through the overlaps among the set of balls. In Figure 4, we illustrate this process by
a set of points. In Fig. 5, we demonstrate the persistent homology analysis of different aspects of a protein-ligand complex
using the barcode representation.
II.A.2 Challenge
Conventional topology and homology are independent of metrics or coordinates and thus retain too little geometric infor-
mation to be practically useful in most biomolecular systems. While persistent homology incorporates more geometric
information, it typically treats all atoms in a macromolecule indifferently, which fails to recognize detailed chemical, phys-
ical, and biological information35,36. We introduced persistent homology as a quantitative tool for analyzing biomolecular
systems37–42,44,45. In particular, we introduced one of the first topology-based machine learning algorithms for protein clas-
sification in 201543. We further introduced element specific persistent homology, i.e., element-induced topology, to deal with
massive and diverse bimolecular datasets43,45–48. Moreover, we introduced multi-level persistent homology to extract non-
covalent-bond interactions49. Furthermore, physics-embedded persistent homology was proposed to incorporate physical
laws into topological invariants49. These new topological tools are potentially revolutionary for complex biomolecular data
analysis9.
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C-C

Multi-level PH of ligand Cohomology enriched barcode

𝐻0

𝐻1

𝐻2

𝐻2

𝐻1

𝐻0 𝐻0

Interaction based PH

N-O

Protein-ligand complex

Figure 5: Topological fingerprints addressing different aspects of the protein-ligand complex. (a) The example protein-ligand complex (PDB:1A94). (b) The
H0 barcodes from Rips filtration based on the Coulomb potential for carbon-carbon and nitrogen-oxygen interactions between protein and ligand. (c) The
multi-level persistent homology characterization of the ligand revealing the non-covalent intramolecular interaction network. (d) The enriched barcode via
persistent cohomology for atomic partial charges as the non-geometric information.

II.A.3 Element specific persistent homology
Many types of interactions exist in a protein-ligand complex, for example, hydrophobic effects, hydrogen bonds, and electro-
statics. Due to the mechanisms of these interactions, they happen under different geometric distances. Persistent homology,
when applied to all the atoms, however, will mostly capture the interactions among nearest neighbors and hinder the detec-
tion of long-range interactions. Additionally, it does not distinguish the difference between different element types and their
combinations and thus, neglects important chemistry and biology. Element specific persistent homology provides a simple
yet effective solution to these issues. Instead of computing persistent homology for the whole molecule once, we perform
persistent homology computations on a collection of subsets of atoms. For example, persistent homology on only carbon
atoms characterizes the hydrophobic interaction network and the hydrogen bond interactions can be described by persistent
homology on the set of nitrogen and oxygen atoms. Although different types of interactions have different characteristics,
they may also influence each other. This encourages the iteration over all combinations of atom types which may result
in large computation cost. Fortunately, as Vietoris-Rips filtration is often used to characterize the interaction networks, we
only need to generate the filtered simplicial complex once for all atoms and perform persistent homology computation on
the subcomplexes of the filtered simplicial complex.
II.A.4 Multi-level persistent homology
Vietoris-Rips complex based only on pairwise distance is a widely used realization of filtration. When directly feeding the
Euclidean distance between atoms to Rips complex construction, the interactions of interest such as electrostatic interac-
tions can be flushed away by covalent bonds which usually have shorter lengths. This motivates us to incorporate a simple
yet effective strategy to recover these important interactions by masking the original Euclidean distance matrix. Specifically,
we keep only the entries corresponding to the interaction of interest and set every other entry to infinity in the distance
matrix. For example, we set distances between atoms from the same component (protein or ligand) to infinity to focus on
the interactions between the protein and ligand. This strategy was found especially useful when dealing with ligands alone
which often have a much simpler structure than the proteins or the protein-ligand complexes. We call this approach to
small molecules multi-level persistent homology of level n where we set the distance between two atoms to infinity if the
shortest path between them through the covalent bond network is at most of the length n. This treatment has led to powerful
predictive tools in tasks only explicitly involving small molecules49,92.
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II.A.5 Physics-embedded persistent homology
All the topological methods discussed above are force-field-free approaches. In other words, they depend only on atomic
coordinates and types without the need for molecular force field information. However, despite being insufficient, non-
unique, and subject to errors, many biophysical models offer important approximations to the ground truth of biological
science and reflect some of our best understandings of the biological world. Therefore, it is crucial to develop the so-called
“physics-embedded” topology which incorporates physical models into topological invariants.

We are particularly interested in physical models that quantify the interaction strengths and directions. To characterize
electrostatics interactions, we can construct a Rips filtration based on the Coulomb’s potential,

Fele(i, j) =
1

1 + exp(−cqiqj/dij)
, (2)

where the filtration value Fele(i, j) for the edge between atom i and j depends on their partial charges qi and qj and their
geometric distance dij 49. The part due to the Coulomb’s potential in Eq. (2) can be substituted by other models, such as the
van der Waals potential. We can also use cubical persistent homology103 to characterize the charge density as volumetric
data, for example, one estimated from point charges,

µc(r) =
∑
i

qi exp(−‖r− ri‖/ηi), (3)

where ri is the position of atom i and ηi is a characteristic bond-length parameter.
In a more general setting, there often are available properties defined on the simplices in the simplicial complex rep-

resenting the protein-ligand complex. The interaction strength characterized by physical models as in Eq. 2 is indeed a
property defined on the 1-simplices (edges). There are also various properties given on the 0-simplices (nodes/atoms)
including atomic weight, atomic radii, and partial charges. Another way of incorporating these properties into the topolog-
ical representation is to attach additional attributes to the persistence barcodes obtained through geometric filtration. We
developed a method called enriched barcode through cohomology theory104. The usage of cohomology has led to efficient
algorithms105 as well as richer representations106. We are unable to elaborate on the details of cohomology here and the
interested reader is referred to the aforementioned references.

Consider a persistence barcode {[bi, di)}i ∈ I of dimension k obtained by a geometric based filtration of the molecular
system, for example, the Vietoris-Rips filtration built upon the Euclidean distance between atoms in space. Let K(x; k) be
the set of k-simplices of the simplicial complex in the corresponding filtration with the filtration parameter x. Our goal is to
annotate each persistence pair [bi, di) in the barcode with the non-geometric information provided by f : K(∞, k) → R.
We proposed to embed such non-geometric information via cohomology104. Specifically, for an x ∈ [bi, di), let ωi,x be a
real k-cocycle lifted from the representative cocycle from the persistent (co)homology computation106. A smoothed cocycle
ω̄i,x = ᾱ+ ωi,x can be obtained by solving the following problem,

ᾱ = arg min
α∈Ck−1(K(x),R)

‖L(ωi,x + dα)‖22, (4)

where Ck−1(K(x),R) is the real (k−1)-cochain on K(x), d is the coboundary operator, and L is an Laplacian operator. This
smoothed representative k-cocycle ω̄ annotates the simplices with weights which can be used to describe the non-geometric
information on this persistence pair,

f∗i (x) =
∑

σ∈K(x;k)

f(σ)|ω̄i,x(σ)|
/ ∑
σ∈K(x;k)

|ω̄i,x(σ)|. (5)

Intuitively, this obtained function f∗i : [bi, di) → R describes the average value of f near the k-dimensional hole associated
to the persistence pair [bi, di). We call this object enriched barcode {{[bi, di), f∗i }}i∈I 104. In practice, we only compute for
several filtration values in the interval or even only one such as the midpoint of each persistence pair.
II.A.6 From topological invariants to machine learning algorithms
While persistent homology already significantly reduces the complexity of the molecular system description, directly feeding
it to machine learning algorithms can cause too many model parameters compared to the moderate size of available data in
this field. Also, the outputs of persistent homology are similar to unstructured point clouds. Additional processing is needed
to integrate persistent homology characterization with machine learning models.

In the application to biomolecular structure description, prior knowledge is available on the approximate distance ranges
for different interactions. Therefore, we first divide an interval [0, D] where D is the longest range among the interactions
of interest into bins. We then count the number of events in each bin, namely, 1) birth of persistence pairs, 2) death
of persistence pairs, and 3) overlaps of bars with the bins. These approaches result in a 1-dimensional image-like feature
tensor with three channels which can be fed into a 1-dimensional convolutional neural network or any other machine learning
model that accepts structured features. Prior knowledge on the spatial range of different types of interactions can guide the
decision of bin endpoints. We have also found similar performance with uniform partitioning. Another way of vectorization is
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Figure 6: Workflow of topology based protein-ligand binding affinity prediction. In multi-level persistent homology, the distance between covalent bonds are
set to∞ to avoid their disturbance to the topological representation of non-covalent bonds.

to statistically describe the unstructured persistence barcodes, for example, the mean value and standard deviation of birth,
death, and bar lengths.

The Wasserstein distance between the resulting persistence barcodes also works well with distance-based methods,
such as k-nearest-neighbor-based regression and classification or k-means clustering. This approach was found effective
especially when the objects are moderately complex. It has been successfully applied to ligand-based tasks49.

In general applications of integrating persistent homology with machine learning, the persistence barcodes can become
sparse and available field knowledge might be insufficient to guide the vectorization. In this case, a neural network layer
with each neuron learning a kernel function can automatically vectorize the barcodes. Specifically, one neuron in such layer
is a function that takes the persistence barcode B = {[bi, di}i∈I and output a number,

N (B; Θ) =
∑
i∈I

φ(|bi − µb|, |di − µd|; Θ), (6)

where φ is a distance-based kernel function with learnable parameters Θ and the center (µb, µd). This layer can be the first
layer in a neural network for supervised learning. This layer can also be used as the first layer of an autoencoder that tries
to reconstruct the persistence barcodes controlled by the Wasserstein metric. On the other hand, kernel density estimators
with a fixed number of kernels can also be used as a vectorization tool. Specifically, a kernel density estimator with nk
kernels each of which has np parameters to optimize can turn a persistence barcode into a feature vector of size nk ∗ np.
Treatment such as truncated kernels might be needed to take care of the nature of persistence barcodes that the points are
only in the upper left part of the first quadrant.
II.B Differential geometry-based methods
II.B.1 Background
Differential geometry has a long history of development in mathematics and has been consistently studied since the 18th
century. Nowadays, many differential geometry branches have been created from Riemannian geometry, differential topol-
ogy, to Lie groups. As a result, differential geometry has been used in various interdisciplinary fields including physics,
chemistry, economics, and computer vision. In 2005, we unfolded a curvature-based model to generate biomolecular sur-
faces70. In the following years, we successfully formulated Laplace-Beltrami operator based minimal molecular surface
(MMS) for macromolecular systems71,72,107. This approach is applied to multiscale solvation modeling in which the molec-
ular surfaces are described via the differential geometry of surfaces. Specifically, the solute molecule is still described in
microscopic detail while the solvent is treated as a macroscopic continuum to reduce a large number of degrees of free-
dom76–79,83,84. Differential geometry-based multiscale models incorporates molecular dynamics, elasticity and fluid flow to
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further couple the discrete macromolecular and continuum solvent domains80–82,86,87. In the past few years, we have im-
proved the computational efficiency of the geometric modeling by incorporating the differential geometry based multiscale
paradigms in Lagrangian73,74 and Eulerian representations75,108.

Differential geometry-based multiscale models have been used for solvation free energies prediction79,93 and ion channel
transport analysis80–82,87,109 to demonstrate their model efficiency in comparison with atomistic scale models.

Another type of applications of differential geometry in biomolecular systems is to utilize curvatures to characterize the
macromolecular surface landscape and further infer chemical and biological properties. For example, the minimum and
maximum curvatures are combined with the surface electrostatic potential to detect both positively charged and negatively
charged protein binding sites75,108.

The other type of applications of differential geometry in molecular science is to carry out curvature-based solvation free
energy prediction85. In this approach, the total Gaussian, mean, minimum, and maximum curvatures of a molecule are
computed for a molecule and correlated with its solvation free energy.
II.B.2 Challenge
Differential geometry based multiscale models bridge the discrete and continuum descriptions and enable physical inter-
pretation of molecular mechanisms. Curvature-based modeling of biomolecular binding sites and solvation free energy
reveals macromolecular interactive landscapes. These methods are designed as physical models to enhance our under-
standing of biomolecular systems. However, they have limited capability in predicting massive and diverse datasets due
to their dependence on physical models such as the Poisson-Boltzmann equation or the Poisson-Nernst-Planck equation
or their excessive reduction of geometric shape information, i.e., a molecular-level average of local curvatures. Indeed,
physical models depend on force field parameters which are subject to errors. Meanwhile, molecular-level descriptions are
too coarse-gained for large datasets. In contrast, atomistic descriptions not only involve too much detail but also are not
scalable for molecules with different sizes in a large dataset. As a result, machine learning algorithms cannot be effectively
implemented.

To overcome these obstacles, we have designed new differential geometry-based models to extract element-level geo-
metric information which automatically leads to scalable machine learning representations. Additionally, the effort is given to
encode intermolecular and intramolecular non-covalent interactions. Therefore, these novel models can be handily applied
for a diverse molecular and biomolecular datasets, including protein-ligand binding analysis and prediction.
II.B.3 Multiscale discrete-to-continuum mapping
Biomolecular datasets provide atomic coordinate and type information. To facilitate differential geometry modeling, this
discrete representation is transformed into a continuum one by the so-called discrete-to-continuum mapping. In a given
biomolecule or molecule with N atoms, denote rj ∈ R3 and qj the position of jth atom and its partial charge, respectively.
For any point r in three-dimensional space, a discrete-to-continuum mapping56,59,62 defines the molecular number/charge
density as the following

ρ(r, {ηk}, {wk}) =
N∑
j=1

wjΦ (‖r− rj‖; ηj) , (7)

Especially, the density ρ indicates the molecular number density when wj = 1, and represents the molecular charge density
when wj = qj . In addition, ηj describes characteristic distances, ‖ · ‖ is the second norm, and Φ with C2 property satisfies
the following admissibility conditions

Φ (‖r− rj‖; ηj‖) = 1, as ‖r− rj‖ → 0, (8)
Φ (‖r− rj‖; ηj‖) = 0, as ‖r− rj‖ → ∞. (9)

In principle, the density function can accept all radial basis functions (RBFs) as well as C2 delta sequence of the positive
type examined in this work110. In practice, the generalized exponential functions

Φ (‖ri − rj‖; ηkk′‖) = e−(‖ri−rj‖/ηkk′ )
κ

, κ > 0; (10)

and generalized Lorentz functions

Φ (‖ri − rj‖; ηkk′) =
1

1 + (‖ri − rj‖/ηkk′)ν
, ν > 0. (11)

seem to be the most optimal choice for the biomolecular datasets56,59. Here power parameters κ and ν vary for different
datasets and are systemically selected.

To generate the multiscale representation for ρ(r, {ηj}, {wj}), one can vary different values for scale parameters {ηj}.
The published work42 has shown that the molecular number density Eq. (7) is an efficient representation for molecular
surfaces. Unfortunately, such molecular-level description serves a little role in the predictive models for massive data.
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II.B.4 Element interactive densities
To handle the diversity molecular or biomolecular datasets, we have upgraded differential geometry representations with an
emphasis on non-covalent intramolecular interactions in a molecule and intermolecular interactions in complexes, such as
protein-ligand, protein-nucleic acid, and protein-protein complexes. Also, our differential geometry features can characterize
the geometric information at element-specific interactions and are scalable despite a wide range of molecular sizes.

To accurately encode the physical and biological information in the differential geometry representations, we describe
the molecular interactions at the element-level in a systematical manner. For instance, in the protein-ligand datasets, the
intermolecular interactions are decomposed into element-level descriptions based on the commonly occurring element type
in proteins and ligands. Typically, protein structures usually consist of H,C,N,O,S, and ligand structures often include
H,C,N,O,S,P,F,Cl,Br, I. That results in 50 element-level intermolecular descriptions. In practice, hydrogen atoms are
missing in most Protein Data Bank (PDB) datasets for proteins. Therefore, we do not include it in our models for macro-
molecules or for both proteins and ligands. Finally, we end up with 40 or 36 element-specific groups to express the inter-
molecular interactions in the protein-ligand complexes. This element-specific approach can be straightforwardly carried out
in other interactive systems in chemistry, biology and material science. For example, in protein-protein interactions, one can
similarly arrive at a total of 16 element-level descriptions for practical use.

In a given molecule, based on the most frequently appearing element types included in the set C = {H,C,N,O,S,P,F,Cl, · · ·},
we collect N atoms. For each jth atom in that collection, we label it as {(rj , αj , qj). Here αj is the element type of jth atom,
and αj = Ck indicates the kth element type in set C.

Before defining the element interactive density, we have to designate the non-covalent interactions between two element
types Ck and Ck′ . Such interactions can be represented by correlation kernel Φ

{Φ(||ri − rj ||; ηkk′)|αi = Ck, αj = Ck′ ; i, j = 1, 2, . . . , N ; ||ri − rj || > ri + rj + σ}, (12)

where ri and rj are the atomic radii of ith and jth atoms, respectively and σ is the mean value of the standard deviations of
all ri and rj in the dataset. The inequality constraint ||ri − rj || > ri + rj + σ serves the purpose of excluding the covalent
forces.

Given a point r in R3, we define the element interactive density induced by the pairwise interaction between two chemical
element types Ck and Ck′

ρkk′(r, ηkk′) =
∑
j

wjΦ(||r− rj ||; ηkk′), r ∈ Dk, αj = Ck′ ; ||ri − rj || > ri + rj + σ, ∀αi ∈ Ck; k 6= k′, (13)

where Dk is so-called atomic-radius-parametrized van der Waals domain given by the union of all the balls with centers are
the Ck atomic positions with the corresponding atomic radius rk. In other words, if B(ri, ri) is denoted as a ball with a center
ri and a radius ri, Dk can be expressed as

Dk := ∪ri,αi=CkB(ri, rk). (14)

Note that element interactive density represented in (13) is only good for k 6= k′. When density is calculated based on the
interactions between the same element types, i.e. k = k′, each Ck atom will belong to the atomic-radius-parametrized van
der Waals domain and element interactive density representation. To this end, we define such density formulation as the
following

ρkk(r, ηkk) =
∑
j

wjΦ(||r− rj ||; ηkk), r ∈ Di
k, αi = Ck;αj = Ck; ||ri − rj || > 2rj + σ, (15)

in which, domain Di
k is just a single ball B(ri, ri), and the density function ρkk is evaluated at all Di

k.
The element interactive density ρkk is the linear combination of correlation kernel Φ of pairs of element types. Conse-

quently, the smoothness of ρkk is the same as that of Φ. Moreover, by changing a level constant c, one can attain a family of
element interactive manifolds as

ρkk′(r, ηkk′) = cρmax, 0 ≤ c ≤ 1 and ρmax = max{ρkk′(r, ηkk′)}. (16)

Figure 7 illustrates a few element interactive manifolds.
II.B.5 Element interactive curvatures
Differential geometry of differentiable manifolds We here describe the geometric information calculation on a differential
manifold. Consider U being an open subset of Rn with its closure is compact72,86,111, we are interested in a C2 immersion
f : U → Rn+1. Given a vector u = (u1, u2, · · · , un) ∈ U , we express the Jacobian matrix with respect to u as

Df = (X1, X2, · · · , Xn), Xi =
∂f

∂ui
, i = 1, 2 · · ·n. (17)

The first fundamental form is written in the metric tensor with its coefficients gij = 〈Xi, Xj〉, where 〈, 〉 is the Euclidean inner
product in Rn, i, j = 1, 2, · · · , n.
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We define the unit normal vector via the Gauss map

N : U −→Rn+1 (18)
(u1, u2, · · · , un) 7−→ X1×X2 · · · ×Xn/‖X1 ×X2 · · · ×Xn‖, (19)

where “×′′ denotes the cross product. If we denote ⊥uf the normal space of f at point X = f(u), then N(u) ∈ ⊥uf . In
addition, one can form a second fundamental form via the means of the normal vector N and tangent vector Xi:

II(Xi, Xj) = (hij)i,j=1,2,···n =

(〈
−∂N
∂ui

, Xj

〉)
ij

. (20)

Then, the Gaussian curvature K and the mean curvature H are determined as the following

K =
Det(hij)

Det(gij)
, H =

1

n
hijg

ji. (21)

The Einstein summation convention is used in the curvature expressions and (gij) = (gij)
−1.

Element interactive curvatures With an element interactive manifolds defined via element interactive density ρ(r) describ-
ing in (16) and the expressions in (21), one can further formulate the representations for the Gaussian curvature (K) and
the mean curvature (H) as the following75,112

K =
1

g2
[2ρxρyρxzρyz + 2ρxρzρxyρyz + 2ρyρzρxyρxz

−2ρxρzρxzρyy − 2ρyρzρxxρyz − 2ρxρyρxyρzz

+ρ2
zρxxρyy + ρ2

xρyyρzz + ρ2
yρxxρzz

−ρ2
xρ

2
yz − ρ2

yρ
2
xz − ρ2

zρ
2
xy

]
, (22)

and

H =
1

2g
3
2

[
2ρxρyρxy + 2ρxρzρxz + 2ρyρzρyz − (ρ2

y + ρ2
z)ρxx − (ρ2

x + ρ2
z)ρyy − (ρ2

x + ρ2
y)ρzz

]
, (23)

where g = ρ2
x + ρ2

y + ρ2
z.

In addition, the minimum curvature (κmin) and maximum curvatures (κmax) can be evaluated based on the Gaussian and
mean curvature values

κmin = H −
√
H2 −K, κmax = H +

√
H2 −K. (24)

It is noted that in the curvature representations in (22), (23), and (24), the derivatives of the density function can be
analytically calculated. For the convenience, we denote the curvatures associated with the density function ρkk′(r, ηkk′)
as Kkk′(r, ηkk′), Hkk′(r, ηkk′), κkk′,min(r, ηkk′), κkk′,max(r, ηkk′). In practical use, the element interactive curves are only
evaluated at the atomic positions in a given molecule or biomolecule structure. Notice that, due to the variant sizes in
different biomolecular structures, numbers of selected atoms for the curvature evaluations vary. To achieve element-level
geometry information, we propose the element interactive mean curvature as the following

HEI
kk′(ηkk′) =

∑
i

Hkk′(ri, ηkk′), ri ∈ Dk; k 6= k′ (25)

and
HEI
kk(ηkk) =

∑
i

Hkk(ri, ηkk), ri ∈ Di
k, D

i
k ⊂ Dk. (26)

The other element-level interactive curvatures for Gaussian curvature (KEI
kk′(ηkk′)), minimum curvature (κEI

kk′,min(ηkk′)),
and maximum curvature (κEI

kk′,max(ηkk′)) are defined in a similar manner.
II.B.6 Differential geometry based geometric learning (DG-GL)
Geometric learning In our differential geometry based geometric learning (DG-GL) model, we incorporate the geometric
representations such as element-level interactive curvatures with advanced machine learning algorithms to form powerful
predictive models. Given a training set {Xi}i∈I , in which Xi is the input data for the ith molecule and I is the set of
the molecular indices in the training data. We denote F(Xi; ζ) is a differential geometric functions encoding the the input
structures Xi via the given hyperparameter set ζ into aforementioned DG descriptions. Our DG-GL model learns the training
set {Xi}i∈I by minimizing the following loss functions

min
ζ,θ

∑
i∈I

L(yi,F(Xi; ζ);θ), (27)
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Figure 7: Illustration of the DG-GL strategy for complex with PDBID: 5QCT (first column). The second column presents the different element specific
groups including OC, CN, and CH, respectively from top to bottom. The third column depicts the element interactive manifolds for the corresponding
element specific groups. A predictive model in the last column integrates the differential geometry features (fourth column) with the machine learning
algorithm.

in which L is the loss function, yi is the target label of molecule Xi, and θ is the set of parameters of a selected machine
learning algorithm. It is worth noting that the DG representation encoded in F does not depend on the type of learning task.
Therefore, our DG-GL models can adapt any regressors or classifiers models such as linear regression, support vector
machine, random forest, gradient boosting trees, artificial neural networks, and convolutional neural networks. Besides the
machine learning hyperparameters, the kernel parameters in the encoding DG function F need to be optimized for a specific
learning algorithm and a particular training set {Xi}.

In the validation, we only utilize the gradient boosting trees (GBTs) even though the other advanced machine learning
models including convolutional neural networks can be incorporated with minimal effort. The general framework of DG-GL
model is depicted in Figure (7). The GBTs in the DG-GL score are employed via the gradient boosting regression module in
scikit-learn v0.19.1 package with the following hyperparameters: n estimators=10000, max depth=7, min samples split=3,
learning rate=0.01, loss=ls, subsample=0.3, max features=sqrt for all experiments.
Model parametrization In our differential geometry-based approach, we calculate the element interactive curvatures (EICs)
of type C based on kernel α with parameters (δ, τ ). We denote such model EICCα,δ,τ . Here, C ∈ {K,H, kmin, kmax} and
α = E and α = L indicate generalized exponential and generalized Lorentz kernels, respectively. In addition, δ refers to the
kernel order and is denoted as κ if α = E or ν if α = L. Another kernel parameter is τ defined by the following relationship

ηkk′ = τ(r̄k + r̄k′) (28)

where r̄k and r̄k′ stand for the van der Waals radii of element type k and element type k′, respectively. These kernel
parameters are selected via a 5-fold cross-validation on a specific training set with the range of τ and δ varying from 0.5 to
6 with an increment of 0.5. Moreover, we are interested in high values of power order, δ ∈ {10, 15, 20} , which accounts for
the ideal low-pass filter (ILF)63. These parameter ranges are also listed in Table 1.

Table 1: The ranges of DG-GL hyperparameters for 5-fold cross-validations

Parameter Domain
τ {0.5, 1.0, . . . , 6}
δ {0.5, 1.0, . . . , 6} ∪ {10, 15, 20}
C {K,H, kmin, kmax}

To enable the multiscale descriptions in differential geometry representation, we employ multiple kernels to evaluate the
EICs. For instance, if two kernels with the following parameters (α1, δ1, τ1) and (α2, δ2, τ2) are utilized, our EIC model can
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be written as EICC1C2

α1,δ1,τ1;α2,δ2,τ2
.

In a protein-ligand complex, we are interested in 4 commonly occurred protein atom types {C,N,O,S}, and 10 commonly
occurred ligand atom types {H,C,N,O,F,P,S,Cl,Br, I}. That results in a total of 40 different combinations. With a set
of calculated atomic pairwise curvatures, we construct 10 statistical features, namely sum, the sum of absolute values,
minimum, the minimum of absolute values, maximum, the maximum of absolute values, mean, the mean of absolute values,
standard deviation, and the standard deviation of absolute values. In total, we attain 400 features for the current differential
geometry-based models.
II.C Graph theory-based methods
II.C.1 Background
Graph theory is one of the most popular subjects in discrete mathematics. In graph theory, the information inputs are repre-
sented in the graph structures formed by vertices that are connected by edges and/or high-dimensional simplexes. Different
ways to interpret the graph result in different graph theories such as geometric graph theory, algebraic graph theory, and
topological graph theory. In geometric graph study, the graph information is extracted based on the geometric objects drawn
in the Euclidean plane113. If there are algebraic methods involving in graph structure processing, that approach belongs to
algebraic graph theory. There are two common approaches to this branch. The first one is to use linear algebra to study
the spectrum of various types of matrices representing graph including adjacency matrix and Laplacian matrix114. Another
approach relies on the group theory, especially automorphism groups115 and geometric group theory116, for the study of
graphs. Unlike the aforementioned graph theories, the algebraic graph theory considers graphs as topological spaces by
associating different types of simplicial complexes such as abstract simplicial complex117 and Whitney complex118.

Due to the natural representations for structured information, graph theory enacts enormous applications in various fields
including computer science, linguistics, physics, chemistry, biology, and social sciences. Especially in the chemical and
biological study, graph theory is commonly used since molecular structures always feature graph information in which
vertices illustrate atoms and graph edges represent bonds. Indeed, graph-based approaches have been utilized to describe
chemical datasets119–124 as well as biomolecular datasets54,125–130. In addition, one can make use of graph representations
to uncover the connectivity of different components of a molecule such as centrality131–133, contact map54,134, and topological
index123,135. Moreover, graph extracting representations can be employed in chemical analysis52,120,121 and biomolecular
modeling136. Particularly, some research groups have invested their efforts to carry out the graph-based representation
to model protein flexibility and long-time dynamics such as normal-mode analysis (NMA)137–140 and elastic network model
(ENM)54,55,141–144.
II.C.2 Challenge
Due to the richness in geometric interpretations, graph theory-based approaches have shown their efficiency in the qual-
itative and descriptive models. However, oversimplified representations and the lack of physical and biological detailed
information may render graph theory-based approaches less attractive in the quantitative analysis. For instance, in Gaus-
sian network model (GNM)54,142,145, the use of the spectrum of the Laplacian matrix is quite efficient to decompose the
flexible and rigid regions and domains of proteins but its fluctuation predictions on protein Cα atoms were not reliable with
the Pearson correlation coefficient as low as 0.6 for three datasets146. To predict the mutations in proteins, the graph-based
mCSM method was not competent as physical and knowledge-based or topological fingerprint-based models46,147.

The poor performances of the aforementioned graph theory-based models on quantitative tasks are due to the lack of
three main components in our point of view. Firstly, these graph theory-based structures do not provide the information at
the chemical element level. Consequently, these models treat different element types equally which results in inadequate
coded information from the original structures. Secondly, non-covalent interactions between two atoms are overlooked in
many graph edges which cause the unphysical representations for most molecular and biomolecular data. Finally, the edges
in the many graph-based models express the connectivity between a pair of atoms based on the number of covalent bonds
between these two atoms, which inaccurately describe many interactions that depend on the Euclidean distance.

To address the aforementioned issues in graph based-modeling, we have developed the weighted graphs, termed as the
flexibility-rigidity index (FRI), to predict the B-factor of protein atoms. In our FRI model, the graph edges were formulated by
the radial basis functions (RBFs)58–60,62 which properly describe the interaction strengths between two atoms in the equilib-
rium structures. The original FRI was upgraded to multiscale FRI60,63 for capturing the multiscale interactions in biological
structures. Specifically, the graph in the multiscale FRI model is allowed to have multiple edges formed by RBFs with careful
selections of scaled and power parameters. Although our FRI models have outperformed the GNM in B-factor predictions,
they provide only coarse-grained molecular-level descriptions. To overcome this limitation, we have proposed graph coloring
based methods with vertices colored differently based on the corresponding element types. Consequently, we ended up with
various element-specific subgraphs taking care of different types of physical interactions, such as hydrophilic, hydrophobic,
hydrogen bonds64,65. As a result, the predicted accuracy for protein B-factors by our multiscale weighted colored graphs is
over 40% higher than GNM models65. The success of multiscale weighted colored graph models on B-factor prediction en-
couraged us to design graph-based scoring functions to predict protein-ligand binding affinities. The protein-ligand binding
mechanism is more complex than the protein B-factor. Therefore, it requires sophisticated graph-based models to accu-
rately encode the physical and biological properties to unveil its molecular mechanism. The development of such graphs is
described in the following sections.
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II.C.3 Multiscale weighted colored geometric subgraphs
In this section, we discuss general graph representations for a molecule or biomolecule. Graph-based representations
are systematical, scalable, and straightforward applied not only to the predictions of protein-ligand binding affinity but also
for various bioactivities such as toxicity, solvation, solubility, partition coefficient, mutation-induced protein folding stability
change, and protein-nucleic acid interactions. In a given molecule or biomolecule in a dataset, we denote a graph G to
represent a subset of its N atoms. The set of its vertices V consists of coordinates and chemical element types of atoms,
defined as

V = {(rj , αj)|rj ∈ IR3;αj ∈ C; j = 1, 2, . . . , N}, (29)

where rj is the 3D position of jth atom, and αj is its element type which belongs to a predefined set of commonly oc-
curred chemical element types as introduced in Section II.B.4. To accomplish a meaningful encoded physical and biological
information in the graph, graph edges have to express the non-covalent interactions. Moreover, to accommodate for the
interactions between k element atoms and k′ element type atoms, we consider a set of graph edges Ekk′ represented by
RBFs as the following

Ekk′ = {Φ(||ri − rj ||; ηkk′)|αi = Ck, αj = Ck′ ; i, j = 1, 2, . . . , N ; ||ri − rj || > ri + rj + σ}, (30)

where ||ri−rj || accounts for the Euclidean distance between the ith and jth atoms, ri and rj are the atomic radii of ith and jth

atoms, respectively. Moreover, σ is the mean value of the standard deviations of all atomic radii belonging to element types
Ck and Ck′ in the dataset. The exclusion of the covalent interactions are portrayed in this inequality ||ri − rj || > ri + rj + σ.
Φ is a predefined RBF representing a graph weight and has the following properties56,59

Φ(||ri − rj ||; ηkk′) = 1, as ||ri − rj || → 0 and (31)
Φ(||ri − rj ||; ηkk′) = 0 as ||ri − rj || → ∞, αi = Ck, αj = Ck′ , (32)

where ηkk′ is a characteristic distance between the atoms. We now achieve the weight colored subgraphs (WCS) G(V, Ekk′)
or denote Gkk′ for short.

In principle, our WCS G(V, Ekk′) can adopt any RBFs. In practice, the generalized exponential functions (10) and gener-
alized Lorentz functions (11) seem to be the most optimal choice for the biomolecular datasets56,59. Here power parameters
κ and ν vary for different datasets and are systemically selected. To illustrate WCS of a given molecule, we use the uracil
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Figure 8: Illustration of weighted colored subgraph GNO (Left), its Laplacian matrix (Middle), and adjacency matrix (Right) for uracil molecule (C4H4N2O2).
Graph vertices, namely oxygen (i.e., atoms 1 and 4) and nitrogen (i.e., atoms 2 and 3), are labeled in red and blue colors, respectively. Here, graph edges
(i.e., Φij ) are labeled by green-dashed lines which are not covalent bonds. Here, Φij are distance-weighted edges. Note that there are 9 other nontrivial
subgraphs for this molecule (i.e., GCC,GCN,GCO,GCH,GNN,GNH,GOO,GOH,GHH).

compound (C4H4N2O2) as an example. Figure 8 depicts WCS for nitrogen and oxygen atoms (GNO). To elicit the geomet-
rical invariants of WCS formed by element types Ck and Ck′ , we propose a collective representation at the element level as
follows

RIG(ηkk′) =
∑
i

µGi (ηkk′) =
∑
i

∑
j

Φ(||ri − rj ||; ηkk′), αi = Ck, αj = Ck′ ; ||ri − rj || > ri + rj + σ, (33)

where µGi (ηkk′) which is a geometric subgraph centrality for the ith atom has been developed in our previous work for protein
B-factors predictions65. The summation over µGi (ηkk′) in Eq. (33) gives rise to WCS rigidity between element types Ck and
Ck′ . In fact, µGi (ηkk′) is the generalized form of our successful rigidity index model for protein-ligand binding affinity prediction
in the previous work64. it is noticed that the WCS for the protein-ligand system is bipartite since each of its edges presents
the interaction between one atom in the protein and another protein in the ligand. With that design, a variety of physical
and biological properties such as electrostatics, van der Waals interactions, hydrogen bonds, polarization, hydrophilicity,
hydrophobicity can be successfully encoded in our WCS representations.

To exhibit the intermolecular and intramolecular properties, one can vary the characteristic distance ηkk′ to set up mul-
tiscale weighted colored subgraphs (MWCS). To methodically attain multiscale graph-based molecular and biomolecular
representations in a collective and scalable manner, one can aptly select groups of pairwise element interactions k and k′,
the choice of subgraph weights Φ and their parameters.
II.C.4 Multiscale weighted colored algebraic subgraphs
In this section, we present another approach to extract the meaningful representation for biomolecules from their WCS. This
scheme depends on the algebraic graph or spectral graph formulations. Since geometric and algebraic approaches handle
the graph information differently. Therefore, these two kinds of subgraphs will be expected to encode the physical and
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biological information in varied aspects. In the algebraic graph theory, matrices are utilized to represent a given subgraph.
Two of the most common ones are the Laplacian matrix and the adjacency matrix.
Multiscale weighted colored Laplacian matrix Considering a weighted colored subgraph G(V, Ekk′) defined at Eqs. (29)
and (30), we construct a following weighted colored Laplacian matrix L(ηkk′) = (Lij(ηkk′)) describing the interaction be-
tween element types Ck and Ck′

Lij(ηkk′) =

 −Φ(||ri − rj ||; ηkk′)
if i 6= j, αi = Ck, αj = Ck′
and ||ri − rj || > ri + rj + σ;

−
∑
j Lij if i = j.

(34)

For the illustration, we explicitly formulate the Laplacian matrix of the WCS GNO for the uracil molecule (C4H4N2O2) in Figure
8. It is obvious to learn that all eigenvalues of our element-level WCS Laplacian matrix are nonnegative due to its symmetric,
diagonally dominant, and positive-semidefinite properties. Moreover, every row sum and column sum of L(ηkk′) is zero. In
consequence, its first eigenvalue is 0. The second smallest eigenvalue of L(ηkk′) is so-called algebraic connectivity (also
known as Fiedler value) which approximates the sparest cut of a graph. With a given WCS G(V, Ekk′) one can easily see its
geometrical invariant proposed at Eq. (33) is fully recovered in the trace of its Laplacian matrix L(ηkk′)

RIG(ηkk′) = TrL(ηkk′), (35)

where Tr is the trace.
In the algebraic graph, we are interested in using the eigenvalue and eigenvector information to extract the graph in-

variants. To this end, we denote λLj , j = 1, 2, · · · and uLj , j = 1, 2, · · · the eigenvalues and eigenvectors of L(ηkk′). The
element-level molecular representations of the Laplacian matrix L(ηkk′) is proposed as the following

RIL(ηkk′) =
∑
i

µLi (ηkk′), (36)

where µLi (ηkk′) is so-called an atomic representation for the ith atom (ri, αi = Ck)

µLi (ηkk′) =
∑
l

(λLl )−1
[
uLl (uLl )T

]
ii
, (37)

where T is the transpose. It is noted that µLi (ηkk′) is the atomic representation of the generalized GNM54,63. Therefore, it
can be directly utilized to capture atomic properties such as protein B-factors. Moreover, the element-level invariant of the
Laplacian matrix can be enriched via the statistical information of µLi (ηkk′) values, namely sum, mean, maximum, minimum
and standard deviation.

Another way to extract the invariant representation from the WCS Laplacian matrix is the direct use of nontrivial eigen-
values {λLj }j=2,3,···. Also, the statistical analysis of those eigenvalues can be incorporated to form a feature vector to
characterize element-level information of the molecule and biomolecule.
Multiscale weighted colored adjacency matrix By setting all diagonal entities of the Laplacian matrix to be 0, we end
up with an adjacency matrix with simpler representation but still preserve the essential properties of the original molecular
structures. With a given WCS Gkk′ , the adjacency matrix A(ηkk′) = (Aij(ηkk′)) is given as

Aij(ηkk′) =

 Φ(||ri − rj ||; ηkk′)
if i 6= j, αi = Ck, αj = Ck′
and ||ri − rj || > ri + rj + σ;

0 if i = j.

(38)

Since the adjacency matrix defined in (38) is undirected, A(ηkk′) is symmetric. Thus, all the eigenvalues of it are real.
Moreover, due to being a bipartite graph, for each eigenvalue λ, its opposite −λ is also an eigenvalue of A(ηkk′). In
consequence, only positive eigenvalues are used in the molecular representation. For the sake of illustration, Figure 8
illustrates the adjacency matrices for the weighted colored subgraph GNO in the uracil molecule (C4H4N2O2). It can be seen
from the Perron-Frobenius theorem that the spectral radius of A(ηkk′), denoted as ρ(A), is bounded by the range of the
diagonal elements of the corresponding Laplacian matrix

min
i

∑
j

Aij ≤ ρ(A) ≤ max
i

∑
j

Aij . (39)

It is easy to see that all elements in the Laplacian matrix belong to [0,1] and depends on the scale parameter ηkk′ . At a
characteristic scale range for capturing hydrogen bonds or van der Waals interactions, the Laplacian matrix has many zeros.
However, the scale parameter ηkk′ can be very huge in electrostatic and hydrophobic interactions47, which results in many
elements in the Laplacian matrix nearly 1. In that particular situation, the spectral radius of the adjacency matrix A(ηkk′) is
bounded by n− 1, where n is the number of atoms in WCS Gkk′ .
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Similarly to the approach of forming feature representation for the Laplacian matrix, all positive eigenvalues {λAj }, and
their statistical information such as sum, mean, maximum, minimum, and standard deviation are included in element-level
molecular representations. If we define {uAj } as the eigenvectors corresponding to eigenvalues {λAj }, then the atomic
representations can be attained as

µAi (ηkk′) =
∑
j

[
QΛQ−1

]
ij
, (40)

where Q = [uA1 u
A
2 · · ·uAn ] is composed by n linearly independent eigenvectors of A(ηkk′); thus Q is invertible. Moreover, Λ

is a diagonal matrix with each diagonal element Λii being the eigenvalue {λAi }. Unfortunately, formulation given in Eq. (40)
is very computationally expensive due the involvement of the inverse-matrix calculation.

In general, the methods regarding the eigenvalues and eigenvectors analysis often pose a great challenge for sustaining
an efficient computation strategy. Fortunately, the construction of WCS enables us to design a less-expensive computational
model due to two facts. Firstly, the protein-ligand binding site only involves a small region of the whole complex structure.
Second, WCS only admits the specific element types in the matrix construction, which further reduces the size of matrices
for eigenvalue and eigenvector calculations. As a result, these facts offer an efficient spectral graph-based model for protein-
ligand affinity analysis.
II.C.5 Graph-based learning models
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Figure 9: A paradigm of the graph-based approach. The first column is the complex input with PDBID 5QCT. The second column illustrates the element-
specific groups in the binding site. The third column presents the eigenvalues of the corresponding weighted colored graph Laplacian and adjacency
matrices in the second column. The statistics of these eigenvalues are calculated in the fourth column. The final column forms a gradient boosting trees
model using these eigenvalues.

Graph learning The eigenvalue related information obtained from the algebraic graph approach is incorporated with ma-
chine learning algorithms to form predicting models for molecular and biomolecular properties. Depends on the nature of
each learning task, regressor or classifier algorithms will be utilized. To illustrate the learning process, we denote Xi the ith
structure in the training data and denote G(Xi; ζ) a function representing the graph information of sample Xi with respect to
kernel parameters ζ. Generally, during the training process, machine learning models will minimize the following loss

min
ζ,θ

∑
i∈I
L(yi,G(Xi; ζ);θ), (41)

where L is the loss function, yi indicates the training labels. In addition, θ is the machine learning parameters. In principle,
the set of parameters θ will be optimized for a specific training set and the choice of a machine learning algorithm. With the
current graph presentations, one can make use of advanced machine learning models such as random forest (RF), gradient
boosting trees (GBTs), deep learning neural networks to minimize the loss function L. To illustrate the performance of our
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graph-based model, we employ GBTs for a balance between accuracy and complexity. The flow chart of the proposed
model is illustrated in Figure 9.

All the experiments in this graph learning task are carried out by the Gradient Boosting Regressor module implemented
in the scikit-learn v0.19.1. The detailed parameters are given as n estimators=10000, max depth=7, min samples split=3,
learning rate=0.01, loss=ls, subsample=0.3, and max features=sqrt. That parameter selection is nearly optimal and is the
same for all calculations.
Model parametrization Avoiding the wording, this notation AGLMΩ,δ,τ represents the AGL-Score features encoded based on
the interactive matrix typeM along with kernel type Ω and kernel parameters δ and τ . Furthermore,M = Adj,M = Lap,
and M = Inv represent adjacent matrix, Laplacian matrix, and the pseudo inverse of Laplacian matrix, respectively. In
the kernel type notation, Ω = E and Ω = L, respectively, indicate generalized exponential kernel and generalized Lorentz
kernels. Since the kernel order notation depends on the specific kernel type, we denote δ = κ if Ω = E, and δ = ν if Ω = L.
Lastly, the scale factor τ i implicitly imply this expression ηkk′ = τ(r̄k + r̄k′), in which r̄k and r̄k′ are the van der Waals radii
of element type k and element type k′, respectively.

In the multiscale representation for the AGL-Score, we naturally extend the single-scale notation. Only at most two
different kernels are carrying out in the AGL-Score model, and the resulting model is denoted as AGLM1M2

Ω1,δ1,τ1;Ω2,δ2,τ2
.

Table 2: The ranges of AGL hyperparameters for 5-fold cross-validations

Parameter Domain
τ {0.5, 1.0, . . . , 6}
δ {0.5, 1.0, . . . , 6} ∪ {10, 15, 20}
M {Adj,Lap, Inv}

To achieve the optimal parameter selection in the AGL-Score’s kernels, we perform 5-fold cross-validation (CV) on the
training data of the benchmark. Ideally, one needs to revise the machine learning model for different problem settings.
To demonstrate the robustness of our graph-based features, we only train the AGL-Score’s parameters on CASF-2007
benchmark with a training data size of 1105 complexes. Similar to our previous work, we select the range of the graph-
based model’s hyperparameters as demonstrated in Table 2. The ranges of AGL’s kernel parameters are selected similarity
to ones in DG-GL models discussed in Section II.B.6. For the CASF benchmark datasets, we take into account 4 atom
types in protein, namely {C,N,O,S}, and 10 atom types in the ligand, namely {H,C,N,O,F,P,S,Cl,Br, I}, that results in
40 different atom-pairwise combinations. Due to having the opposite eigenvalues in the adjacency matrix, we only consider
its positive eigenvalues. Moreover, the statistical properties of these eigenvalues such as sum, minimum (i.e., the Fiedler
value for Laplacian matrices or the half band gap for adjacency matrices), maximum, mean, median, standard deviation,
and variance are collected. Moreover, the number of distinct eigenvalues, as well as the summation of the second power of
them, are calculated. Finally, we form a representation vector of 360 features.
II.D Machine learning algorithms
It is generally true that our mathematical representations can be paired with any machine learning model. However, the
devil is in the details: difference machine learning algorithms respond differently to data size, representation dimension,
representation noise, representation correlation, representation amplitude, and representation distribution. Therefore, it is
useful to design learning-model adapted mathematical representations.

In the past few years, we have integrated various mathematical representations with a variety of machine learning al-
gorithms, namely k-nearest neighbors (KNNs)26,49, learning to rank (LR)25,27, support vector machine (SVM)43, gradient
boosted decision trees (GBDT)46,47, random forest (RF)64,92,94, extra-trees (ET)49, deep artificial neural network (ANN)92,94,
deep convolutional neural network (CNN)48,49, multitask ANN92,94, multitask CNN48, and generative networks148.

Due to the extensive variability in the possible types of biological tasks and machine learning algorithms for potentially
many data conditions, it is very challenging to provide an exhaustive list of fully optimized representations for a specific
combination of biological tasks, learning algorithms and datasets. Nevertheless, one can explore near-optimal represen-
tations to each potential combination of biological task, learning model, and dataset and select appropriate mathematical
representations with suitable parameters. Using topological representations as an example, we outline the construction of a
few topological learning strategies. In general, kNNs are very simple and are used to facilitate optimal transport approaches,
such as Wasserstein metrics. However, their results might not be the optimal49. LR algorithms can be quite accurate25,27,
but their training is quite time-consuming. Ensemble methods, such as RF, GBDT, and ET, are relatively accurate and
efficient49,64,92,94. In particular, RF should be the method of choice for a new problem due to its fewer parameters and
robustness. Due to its accuracy and robustness, RF method is often used to rank the feature importance. Utilizing a few
more parameters, GBDT can typically improve RF’s predictions after a more intensive parameter search.

Ensemble methods and deep CNNs can be very accurate and robust against overfitting originated from large machine
learning dimensions by shrinkage and dropout techniques, respectively46,47. Therefore, they can be used to examine a
large number of representations. It is worthy to note that none of these methods works well when the statistics of the test
set differs much from that of the training set. When training datasets are sufficiently large, deep learning methods can be
more accurate but might involve a very expensive training because of multiple layers of neurons48,49,92,94. Transfer learning
or multitask learning can be used to improve the prediction of small datasets when they are coupled to a large dataset that
shares similar statistics and the same representation structure48,92,94.
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Intrinsically low-dimensional representations based on advanced mathematics can be constructed for complex learning
models involving multiple neural networks, such as domain adaptation, active learning, recurrent neural network, long short
term memory, autoencoder, generative adversarial networks, and various reinforcement learning algorithms.
III Datasets and evaluation metrics
III.A Datasets
In this review, we illustrate our models against three commonly used drug-discovery related benchmark datasets, namely,
CASF-2007149, CASF-2013150, and CASF-2016151. These benchmarks are collected in the PDBbind database and have
been used to evaluate the general performance of a scoring function on a diverse set of protein-ligand complexes.

Table 3: Summary of PDBbind datasets used in the present work

Training set complexes Test set complexes
CASF-2007 benchmark 1105 195
CASF-2013 benchmark 3516 195
CASF-2016 benchmark 3772 285

Note that for docking power and screening power assessments, additional data information is given for CASF-2007149

and CASF-2013150,152 as described in the next section.
III.B Evaluation metrics
In the drug-design related benchmark, a scoring function (SF) is often validated based on four commonly metrics, namely
scoring power, ranking power, docking power, and screening power149,152. The following sections briefly offer introductions
for these matrices and the associated datasets.
III.B.1 Scoring power
This metric measures how good a scoring function in predicting affinities that linearly correlate to the experimental data. To
this end, the standard Pearson’s correlation coefficient (Rp) is employed

Rp =

∑
(xi − x̄) (yi − ȳ)√∑

(xi − x̄)
2
√∑

(yi − ȳ)
2
, (42)

where xi and yi are, respectively, predicted binding affinity and experimental data for the ith complex. The average of
all predicted and experimental values are denoted as x̄ and ȳ, respectively. All three benchmark datasets, CASF-2007,
CASF-2013, and CASF-2016, were used to evaluate the scoring power of our models.
III.B.2 Ranking power
In this assessment, the ability to ranking the binding affinity of complexes in the same cluster is stressed149,152. Two
benchmarks, CASF-2007 and CASF-2013, were used to test our AGL-Score’s ranking power. Both these datasets have 65
different protein targets, and each protein has three binding distinct ligands. There two different levels of the assessments.
The first is high-level success measurement which testifies if the affinities of three ligands in each cluster are correctly
ranked. The other assessment is the so-called low-level success measurement which determines whether a scoring function
can identify the ligand with the highest binding affinity in its cluster. The score in this assessment is calculated by the
percentage of successful ranking in a given benchmark.

The above-mentioned ranking power evaluation may not be robust since there are only three ligands in each cluster used
to determine the order ranking. Thus, the real performance of the scoring function in virtual screening cannot be transferable.
Moreover, more accurate statistical information can be attained by Kendall’s tau or Spearman correlation coefficient as used
in D3R Grand Challenges153.
III.B.3 Docking power
This metric is used to testify the ability of a scoring function in discrimination the “native” pose from the docking software-
generated structures149. To determine the native pose, one used the root-mean-square deviation (RMSD) between that
structure and the true binding pose. If its RMSD is less than 2Å, that pose is classified as a native. Each ligand in CASF-2007
benchmark has 100 generated structures using four docking software, namely GOLD154,155, Surflex156,157, FLexX158 and
LigandFit159. In CASF-2013, there are still 100 software-generated structures for each ligand but from three docking soft-
ware, namely, GOLD v5.1 (https://www.ccdc.cam.ac.uk), Surflex-Dock provided in SYBYL v8.1 (https://www.certara.com/),
and MOE v2011 (https://www.chemcomp.com/). It is noted that RMSD formulation in CASF-2007 is different from one in
CASF-2013. Specifically, RMSD in CASF-2007 used a standard representation but property-matched RMSD (RMSDPM)
is employed in CASF-2013150,152. The use of new RMSD formulation is due to the incorrect values reported by standard
RMSD on the symmetric structures. It is worthy to mention that each ligand can have more than one “native” structure in
the benchmark. Thus, if a scoring function can be able to detect any native poses, one can regard it as a successful task.
The number of ligands whose “native” poses precisely selected defines the docking power of the method.
III.B.4 Screening power
This assessment relates to the scoring function’s capability on the differentiation of a target protein’s true binders from
unbinding structures. CASF-2013 benchmark is used in this assessment. This dataset consists of 65 different protein
classes. In each protein class, at least three ligands are binding to that target. The true binder has the highest experimental
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binding affinity is regarded as the best true binder. In this assessment, there are two different kinds of measurements. The
first type concerns the enrichment factor (EF) in x% top-ranked candidates:

EFx% =
Number of true binders among x% top-ranked candidates

Total number of true binders of the given target protein
. (43)

In this measure, top-ranked candidates are the ligands with high binding affinities predicted by the scoring function. The
screen power is determined by the average of all EF values over 65 targets in the benchmark.

The second type of screening power is the success rate which concerns the best true binder identification. The percentage
in identifying the best binders for 65 receptors from x% top-ranked candidates yields the value for the success rate.
IV Results and discussions
In this section, we review the scoring power, ranking power, docking power and screening power of the discussed mathe-
matical models on the three benchmark sets including CASF-2007, CASF-2013, and CASF-2016.
IV.A Hyperparameter optimization
To achieve optimal hyperparameters among the possible combinations listed in Tables 1 and 2 for our models, 5-fold cross
validation-based grid search strategies are taken into the account. For each CASF benchmark, the training data exclud-
ing the corresponding data is employed for the aforementioned grid search. As a result, the best EICs models in the
differential based approach are EICHHE,2,1;E,3,3 and EICHHL,3.5,0.5;L,3.5,2 for CASF-2007. In CASF-2013, two optimal models
are EICHHE,1.5,5;E,3.5,3 (Rp = 0.771) and EICHHL,4.5,2.5;L,5.5,5. The selected hyperparameters found in CASF-2013 are also em-
ployed in CASF-2016. In AGL-Score models, we find that the following hyperparameters attain the highest cross-validations
scores for all the CASF benchmarks: AGLAdj

E,6,2.5;E,4,2 and AGLAdj
L,3.5,1.5;L,15,0.5. Noting that the consensus models, which are

achieved by the mean of predictions of two associated models, will further lift the accuracy. Therefore, they are included in
our experiments.
IV.B Performance and discussion
IV.B.1 Scoring power

a) b) c)

Figure 10: The performances on different evaluation metrics of various scoring functions on CASF-2007 benchmark. a) scoring power ranked by Pearson
correlation coefficient, b) ranking power assessed by the high-level success measurement, and c) docking power measured by the rate of successfully
identifying the “native” pose from 100 poses for each ligand. Our developed models, namely TopBP 49, EIC-Score 89, and AGL-Score 66 are colored in
orange, and other scoring functions 48,89,149,160–163 are colored in teal.

In this task, we measure the Pearson correlation coefficient (Rp) between predicted affinity by our models, namely TopBP,
EIC-Score, and AGL-Score and experimental values on CASF-2007, CASF-2013, and CASF-2016. The optimal hyper-
parameters for AGL-Score which are chosen based on the procedure described in Section IV.A are AGLAdj

E,6,2.5;E,4,2 and
AGLAdj

L,3.5,1.5;L,15,0.5. To validate the scoring power of AGL-Score models on CASF-2007, we train the two aforementioned
models on that benchmark’s training set consisting of 1105 samples after excluding 195 complexes in the test set. To reduce
the variance in our results, we perform 50 prediction task of AGL-Score models at the different random seeds. The final
reported affinity is defined by averaging all the predicted values at different runs. Similarly, we also train the optimal models
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a) c)

Figure 11: The performances on different evaluation metrics of various scoring functions on the CASF-2013 benchmark. a) scoring power ranked by
Pearson correlation coefficient, b) ranking power assessed by the high-level success measurement, and c) docking power measured by the rate of
successfully identifying the “native” pose from 100 poses for each ligand. Our developed models, namely TopBP 49, EIC-Score 89, and AGL-Score 66 are
colored in orange, and other scoring functions 89,150,163–165 are colored in teal.

Figure 12: The Pearson correlation coefficient of various scoring functions on CASF-2016. Our developed models, namely TopBP 49, EIC-Score 89, and
AGL-Score 66 are colored in orange. The performances of other models that are in teal are taken from Refs. 48,89,151,165–167. Our TopBP is the best model
with Rp = 0.861 and RMSE = 1.65 kca/mol. Our AGL-Score is the second best model, with Rp = 0.833 and RMSE = 1.733 kcal/mol. The third-ranked
scoring function is still our model, EIC-Score, with Rp = 0.825 and RMSE = 1.767 kcal/mol. Note that, scoring functions marked with ∗ use PDBbind
v2016 core set (N = 290).

of DG-GL, i.e. EICHHE,2,1;E,3,3 and EICHHL,3.5,0.5;L,3.5,2, and Topology based models (TopBP) on 1105 complexes of CASF-2007.
To compare the accuracy of our models with other state-of-the-art models, Figure 10a provides a comprehensive list of
various scoring functions published in the literature149,160–163. It is encouraging to see that all our models are at the top
positions. Particularly, AGL-Score is the best model with Rp = 0.830, followed by TopBP with Rp = 0.827 and EIC-Score
with Rp = 0.817.

To predict the affinity labels of the test set consisting of 195 complexes in the CASF-2013 benchmark, we train the TopBP,
EIC-Score, and AGL-Score models with optimal parameters selected in Section IV.A on CASF-2013’s training set having
3516 samples. We also provide a list of various scoring functions’ performances on this benchmark as illustrated in Figure
11a. The data from that figure reveals that our TopBP is ranked in the first place with a Pearson correlation coefficient
value Rp = 0.808, followed by AGL-Score with its Rp = 0.792. Our differential geometry-based model is in third place with
Rp = 0.774. The fourth place in the ranking table is PLEC-nn165, a deep learning network model.
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Table 4: Discrepancy information between PDBbind v2016 core set and CASF-2016 test set

PDBID
Complexes in CASF-2016 but not in PDBbind v2016 core set 1g2k
Complexes in PDBbind v2016 core set but not in CASF-2016 4mrw, 4mrz, 4msn, 5c1w, 4msc, 3cyx

Similar to the training procedure on the first two benchmarks, in the last one, i.e. CASF-2016, the structures of our three
models are learned from the training set (N = 3772) of this benchmark. Figure 12 compares Rp of numerous scoring
functions on the CASF-2016. Consistently, our models still achieve the highest correlation values with Rp = 0.861, Rp =
0.835, and Rp = 0.825 for TopBP, AGL-Score, and EIC-Score, respectively. It is worth noting that all top models in this
benchmark are machine learning-based scoring functions, namely KDEEP

166, Pafnucy167, and PLEC-nn165. These models
predict the energies for the test set of 290 complexes which is the PDBbind v2016 core set. Our topology-based model,
TopBP, was able to outperform our other methods because it used convolutional neural networks whereas AGL-Score and
EIC-Score were based on gradient boosted decision trees.
IV.B.2 Ranking power
In this assessment, the predicted binding energies are used to determine the rank of the ligands binding to the same target.
We evaluated the ranking power of three AGL-Score models, namely generalized exponential kernel model AGLAdj

E,6,2.5;E,4,2and
generalized Lorentz kernel model AGLAdj

L,3.5,1.5;L,15,0.5, and the consensus one. The result reveals that the generalized ex-
ponential kernel model produces the best performances on both CASF-2007 and CASF-2013 benchmarks. Therefore, it is
the representative model of the AGL-Score on this measurement. Figure 10b reports the ranking power of various scoring
functions on CASF-2007. In this benchmark, our AGL-Score is ranked the third on high-level success with a rate of 54%,
and is behind ∆vinaRF20 (success rate = 57%)163 and d X-Score::HSScore (success rate = 58%)149. Surprisingly, our
graph-based model achieves the best success rate in CASF-2013 with the rate being 60%, followed by X-ScoreHM with the
success rate as high as 59%. Since the ranking power performance depends on the predicted affinities used for the scoring
power, one can see there is a correlation between these two assessments. However, our AGL-Score is the only model that
is ranked in the top three places in these metrics for both CASF-2007 and CASF-2013 benchmarks.
IV.B.3 Docking power
This docking power examines the ability of a scoring function in the discrimination between “native” and “non-native” poses.
To build a robust machine learning-based model for this task, it is natural to include the diverse conformers with different
range of root-mean-squared deviation (RMSD) to target experimental structure. Therefore, to create a satisfactory training
data set for our AGL-Score model, we carry out GOLD v5.6.3155 to set up a training set of 1000 poses for a given target
ligand and its corresponding receptor. The parameters in the GOLD software are chosen as the following autoscale = 1.5,
early termination = 0, and gold fitfunc path = plp. The total of computer-generated structures for both CASF-2007 and
CASF-2013 benchmarks is 365,000 poses which are fed to AGL-Score for the learning process. The interested readers can
download these structure information at our online server https://weilab.math.msu.edu/AGL-Score.

In considering benchmarks, each target ligand has 100 generated structures. To identify its “native” poses, we retrain
single exponential kernel AGL-Score AGLAdj

E,6,2.5 on 1000 poses generated by docking software for that specific ligand. The
single model is used here to save the calculation and training time. The accuracy and robustness of our AGL-Score model
on the docking power is illustrated in Figure 10c and 11c for CASF-2007 and CASF-2013, respectively. In both benchmarks,
our graph-based model is ranked in the first place. Specifically, on CASF-2007, the success rate of the AGL-Score model is
84%, the second and third best models are GOLD::ASP (82%)149 and ∆vinaRF20 (80%)163, respectively. On CASF-2013,
the success rate of our method is higher with the rate being 90%, while ∆vinaRF20

163 and Autodock Vina163 only reach
87% and 85%, respectively.

The training data of the AGL-Score model for this assessment is provided by the docking software GOLD with ChemPLP
as a scoring function type (ChemPLP@GOLD). It is interesting to see how this scoring function performs on the same
benchmark. The ChemPLP@GOLD model achieves the success rates of 67% and 82% for CASF-2007 and CASF-2013,
respectively. These values are much lower than of our model (84% and 90%). These comparisons confirm that our AGL-
Score indeed upgrades the accuracy of the existing docking software by correctly exacting the real physical and biological
properties of a biomolecular structure.

Scoring power and docking power are two very different measurement metrics. The first one concerns the affinity with
the training data based on the experimental information. The latter targets the geometric validation involving artificial data.
Consequently, it is not an easy task to accomplish state-of-the-art performances on both evaluations168–170. According to
our observation, the most commonly used docking software is reliable on identifying the “native” structures but inadequate in
the binding energy prediction. For instance, GOLD with ASP as a scoring function (ASP@GOLD) performs quite well on the
docking power with the success rate being 82% in CASF-2007. However, ASP@GOLD’s performance on the scoring power
does not meet the satisfactory accuracy with Rp = 0.534. On the contrary, the machine learning-based scoring functions
often display an opposite impression. For example, RF-IChem169 is a machine learning model and attains a higher Pearson
correlation coefficient on the scoring power (Rp = 0.791, as expected. Unfortunately, due to the lack of proper training data
and too simple representations for accurately encoding physical and biological information of a molecule, RF-IChem has
difficulty in detecting the “native” pose with the success rate as low as 30%. Recently, a machine learning-based model
named ∆vinaRF20 was developed by Wang and Zhang163 with a purpose of improving the accuracy of random-forest based
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scoring function on various evaluations. Indeed, ∆vinaRF20 offers an excellent success rate (80%) on the docking power of
CASF-2007 but still shows a respectable precision on binding affinity prediction with Rp = 0.732. Nevertheless, the Pearson
correlation coefficient of the ∆vinaRF20 is far behind the elite models such as TNet-BP (Rp = 0.826)48. Our graph based-
model , AGL-Score, not only has a great accomplishment on the docking power (success rate = 84% in CASF-2007) as
∆vinaRF20 , but also performs similarly to TNet-BP on the scoring power (Rp = 0.83 in CASF-2007). These results again
reinforce the ability of the AGL-Score in capturing the crucial interactions in molecular and biomolecular structures.

a) b)

Figure 13: The performances of various scoring functions on the screening power for CASF-2013 benchmark based on a) enrichment factor and b)
success rate at the top 1% level. The orange bar indicates our graph-based models 66. The green bar represents the results of Autodock Vina carried out
in our lab. The teal bars express the performances of other models Refs. 150,163.

IV.B.4 Screening power
In this assessment, we verify the ability of the AGL-Score in picking up the true binders for different 65 protein classes in
the CASF-2013 benchmark. The power metric concerns the active and inactive of 195 ligands for a specific class of protein
rather than the estimation of a binding affinity for an experimental complex or “native” conformer identification. Therefore,
to effectively carry out the machine learning scoring function on this take, one needs to construct an appropriate training
data tailoring the active/inactive classification purpose. To this end, our training data consists of docking software-generated
poses and corresponding energies. The 3D structures of 195 ligands binding to a specific target are also created by the
docking program and their energies are estimated by our AGL-Score model. The predicted true binders are identified based
on their predicted affinities.

Our training set for AGL-Score on this screen power test is based on the PDBbind v2015 refine set excluding the core
set in that database. Besides these experimental structures, we generate the non-binder structures for each target protein
by using Autodock Vina171. Specifically, we use that docking software to dock all ligands in the PDBbind v2015 refined set
without the inclusion of the core-set compounds to the interested receptor. Here are the parameters of Autodock Vina we use
in this procedure: exhaustiveness=10, num modes=10, and energy range=3. For each docking run, the pose associated
with the highest predicted affinity by Autodock Vina is kept.

To preserve the consistency in the energy unit, all the Autodock Vina scores in kcal/mol are converted to pKd unit via a
constant factor -1.363325. Ligands in the PDBbind v2015 refined set which do not bind to a target protein are designated as
decoys150,152. To conserve the physical and biological sense, the Autodock Vina predicted energies of those decoys cannot
be higher than the lowest energies among the ligands experimentally bind to that target protein. To this end, we constraint
the decoy energies by the lower bound of the true binders. The generated structures, as well as the energy labels of the
decoys used in the AGL-Score training process, are publicly available at https://weilab.math.msu.edu/AGL-Score.
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The AGL-Score model we used in this screening power is AGL-Score AGLAdj
E,6,2.5. Figure 13 plots the performance of

the AGL-Score along with numerous scoring functions reported in the literature150,163. It is an encouragement to see our
AGL-Score achieves the top performance on enrichment factor (EF) and success rate at the top 1% level in the CASF-
2013 benchmark. The EF of the AGL-Score is 25.6 followed by ∆vinaRF20 (EF=20.9)163 and GlideScore-SP (EF=19.5)150.
Moreover, the success rate of our graph-based model is 68% followed by ∆vinaRF20 and GlideScore-SP that both attain
60%.

Since the partial training data of our AGL-Score model is generated by Autodock Vina, it is interesting to see the accuracy
of that docking software carried out in our lab on this assessment. The Autodock Vina’s performances are much lower than
the graph-based model. Specifically, the docking software attains EF as low as 14.7 while AGL-Score produces EF as high
as 25.6. In the success rate metric, Autodock Vina’s accuracy is only 32% which is far from AGL-Score’s rate at 68%. Since
the published work163 already reported Vina’s screen power tests, to avoid any confusion we plot our experiments on the
Vina software as green bars in Figure 13. The unsatisfactory results of the Autodock Vina on the screen power further
reinforce the accurately encoded physical and biological information in our graph-based model rather than the dependence
on training quality.

The screening power validation is an important metric in virtual screening in drug design. Since this assessment strictly
requires meaningful molecular representations and an appropriate training set, large numbers of machine learning-based
scoring functions with simple features and irrelevant training data often perform poorly on this metric despite the promising
accuracy on the scoring power. For instance, RF@ML170 is a machine learning model using Random Forest for the predic-
tion but its features simply count the number of intermolecular contacts between two atom types. In fact, RF@ML produces
an acceptable correlation (Rp =0.704) on 164 complexes in PDBbind v2013 dataset . However, RF@ML’s accuracies of
screen power are the worst among the models listed in Figure 13. In contrast, our AGL-Score model with superior feature
representations and training data insight has achieved the top places in both scoring and screening powers.
IV.C Online servers
In the past few years, a few online servers have been developed for the predictions of protein-ligand binding affinities (RI-
Score, TML-BP, and TML-BP), protein stability changes upon mutation (TML-MP, and TML-MP), molecular toxicity (TopTox),
partition coefficient and aqueous solubility (TopP-S), and protein flexibility (FRI).
V Concluding remarks
Artificial Intelligence (AI), including machine learning (ML), has had tremendous impacts on science, engineering, technol-
ogy, healthcare, security, finance, education, and industry, to name just a few. However, the development of ML algorithms
for macromolecular systems is hindered by their intricate structural complexity and associated high ML dimensionality. In
the past few years, we have addressed these challenges by three classes of mathematical techniques based on algebraic
topology, differential geometry, and graph theory. These mathematical apparatuses are enormously effective for macro-
molecular structural simplification and ML dimensionality reduction. By integrating with advanced ML algorithms, we have
demonstrated that our mathematical approaches give rise to the best prediction in D3R Grand Challenges, a worldwide
competition series in computer-aided drug design28,29, as well as many other physical, chemical and biological datasets.
Nonetheless, our methods and results were scattered over a number of papers. In this review, we provide a systematical
and coherent narration of our state-of-the-art algebraic topology, differential geometry, and graph theory-based methods.
Emphasis is given to the physical and biological challenge-guided evolution of these mathematical approaches. Although
our mathematical methods can be paired with various machine learning algorithms for a wide variety of chemical, physical,
and biological systems, we focus on protein-ligand binding analysis and prediction in the present review.

Fueled by the fast advances in ML and the availability of biological datasets, recent years witness the rapid growth in
the development of advanced mathematical tools in the realm of molecular biology and biophysics. In most of history,
mathematics has been the driving force for natural science. Indeed, mathematics is the underpinning for every aspect of
modern physics, from electrodynamics, thermodynamics, statistical mechanics, quantum mechanics, solid state physics,
quantum field theory, to the general theory of relativity. In the past century, mathematics and physics have been mutually
beneficial. Similar, mathematics will become an indispensable part of biological sciences shortly. Currently, algebraic
topology, differential geometry, graph theory, group theory, differential equations, algebra, and combinatorics have been
widely applied to biological science. Many other advanced mathematical subjects, such as algebraic geometry and low
dimensional manifolds will soon find their applications to biological science.

The next generation of AI and ML technologies will be designed to understand the rules of life and reveal the physical
and molecular mechanics of biomolecular systems. Such a development will bring tremendous benefits to health sciences,
including drug discovery. Mathematics will play a paramount role in future AI and ML technologies. On the one hand,
the mathematical theory will contribute to the foundation of AL and the design principle of ML. On the other hand, new
mathematical representations will be developed to enable the automatic discovery of scientific laws and principles172. New
mathematical representations will be made physically interpretable so that machine learning predictions from these repre-
sentations can reveal new molecular mechanisms. A generation of new mathematical representations will be made adaptive
to future AI technology. Mathematical representations will be systematically validated and optimized on a vast variety of ex-
isting datasets.
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