Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 23 diciembre 2025. Downloaded on 15/02/2026 0:40:57.

(cc)

ROYAL SOCIETY

: : »
Environmental Science « OF CHEMISTRY

Advances

View Article Online
View Journal

CRITICAL REVIEW

Bio-based composites of alginate, cellulose, and
Moringa oleifera for heavy metal removal in water
purification: a comprehensive and critical review of
mechanisms, fabrication, and performance

{ '.) Check for updates

Cite this: DOI: 10.1039/d5va00347d

Abimbola Oluwatayo Orisawayi, 2 *2® Krzysztof K. Koziol® and Sameer S. Rahatekar®

The escalating prevalence of heavy metal contamination in aquatic ecosystems, driven by industrialisation,
urbanisation, and population growth, has necessitated the development of sustainable and efficient water
purification technologies. This review critically evaluates recent advances in developing and applying bio-
based composites comprising sodium alginate, cellulose, and Moringa oleifera (M. oleifera) to remove heavy
metals from aqueous systems. The review examines the physicochemical characteristics, adsorption
mechanisms, and synergistic properties of these biopolymers, emphasising the role of the active
compounds in each. The deduction from the comparative study of this review reveals cellulose-based
composites demonstrating the highest overall adsorption performance, with several systems exceeding
1000 mg gt across different heavy metals. Although alginate composites achieve the highest single
reported capacity, 1742 mg g*1 for Pb?*, their performance is more dependent on chemical or
nanoparticle functionalisation. M. oleifera biosorbents show moderate adsorption capacities, with
improvements mainly observed after chemical modification. Overall, cellulose composites exhibit the
most consistent and versatile adsorption behaviour among the three materials. This review identifies
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DOI: 10.1039/d5va00347d potential applications, highlights key research gaps, and outlines future directions for advancing bio-

rsc.li/esadvances based composite materials as viable solutions for sustainable water treatment.

Environmental significance

This review highlights the potential of bio-based composites comprising alginate, cellulose, and Moringa oleifera as sustainable alternatives to conventional
water treatment materials. These biopolymers, derived from renewable resources, offer low toxicity, biodegradability, and effective adsorption of toxic heavy
metals from aqueous environments. Their application not only mitigates environmental pollution but also reduces dependency on synthetic, non-biodegradable
materials that contribute to secondary waste generation. By valorising agricultural by-products and natural resources, such composites support circular
economy principles and promote greener technologies for water purification, aligning with global efforts to address environmental sustainability and resource
conservation.

such as the weathering of metal-rich rocks and geothermal
activities, contribute to heavy metal pollution in water bodies.”™
Drinking water is an invaluable resource for life, and ensuring

1 Introduction

The rapid growth of the global population has significantly

increased industrial activities, reducing the availability of clean
water.'? Water is one of the most pressing environmental
concerns, making obtaining safe and affordable clean water
increasingly challenging. Heavy metal contamination in water
is also a major concern, arising from both natural and human
activities.*® Both industrial processes and natural phenomena,
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access to water and sanitation by 2030 is a key objective outlined
by the United Nations Sustainable Development Goals
(UNSDGs).*

Water is an essential resource, and numerous statistics have
been collected to assess various aspects of its usage, availability,
and quality. Several international organisations actively gather
and analyse water-related data, including the United Nations
Educational, Scientific and Cultural Organisation (UNESCO),"
the United Nations Children's Fund (UNICEF), and many
others."” According to data from 57 countries in 2015, approxi-
mately 84 Litres of wastewater per capita were generated, yet
only 29 Litres underwent treatment. By 2021, global household
wastewater production had reached 271 billion cubic meters,
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with treatment rates improving to 55.5% based on data
collected from 234 countries.**** Furthermore, studies indicate
that approximately 70% of the Earth's surface is covered by
water, of which only 2.5% consists of freshwater. A mere 1% of
this freshwater is readily accessible for human use.'” The
current global population of 7.6 billion people must share this
limited resource. The United Nations projects that by 2050, the
global population will reach 9.8 billion, with approximately 4
billion people expected to experience water scarcity. This will
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exacerbate the existing crisis, as over two billion individuals
already lack access to clean water.* To address this challenge,
efficient water treatment strategies must be developed to treat
wastewater and natural water sources while ensuring sustain-
ability through renewable energy sources.'” ™’

Various methods and materials have been proposed for
tackling water contamination, with a growing emphasis on
biopolymer-based solutions. Biopolymers, derived from natural
sources such as cellulose, alginate (from brown algae), and
chitosan (from crustacean shells), have gained considerable
attention for water purification due to their biodegradability,
eco-friendliness, and high adsorption capacity for heavy
metals.”*?* Their properties, such as high adsorption capacity
and eco-friendliness, make them suitable materials for water
purification applications and have been widely explored in
recent studies.”

Among these, cellulose is recognised as one of the most
abundant polysaccharides on earth, characterised by its high
mechanical strength, hydrophilicity, and ability to form stable
composites.>»*> Alginate, extracted primarily from brown algae,
is also rapidly gaining traction as a versatile biopolymer in
different fields due to its unique gel-forming capabilities and
non-toxic nature.***” The growing market for alginate reflects its
increasing utilisation in water treatment, where it serves as an
efficient medium for adsorbing heavy metal ions. Combining
cellulose and alginate in composite forms presents a promising
approach for enhancing adsorption efficiency and mechanical
properties, making these biopolymers valuable for sustainable
water treatment applications.”*****

In addition to biopolymers, M. oleifera has been extensively
investigated as a cost-effective, eco-friendly biosorbent for
removing heavy metal ions from water.**-** These seeds contain
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natural cationic proteins and bioactive compounds that facili-
tate ion exchange and metal binding, improving water purifi-
cation efficiency.®® Studies have also demonstrated that M.
oleifera seed pods can effectively remove mixtures of metals in
wastewater, achieving optimal removal efficiency under specific
conditions, such as a 60-minute contact time and a 1.0 gram
sorbent dose.** The ability of M. oleifera to function as both
a coagulant and an adsorbent positions it as a dual-function
material for water treatment, enhancing its potential for inte-
gration with biopolymers like cellulose and alginate to develop
advanced composite materials aimed at heavy metal ion
contamination.””*

Although biopolymers and M. oleifera seed powders benefit
water treatment, few studies have examined their hybrid
composites. This presents a significant research gap in devel-
oping and characterising hybrid composites.*® Few studies have
been reported. Development of hybrid electrospun alginate-
pulverised M. oleifera composites was done by Orisawayi
et al® In their studies, pulverised M. oleifera at a minimum
dose suspension was incorporated into sodium alginate fibre
using the electrospinning techniques.

Another study reported the development of effective bi-
osorbents made from combining M. oleifera and alginate beads
for uranium removal from aqueous solutions. Orisawayi et al.**
further developed sodium alginate fibres through wet-spinning.
In contrast, more recent investigations have combined sodium
alginate with polyethyleneimine and M. oleifera leaves-seed
beads for uranium adsorption, including isotherm and kinetic
analyses.*® These composite systems have demonstrated
improved adsorption capacity and favourable structural
characteristics.

The selection of alginate, cellulose, and M. oleifera in this
study stems from their complementary physicochemical and
functional properties relevant to heavy-metal removal. Alginate
offers a biocompatible, carboxyl-rich matrix with strong ion-
binding capacity and efficient gel-forming behaviour, making
it highly suitable for capturing multivalent metal jons.***!
Cellulose, the most abundant natural polysaccharide, provides
mechanical stability, a high surface area, and additional
hydroxyl groups that boost adsorption.*****” In contrast, M.
oleifera seeds supply bioactive, cationic proteins and coagulant
molecules capable of binding and aggregating dissolved metal
ions.***** Although other biopolymers such as pectin, starch,
and chitosan have been widely studied, they do not collectively
offer this combination of mechanical robustness, adsorption
efficiency, natural coagulation activity, and environmental
sustainability.>*>*

Therefore, the novelty of this review arises from its focus on
evaluating alginate, cellulose, and M. oleifera as distinct mate-
rials for heavy-metal removal, combined with an assessment of
how their complementary traits could be strategically melded to
improve adsorptive performance. While many studies and
reviews have examined these materials separately or with other
biopolymers, none have explored their combined potential
within a single analytical framework, offering a new perspective
for designing more effective and sustainable adsorbent systems.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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The study first outlines heavy metal contamination as
a significant environmental concern, summarising key pollut-
ants and regulatory limits set by the United States Environ-
mental Protection Agency (EPA), World Health Organisation
(WHO) and European Union (EU), including the origin or
sources of the heavy metals. It then evaluates the limitations of
conventional treatment methods, such as chemical precipita-
tion, ion exchange, and membrane filtration, emphasising the
need for sustainable alternatives. The focus then shifts to
biopolymers, particularly sodium alginate and cellulose,
exploring their adsorption mechanisms, composite formula-
tions, and integration with M. oleifera to enhance performance.
Fabrication techniques such as electrospinning and wet spin-
ning are also reviewed for their role in optimising material
properties. Having established the urgency of water pollution
and the potential of biopolymer-based solutions, it is crucial
first to understand the nature, sources, and health implications
of the primary contaminants and heavy metals that threaten
aquatic systems.

2 Background on heavy metals

Heavy metal ions such as lead (Pb**), cadmium (Cd>*), cobalt
(Co®"), nickel (Ni**), barium (Ba”*), copper (Cu**), chromium in
both trivalent and hexavalent states (Cr’*/Cr®"), zinc (zn*"),
mercury (Hg?"), and arsenic in trivalent and pentavalent forms
(As®*, As®") constitute major contaminants in aquatic ecosys-
tems. Their elevated toxicity and persistence in natural waters-
make them a significant environmental concern.**** There are
several primary sources of heavy metal ions. Fig. 1 illustrates the
different sources of environmental pollution caused by heavy
metals and the adverse effects of the metals on pollution by
heavy metal ions.’>*>* Fig. 1a shows the primary industrial
sources, such as the mining industries,*” textile industries,***°
thermal and nuclear plants associated with the cement
industry,® the manufacturing and conservation of wood, dye
production,® metal plating and those associated with the steel
manufacturing industries,”” energy and water cooling
processes,* the production of photographic materials,*® the
manufacturing of various corrosive paints,** and other indus-
trial activities in the global oil and gas industries.*>™*”

However, heavy metal contamination is not limited to
industrial activities alone. Fig. 1b shows a broader perspective,
incorporating additional sources such as urban solid waste,
wastewater effluents, e-waste, biosolids, fertilisers, pesticides,
corrosion, pharmaceutical products, and natural occurrences,
including volcanic eruptions. These diverse contamination
sources contribute significantly to environmental pollution,
making the development of sustainable remediation strategies
imperative. Heavy metal ions are often described as metallic
forms of elements that are mostly denser than water and have
a large atomic radius.®® Heavy metal ions are dangerous and
more prevalent, resulting from the persistent half-life.®>”® The
common organic compounds found in most water bodies can
be degraded over time. Still, when polluted into water bodies,
the heavy metals remain an environmental issue as most of
them are difficult to decompose in the water.
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The United States Environmental Protection Agency (EPA) with
Maximum Contaminant Levels (MCLs),”"”> The World Health
Organisation (WHO), and the European Union (EU), with the
maximum permissible level,”>”* have established regulatory
limits for these contaminants to protect water quality and
public health.®®”* Lead has been extensively studied as one of
the metals causing environmental pollution, resulting from its
high level of toxicity and often widespread presence.”®””
Contamination from lead is common and is primarily due to its
use in many plumbing infrastructures, resulting from the
erosion of natural deposits and its presence in most automobile
batteries.” The presence of lead, even at low blood concentra-
tions of 1-2 pug dL ™", lead exposure may lead to severe health
effects, including neurodevelopmental, cardiovascular, renal,
and reproductive issues, and in children, could show slight
deficits in attention span.” The EPA MCL is 0.01 mg L™, with
WHO and EU also maintaining a 0.01 mg L™ " limit.

In addition, metal ions such as cadmium are another
frequently encountered heavy metal pollutant because they are
primarily released in most industrial processes. The EPA MCL is
0.005 mg L', while WHO and EU enforce limits of 0.003 mg
(ref. 80) chromium is well-documented as an environmental
contaminant and primarily originates from most industrial
activities and processes, such as electroplating, textile
manufacturing, and the stainless steel industry. In most
research, this metal has been highlighted as it's toxic and
carcinogenic, therefore causing concern. The EPA sets an MCL
of 0.1 mg L™, whereas the WHO and the EU impose stricter
limits of 0.05 mg L~".%

Mercury is also a highly toxic heavy metal introduced into the
environment through various industrial activities, and pro-
cessed are often contain mercury and waste in water bodies and
can cause challenges for aquatic ecosystems; reports show that
mercury can transform into methylmercury, known as
a bioavailable form, that is accumulated in marine bodies and
therefore affecting the aquatics organisms. This poses a serious
Neurotoxin, as kidney damage bioaccumulates in aquatic
organisms and is a health threat to humans consuming
contaminated seafood. The EPA enforces an MCL of
0.002 mg L™, the WHO sets 0.006 mg L', while the EU has
a more stringent limit of 0.001 mg L™*.5%3

Arsenic, a naturally occurring metalloid, poses serious
health risks. Arsenic can cause severe health conditions in the
skin, causing skin damage or problems with the circulatory
system, cancer, and cardiovascular diseases.”** It is a significant
contaminant in the groundwater; due to its high toxicity, the
EPA, WHO, and EU all impose a maximum limit of 0.01 mg L
particularly in regions where mainly agricultural activities have
historically involved arsenic-based pesticides.®>**

Other metals, such as nickel, barium, copper, and zinc, pose
significant environmental and health risks due to their persis-
tence in water bodies. These metals also enter aquatic ecosys-
tems through industrial discharge, mining, and improper waste
disposal, contaminating drinking water sources and affecting
marine life. Nickel exposure can lead to allergic reactions,
respiratory issues, and carcinogenic effects, disrupting aquatic
microbial activity. Nickel is commonly found in metal alloys,
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including mining waste and industrial effluents. Barium
contamination originates from the oil drilling, glass, and paint
industries. Soluble barium compounds pose health risks,
causing hypertension, muscle weakness, and neurological
disorders.®*®°

Copper and zinc are essential metals but become toxic in
excess, leaching from plumbing, mining, and fertilisers. Copper
bioaccumulates in fish and amphibians, disrupting metabolism
and causing liver, kidney, and neurological issues in humans.
Zinc pollution can lead to immune suppression, developmental
problems, and metabolic disorders, ultimately affecting fish
growth and disrupting the balance of phytoplankton. The
presence of these metals in water demands effective pollution
control, water treatment, and stricter regulations to mitigate
their toxic effects on human health and ecosystems.**°

Table 1 provides a comparative overview of major heavy
metal contaminants, their potential health risks, and their
regulatory limits established by the EPA, WHO, and EU. Fig. 1c
shows a retrieved study from a previous study retrieved from the
literature, which shows the adverse effects of commonly
encountered heavy metals on different human organs.*®
Furthermore, these standards are crucial for maintaining water
safety, and exposure to heavy metals can have severe biological
consequences, affecting multiple human organs. This illustra-
tion complements the regulatory data presented in Table 1 by
emphasising the physiological risks associated with prolonged
exposure to heavy metals.

The legally enforceable Maximum Contaminant Levels
(MCLs) ensure the safety of drinking water. The World Health
Organisation (WHO) provides guidelines, values, and Maximum
Permissible Levels (MPLs) based on health risk assessments.
The European Union (EU) sets strict regulatory limits on
drinking water quality that are mandatory for all EU member
states.®7?

Several treatment technologies have been developed to
address the environmental challenge posed by heavy metal
contamination due to their hazardous effects and regulatory
significance in water systems. The following section critically
examines these technologies for the removal of heavy metals
from water.

3 Water treatment technologies for
removing heavy metals
3.1 Chemical precipitation

Chemical precipitation has been used and described as an
effective method for removing heavy metals, primarily from
wastewater. Chemical precipitation is widely used in industrial
wastewater treatment due to its simplicity, cost-effectiveness,
and established technology.®®®* This method uses chemical
reagents that react with most metal ions to form an insoluble
precipitate.®” Studies show that the primary precipitation
mechanisms include hydroxide and sulphide precipitation,
which facilitate the removal of these metal ions during the
process. However, the main limitations of this method involve
difficulties in removing mixed metals due to pH levels that may

Environ. Sci.: Adv.
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be difficult to control when hydroxide precipitation is used.****
In addition, there is also a risk of secondary contamination,
particularly from sulphide precipitation, which can sometimes
lead to the formation of toxic hydrogen sulphide (H,S) gas, as
reported.”

3.2 Ion exchange

Another widely used method is ion exchange, which is often
applied in water purification technologies, as this method relies
on ion exchange to remove metal ions. During the process, ion
exchange media include zeolite resins and synthetic organic

Environ. Sci.. Adv.

polymers.®® These methods have been proven effective for
eliminating cations and anions from freshwater, ensuring high
removal efficiency. However, this method has several draw-
backs, including the requirement for pretreatment and chem-
ical regeneration, which can lead to secondary pollution due to
the materials used. Therefore, ion exchange leaves some
secondary pollution after water treatment.”” Studies suggest
that this method is less effective for highly concentrated mixed-
metal wastewater, making it more suitable for applications
involving mixed heavy-metal solutions from aqueous
solutions.®”*®

© 2026 The Author(s). Published by the Royal Society of Chemistry
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3.3 Membrane separation

Membrane separation technologies are emerging methods
employed for pressure-driven processes such as ultrafiltration,
nanofiltration, reverse osmosis, concentration, and removing
some heavy metal ions.*>'*° This method is advantageous due to
its simple operation, low energy consumption, and absence of
significant phase changes, making it an environmentally
friendly alternative. However, challenges associated with this
method include the high cost of membrane materials and their
susceptibility to fouling and degradation, which may reduce the
long-term efficiency of the process.'** Despite these limitations,
membrane separation remains a valuable technology for water
treatment, particularly in removing low-concentration contam-
inants or pollutants from water.'*"'*

3.4 Electrochemical technologies

Electrochemical methods, including electrocoagulation, elec-
trodeposition, electrooxidation, and electrolocation, have been
extensively explored for heavy metal removal. These techniques
involve the application of electrical currents to induce coagu-
lation, charge neutralisation, and precipitation of heavy metal
ions.’ Electrochemical processes are known for their high
removal efficiency, ease of operation, and minimal sludge
production, reducing the need for additional conditioning
treatments. However, their applicability is often limited by
energy consumption, electrode material degradation, and the
potential formation of secondary contaminants.****%

3.5 Bioremediation

The bioremediation technique is another method that utilises
biological processes for water treatment. This approach
includes microbial remediation and phytoremediation, which
involve using microorganisms or plants to degrade, immobilise,
or remove heavy metals from water bodies.’*® Studies have
shown that this method has been proven to be an environ-
mentally sustainable method. It is also cost-effective and has
been successfully applied for the restoration of the most
polluted sites. However, bioremediation has significant limita-
tions, including overdependence on low metal concentrations
and long remediation cycles, making it challenging to scale up
the process for industrial applications.**”'*

3.6 Adsorption

Over the decades, adsorption has emerged as one of the most
efficient and widely used methods for removing heavy metals
from contaminated water.’® The process has emerged as
a promising alternative for water treatment. Adsorption is the
process in which ions, atoms, or molecules adhere to the
surface of a solid material. It differs from absorption, which
involves the penetration of molecules into the interior of
a solid."*>'"* Based on the forces governing this phenomenon,
adsorption is categorised as physisorption or chemisorption."*
This method relies on interfacial interactions between metal
ions (adsorbate) and the materials used for their removal
(adsorbent). Various media can be utilised to facilitate

© 2026 The Author(s). Published by the Royal Society of Chemistry
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contaminant removal through mechanisms such as pore filling,
surface binding, and chemical interactions.™ Some of the
materials reported for use include activated carbon, carbon
nanotubes, wood sawdust, alginate, cellulose, M. oleifera, chi-
tosan, polymeric hydrogels, ion-exchange resins, and their
composites. As illustrated in Fig. 2a, wastewater treatment
methods are categorised into electrochemical treatments,
physicochemical processes, and adsorption-based processes,
highlighting their applications in contaminant removal.***

Fig. 2(b and c) provide a comparative overview of heavy metal
removal technologies, distinguishing between conventional
methods, such as chemical precipitation, ion exchange, and
electrochemical processes, and advanced techniques, including
nanotechnology, membrane filtration, and photocatalysis. The
inset in Fig. 2a further illustrates the physical and chemical
adsorption mechanisms of different adsorbate-adsorbent
interactions, demonstrating their effectiveness in pollutant
removal.”* Unfortunately, most reported methods or techniques
are associated with high costs, operational complications, low
efficiency, excessive chemical use, and secondary pollutants,
which restrict their applications. With the development of
highly flexible, easy-to-operate, and efficient adsorbent designs,
adsorption has emerged as a promising alternative for water
treatment. Adsorption is highly advantageous due to its
simplicity, cost-effectiveness, high selectivity, and ability to
treat dilute wastewater. The ability to recycle adsorbents has
been reported to minimise secondary pollution, making
adsorption a preferred choice for water treatment applications.

While conventional technologies demonstrate varying
degrees of effectiveness, many are limited by high costs,
secondary pollution, or low selectivity. These limitations have
spurred the exploration of sustainable alternatives, particularly
those derived from bio-based materials, as discussed in the next
section.

4 Bio-based biodegradable
composites and blends for water
purification

4.1 Overview of sustainable biopolymer composites

Biopolymers are naturally occurring polymers produced by
living organisms. Biological resources, including plants,
animals, agricultural residues, and microorganisms, are viable
feedstocks for synthesising biopolymers. Fig. 3 shows a typical
classification and characteristics of biopolymers that have been
reported.” Among the primary sources derived from agriculture
and plants are corn stalks, maize, wheat, potatoes, and barley.

Biopolymers consist of monomeric units such as nucleo-
tides, saccharides, or amino acids that form nucleic acids,
carbohydrates, and proteins.*>™** Biopolymers are known to be
renewable and eco-friendly alternatives to most synthetic poly-
mers derived from fossil fuels.'>**° Biopolymers have gained
significant attention due to their biodegradability and potential
to address environmental challenges.”**** The projections
indicate that global plastic production is expected to surpass
1800 million metric tons annually by 2050. The focus on

Environ. Sci.: Adv.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5va00347d

Open Access Article. Published on 23 diciembre 2025. Downloaded on 15/02/2026 0:40:57.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Environmental Science: Advances

Leaves

Seed and Fruits

View Article Online

Critical Review

Collagen,
Casein,
Fibrinogen, Silk,
Elastin

Protein

Natural

Chitin,

Polysaccharide
Hyaluronic acid

Based on

SOtNES Synthetic

Polyhydroxyalkanoates,

Microbial
ks Polyhydroxybutyrate

Wood Fibres
Grass Structural
Straw fibres Based on plant Reinforced fibre
production Production
Recycled papers Reinforced
Non-wood particle
Hard & soft Fibres

woods Maize, Suga

Sugar-based e oo

beet, Wheat

Tensile strength
Based on type S Wheat, Potato,
Brittleness & Corn
flexure
Cellulose-based Cotton, Wood
Properties

Toughness &
hardness

Ductibility &
Fatigue

Fig. 3 Classification and properties of biopolymers (adapted with permission, Licensed under Elsevier's terms).?®

biopolymers, primarily cellulose and alginate, for water treat-
ment is well-justified due to their abundant functional groups,
which facilitate the efficient adsorption of heavy metal ions and
other pollutants. Over the decades, several studies have high-
lighted the environmental issues associated with synthetic
polymers, emphasising the need for biodegradable alternatives.
Kogje et al.'® found that biopolymers derived from natural
sources minimise plastic waste and have higher biodegrad-
ability than standard plastics. Similarly, Emre et al'* also
demonstrated the potential of polysaccharide-based biopoly-
mers to reduce environmental pollution through improved
adsorption. Researchers have documented the efficiency of
biopolymers such as cellulose, alginate, and chitosan in
adsorbing heavy metals from aqueous solutions.?>#*127:128
Moreover, alginate has emerged as a promising biopolymer,
which also contains carboxyl groups that play a crucial role in
the ion exchange process, making it an effective adsorbent for
heavy metals like cadmium, chromium, and other metal
ions.”®»'% Several studies have also demonstrated the effec-
tiveness of cellulose-alginate hydrogels in contaminant
removal. In particular, the hydrogels have been shown to
substantially enhance the adsorption efficiency of both dyes
and heavy metal ions, achieving up to approximately 85%
removal of methylene blue, which is associated with metal
ions.”***> The tensile strength and durability of cellulose,
combined with the gel-forming ability of alginate, ensure the
formation of stable and effective adsorbent composites. The
environmental sustainability and cost-effectiveness of cellulose
and alginate instead of synthetic polymers align with the
increasing demand for eco-friendly water treatment materials.
The interaction between the hydroxyl groups in cellulose and

Environ. Sci.. Adv.

the carboxyl groups in alginate enhances the ion-exchange
interactions and adsorption capacity of these hydrogels,
making them practical for water purification.*>*** Fig. 4 pres-
ents a detailed schematic representation of the sources and
structures of cellulose and alginate, along with their physical
and chemical modification methods to enhance their perfor-
mance in water purification applications. Additionally, it cate-
gorises the significant approaches for modifying these
biopolymers to improve their functionality. These modifica-
tions, categorised into physical and chemical, encompass
blending, ultrasonic treatment, cross-linking, focusing on the
use of crosslinking agents such as Ethylenediaminetetraacetic
Acid (EDTA), Gamma-Linolenic Acid (GLA), Ethylene Glycol
Monobutyl Ether (EGBE), Epichlorohydrin (ECH), and Poly-
ethylene Glycol (PEG), including grafting to enhance the mate-
rial's adsorption efficiency, mechanical stability, and chemical
resistance in water remediation applications. These modifica-
tion techniques are essential in tailoring cellulose-alginate
composites for optimised performance in environmental
applications.

The adsorption and regeneration mechanisms of bi-
opolymeric composites are very crucial. These have been
extensively studied for their effectiveness in removing heavy
metals. Understanding these mechanisms is essential for opti-
mising their performance in water treatment applications.
Fig. 5(a) presents a reported adsorption mechanism illustrating
the interaction of metal ions (M") with active functional groups
in biopolymeric composites. The process involves electrostatic
attraction, ion exchange, and surface complexation, facilitated
by hydroxyl (-OH), carboxyl (-COO™), and amine (-NH,)
groups.” Adsorption efficiency is influenced by pH, where ion

© 2026 The Author(s). Published by the Royal Society of Chemistry
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exchange dominates at lower pH levels. At the same time,
electrostatic and surface complexation mechanisms become
more prominent at higher pH values, as observed in several
studies.’***%” The adsorption performance of cellulose-alginate
composites has been well-documented, with removal efficien-
cies varying depending on the composite structure, porosity,
and availability of functional groups. Furthermore, Fig. 5(b)
highlights various regeneration strategies for restoring
adsorption capacity. These include chemical regeneration using
eluents such as Sodium hydroxide (NaOH), Hydrochloric acid
HCI, Ethylenediaminetetraacetic acid (EDTA), and Sulfuric acid
(H,S0,), as well as physical and biological treatments like
oxidation, ultrasound, and thermal degradation. Integrating
effective regeneration methods ensures the long-term usability
of biopolymeric adsorbents, making them viable options for
sustainable water purification.
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4.2 Sodium alginate and its composites

4.2.1 Alginate extraction and structure. Alginates are
biopolymers derived from natural sources, widely recognised
for their versatility and diverse applications across various
fields.””**®* The abundance of algae in water bodies has been
estimated, with the production of industrial alginate amount-
ing to approximately 30 000 tons, representing less than 10% of
biosynthesised alginate. Therefore, there is considerable
potential for alginate to be utilised in the design of sustainable
composite materials. Primarily, alginate is extracted from
brown seaweed algae such as (Ascophyllum spp., Laminaria spp.,
Macrocystis pyrifera, Sargassum spp, Alario, Ecklonia, Eisenia,
Nercocystis, Sargassum, Cystoseira, Fucus, and several others)."*
Studies show that seaweed-derived alginate is the most
commercially utilised form, as bacterial alginate presents an
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(a) Proposed adsorption mechanism of biopolymeric composites for heavy metal removal, and (b) regeneration methods and chemicals

used for biopolymeric composites during the adsorption—desorption process (adapted with permission, Licensed under Elsevier's terms).?
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alternative source with distinct advantages for several applica-
tions."*'! Typically, alginate extracted from brown algae is
treated with various chemicals at different synthesis stages.
Briefly, the production process of sodium alginate begins with
the harvesting and drying of seaweed, after which it undergoes
mechanical processing to be converted into algal powder.***
This powder will be treated with hydrochloric acid (HCI) to
extract the alginic acid, which serves as the precursor for
sodium alginate including sodium carbonate (Na,CO3) as part
of the extraction process. The extracted alginic acid will be
washed, filtered, and treated with sodium hydroxide (NaOH) to
form a sodium alginate (SA) solution.’*® The solution is then
further treated with HCI to enhance the purity and produce an
alginic acid gel. The samples will then be neutralised with alkali
agents such as sodium hydroxide and/or sodium carbonate,
converting them into sodium alginate, a water-soluble polymer
widely used across various industries.*** The purification of the
extracted alginate was conducted through a chemically assisted
process before filtration and drying. Specifically, the crude
alginate was subjected to sequential treatments using calcium
chloride (CaCl,), sodium chloride (NaCl), or further treated with
ethanol to remove residual impurities, enhance polymer purity,
and improve the physicochemical characteristics of the final
biopolymer. The extraction process of alginate is illustrated in
Fig. 6a, showing the key steps involved in alginate preparation
from raw seaweed sources and its subsequent transformation
into sodium alginate and its applications in the adsorption
process, retrieved from the literature. In contrast, other litera-
ture shown in Fig. 6b explains the Industry process of sodium
alginate extraction via calcium precipitation.

Alginate has been invaluable because it is helpful in water
purification applications due to the presence of hydroxyl (-OH)
and carboxyl (-COO™) functional groups present in its polymer
backbone.' SA can effectively interact with heavy metal ions
and other pollutants in aqueous environments. SA can also
undergo an adsorption mechanism that allows contaminants to
bind to the polymer surface, facilitating the removal of

Environ. Sci.. Adv.

impurities and contributing to environmental remediation
efforts."*® This property has positioned alginate as a promising
material in sustainable water treatment technologies.
Structurally, alginates are linear block copolymer poly-
saccharides composed of two fundamental monomeric units: B-
p-mannuronic acid (M-block) and a-1-guluronic acid (G-block),
the latter being the C-5 epimer of the former."*” C-5 epimer of
the former."” These monomers are linked through pB-(1-4)
glycosidic bonds, forming an unbranched, water-soluble poly-
mer chain. Additionally, alginate polymers can exhibit various
sequential forms or arrangements of these monomeric units,
including homopolymer M- or G-blocks, alternating MG-blocks,
and more complex configurations such as GM-blocks and
interspersed MG/GM sequences of varying lengths, with
different interchangeable possibilities as shown in Fig. 7a-c,
allowing for structural versatility and structurally modified
model describing the interactions between alginate G-blocks
and divalent cations, primarily Ca®" illustrates their strong
affinity for metal ions and other pollutants through ionic-
displacement mechanisms. These interactions facilitate effi-
cient regeneration via simple filtration and contribute to the
formation of stable ionic gels, thereby making alginate-based
systems excellent candidates for water-pollution remedia-
tion."” A distinctive property of alginates is their ability to
undergo reversible sol-gel transitions upon interaction with
divalent and trivalent metal ions. Calcium chloride (CaCl,) is
commonly used to induce gelation, particularly through inter-
actions with the GG-block regions, facilitating the formation of
a rigid, three-dimensional network often described using the
“egg-box” model.**® This structural transformation occurs as
calcium ions (Ca*>*) form ionic cross-links between the G-block
residues, forming a hydrogel. The schematic representation of
this process, as depicted in Fig. 1c, is adapted from work.**
illustrates how calcium ions mediate the cross-linking of algi-
nate chains, resulting in a stable gel network. The binding
capacity with divalent metal cations reported is Pb>" > Cu**
Ccd** > Ba®* > sr** > Ca®>" > Co**, Ni**, Zn*" > Mn>*.*** Beyond

© 2026 The Author(s). Published by the Royal Society of Chemistry
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their gelation properties, alginates are extensively studied for
their capacity to adsorb heavy metal ions from aqueous envi-
ronments. The presence of abundant hydroxyl and carboxyl
functional groups in the polymer backbone enables strong
interactions with metal ions, making alginates a promising
material for water purification and environmental remediation
applications.****

4.2.2 Functional modifications in alginate-based adsor-
bents. Various functional modifications have been explored to
enhance the adsorption performance of alginate-based mate-
rials for removing heavy metal ions from aqueous environ-
ments."*#1°>1%  These modifications aim to improve key
parameters, including selectivity, mechanical stability, and
regeneration capacity. Fig. 8 illustrate an example of fabricating
alginate-based composites, as reported in a previous study.***
Studies have categorised alginate composite materials into
several groups, including polymeric blends and graft

© 2026 The Author(s). Published by the Royal Society of Chemistry
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copolymers, biopolymer-based composites, alginate-inorganic
nanohybrids, magnetic nanocomposites, and structurally
engineered forms such as electrospun fibres, wet-spun fibres,
and 3D-printed structures. Each class offers distinct physico-
chemical advantages that contribute to improved efficiency in
heavy metal ion adsorption.*”

4.2.2.1 Polymeric blends and graft copolymers. The formation
of alginate-based polymeric blends and graft copolymers has
been extensively employed to enhance adsorption selectivity
and reusability. Studies have shown that surface grafting with
functional groups such as thiol (-SH) and amine (-NH,)
enhances the selective affinity for metal ions. Thiolates algi-
nates exhibit strong binding to metal ions, while aminated
variants demonstrate high adsorption of Cd*".**'*> Cross-
linking alginate, particularly with calcium ions, yields
mechanically robust hydrogel beads that resist dissolution in
aqueous media and maintain stable adsorption capacities

Environ. Sci.: Adv.
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across multiple use cycles."®*** For instance, hydrogels are
often based on ionic or covalent crosslinking without specific
fillers or advanced frameworks. Calcium-cross-linked sodium
alginate beads have demonstrated capacities ranging from 54.9
to 82.8 and 135.5 mg g~ for Cu”*, Ag", Fe**, and Fe’", respec-
tively.*** The polyaniline-sodium alginate-MXene nanomaterial
composite (PANI@SA-SNM) integrates MXene nanosheets and
polyaniline within a sodium alginate hydrogel matrix, signifi-
cantly enhancing the adsorption of Cu®>" and Hg?" ions when
used for their removal from aqueous solution. The interaction
between polyaniline's redox-active nitrogen sites, MXene's
layered surface functionalities, and alginate's carboxyl groups
facilitates high metal uptake (up to 352.76 mg g~ '), confirming
the efficacy of multifunctional polymeric blends in adsorptive
remediation.* Modified alginate-based biocomposite hydrogel
microsphere, effectively adsorbing Pb**and Cu® ions, has
369.6 mg g~ ' and 124.1 mg g~ ', and some studies also reported
the potential cellulose-alginate sponges that exhibit high water
permeability and excellent reusability properties. Studies have
further demonstrated the effectiveness of alginate-based hybrid
materials. Notably, mesoporous alginate/B-cyclodextrin beads
exhibit remarkable adsorption capacities for Pb**, Cu®*, Cd*",
and Ni*" 21.09, 15.54, 2.47, and 2.68 mg g ', respectively,
highlighting the enhanced performance of alginate-polymer

Environ. Sci.. Adv.

composites for heavy-metal removal.****> Moreover, sodium
alginate-based carboxymethyl cellulose (CMC) hydrogel beads
Pb>" uptake (>600 mg g~ '), demonstrating the benefits of
combining carboxyl-rich alginate matrices with amine-rich
copolymers. Similarly, the sodium alginate-g-poly(acrylic acid-
co-acrylamide) nanocomposite hydrogel absorbed Pb**, Cd**,
Ni**, and Cu®" at concentrations of 231.88, 235.62, 67.52, and
76.35 mg g~ ', respectively.

4.2.2.2 Inorganic fillers and nanomaterials. Incorporating
inorganic fillers, such as metal oxides and salts, into alginate
matrices enhances ion exchange capabilities and structural
rigidity while increasing the surface area. These additives
interact physically or chemically with alginate to form func-
tional hybrid structures. For instance, alginate-caged magne-
sium sulphate nanoparticle microbeads demonstrated an
adsorption capacity of 84.7 mg g~ ' for Pb>".**> The inclusion of
magnesium sulfate (MgSO,) likely provides ionic sites for
selective lead interaction while boosting the mechanical
robustness of the hydrogel structure. The carbonised composite
manganese-crosslinked sodium alginate showed excellent
removal of As®" (189.29 mg g '), As®* (193.29 mg g '), and Cr®*
(104.5 mg g~ ').** Manganese enhances redox activity, reducing
toxic ions and subsequent immobilisation. This composite
benefits from electrostatic and surface complexation

© 2026 The Author(s). Published by the Royal Society of Chemistry
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mechanisms enabled by the manganese-carbon interface. The
calcium alginate-nanoscale zero-valent iron (nZVvI)-biochar
composite reportedly adsorbs Pb>*, Zn>", and Cd>" with capac-
ities 0f 47.99, 71.77, and 47.” mg g~ ', respectively,'** combining
the adsorptive nature of biochar with the magnetic and reduc-
tive properties of nanoscale zero-valent iron (nZVI). The cross-
linked alginate-rice husk ash-graphene oxide-chitosan nano-
particles (CL-ARCG-CNP) composite combines alginate with
silica-rich rice husk ash, reduced graphene oxide, and chitosan
nanoparticles, forming a cross-linked hybrid with a high Pb**
adsorption capacity of 242.5 mg g '. This multifunctional
system leverages the high surface area of GO, the amine-rich
functionality of chitosan, and the reactive silanol groups from
rice husk ash, collectively enhancing Pb** chelation and
stability in aqueous environments.*’ The calcium carbonate on
alginate/chitosan biocomposite (CSAX_Ca) was also reported to
have an affinity for the pollutants Cu®>*and Pb*" at the adsorp-
tion capacities 429, 1742 mg g~ '. This performance is attributed
to the ionic exchange properties of CaCOj3, combined with the
carboxyl groups of alginates and the amine groups of chitosan,
respectively.” Such materials serve dual functions: adsorbing
metal ions and reducing them to less toxic or immobilised
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forms while being easily recoverable due to their magnetic
properties. These composites demonstrate the effectiveness of
hybrid materials that combine inorganic fillers with alginate to
produce multifunctional adsorbents. Their efficacy is further
enhanced by the synergistic role of metal oxides in charge
exchange, redox transformations, and maintaining structural
integrity.*>**”

4.2.2.3 Magnetic nanocomposites. Magnetic nanocomposites
offer the dual benefits of effective heavy metal removal and
straightforward post-treatment separation utilising external
magnetic fields. These materials are essential in scalable water
treatment technologies.”® The calcium alginate-nZVI-biochar
composite for removing Pb, Zn, and Cd from water: insights
into governing mechanisms and performance. This category is
exemplified by calcium alginate-nZVI-biochar, as nZVI provides
magnetic properties and facilitates the reductive precipitation
of metal ions. The removal capacities for Pb**, Zn>*, and Cd*
with absorption capacities of 47.99, 71.77, and 47.27.*°
Demonstrate the synergistic role of nZVI with alginate's ion
exchange capability. While no other strictly magnetic compos-
ites are explicitly mentioned in the dataset, this entry empha-
sises a growing research interest in merging magnetic

Table 2 Adsorption capacities of alginate-based composites for heavy metal removal

Alginate-based Pollution/target heavy Adsorption capacity

S. no. adsorbents metal ion(s) (mgg™) References

1 Modified alginate-based Pb** and Cu** 369.6 (Pb*>*) and 124.1 (Cu*") 164
biocomposite hydrogel
microsphere

2 Mesoporous alginate/B- Pb*, Cu® and Cd*", Ni** 21.09 (Pb*"), 15.54 (Cu*"), 46
cyclodextrin polymeric 2.47 (Cd*") and 2.68 (Ni*")
beads

3 Alginate-caged magnesium Pb** 84.7 for Pb** 165
sulfate nanoparticle
microbeads

4 Carbonised composite As**, As°" and Cr®* 189.29 (As®"), 193.29 (As”") 166
manganese crosslinked and 104.50 (Cr®")
sodium alginate

5 Amino-functionalised Cr® and cd** 678.67 (Cr®") and 464.23 167
sodium alginate aerogel (cd*)

6 Calcium alginate-nZvi- Pb**, Zn** and cd** 47.99 (Pb*"), 71.77 (Zn**) and 159
biochar 47.27 (Cd*")

7 Sodium alginate-based Pb>* — 168
carboxymethyl cellulose
hydrogel beads

8 Sodium alginate-g- Pb**, cd**, Ni**, cu** 231.88 (Pb*"), 235.62 (Cd*"), 169
poly(acrylic acid-co- 67.52 (Ni**) and 76.35 (Cu*")
acrylamide) nanocomposite
hydrogel

9 Alginate/reduced graphene Cu*, Cr,0,>~ 169.5 (Cu**) and 72.5 154
double-network and single- (Cr,0,%7)
network hydrogel beads

10 Tetrasodium

thiacalixarenetetrasulfonate-sodium alginate nanocomposite hydrogelPb**, Ni**, Cu®>*, Cd**, Co** and Cr’*'99.8 (Pb**), 67.4 (Ni*"), 90.56 (Cu®"),
94.5,74.9 (Co*") and 79.2 (Cr*")17011Sodium alginate hydrogel beads by post-crosslinkingCu®*, Ag"* and Fe*'54.9 (Cu®"), 82.8 (Ag") and 135.5 (Fe**)
15412Sodium alginate-functionalised M. oleifera seed wet-spinningCu**, Cd*" and Ni—17113MXene/polyaniline/sodium alginate (PANI@SA-SNM)
gelCu™, Hg*"255.81 (Cu”") and 352.76 (Hg>")152140range peels/alginate (OAF) nectarine peels/alginate (NAF)Cr’*About 224.3 (Cr®") - OAF and
256.5 (Cr’*) - NAF17215Cross-linked alginate-rice husk ash-graphene oxide-chitosan nanoparticles (CL-ARCG-CNP)Pb*"242.5 (Pb**)4016Calcium
carbonate on alginate/chitosan biocomposite (CSAX_Ca)Cu®* and Pb**429 (Cu**) and 1742 (Pb®")15517Alginate + encapsulated M. oleiferaCo>", Ni**,

Cu*, Zn**, and Mn**5.8 (Co®"), 4.78 (Ni**), 4.6 (Cu®"), 1.3 (zn*"), and 1.02 (Mn>*)48

© 2026 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.; Adv.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5va00347d

Open Access Article. Published on 23 diciembre 2025. Downloaded on 15/02/2026 0:40:57.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Environmental Science: Advances

responsiveness with adsorption functionalities. The advance-
ment of magnetically recoverable alginate-based adsorbents
represents a practical approach for real-time and reusable water
purification applications.

4.2.2.4 Metal-organic frameworks (MOFS) and graphene-
based composites (GBC). Advanced nanostructures such as
reduced graphene oxide (rGO), thiacalixarene derivatives, and
metal-organic frameworks (MOFs) significantly enhance algi-
nate performance due to their high surface areas, w-7 inter-
actions, and diverse coordination environments.'**'% The
alginate/reduced graphene double-network hydrogel beads and
their single-network counterparts exhibited 169.5 and 72.5 mg
g~ ! capacities for Cu®>" and Cr,0,?, respectively.®*'* The double-
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network structure offers improved mechanical stability and
a higher density of adsorption sites. Meanwhile, rGO sheets
promote m-electron-rich regions, facilitating cation-m interac-
tions and electrostatic attractions. The tetrasodium thiacalix-
arene tetra sulfonate-sodium alginate nanocomposite hydrogel
achieved broad-spectrum metal ion adsorption: Pb>* (99.8 mg
g ), Ni*" (67.4 mg g~ "), Cu®** (90.56 mg g~ ), Cd*" (94.5 mg g™ ),
Co™" (74.9 mg g ), and Cr’* (79.2 mg g~ ').*** As macrocyclic
ligands, thiacalixarene derivatives provide tailored cavities that
selectively complex metal ions. Their integration into alginate
matrices substantially enhances binding specificity and
capacity through host-guest chemistry. These advanced
composites demonstrate the potential of incorporating MOFs,

Table 3 Adsorption capacities of cellulose, regenerated cellulose and cellulose-based hydrogels

Pollution/target Adsorption

S. no. Cellulose-based composite heavy metal ion(s) capacity (mg g™ ") References

1 Carboxymethyl cellulose/ cd**, Hg** and Pb** 147.7 (Cd*"), 88.62 (Hg>") 198
gelatin composite hydrogel and 163.89 (Pb*")

2 CuMOF on sodium alginate/ Pb>* 531.38 for Pb** 187
chitosan/cellulose nanofibril
composite hydrogel

3 Sodium alginate/ pb** 544.66 for Pb>" 188
cellulose nanofibre
composite hydrogel

4 Porous kappa-carrageenan/ Pb** 486 + 28.5 for Pb** 199
cellulose hydrogels

5 Cellulose hydrogels (G50) Uo,>* 572.3 for UO,>" 193

6 Carboxymethyl cellulose/chitosan/ Cr®, Ni** and Cu®* >750 for 133
alginic acid hydrogels (cr®, Ni** and Cu*)

7 Chitosan/cellulose phosphonate Pb*" and Cu** 211.42 (Pb*") and 51
composite hydrogel 74.29 (Cu™)

8 Cellulose (37%)-chitosan (63%) cu* 94.3 for Cu®* 52

9 Cellulose/chitosan/PVA/nano-Fe,0; cu** 15.95 for Cu** 200

10 Oxidised carboxymethyl cellulose Ag®, Pb**, cu®* 407 (Agh), 1250 201
hydrogel (Pb**) and 1111 (Cu*")

11 Wheat straw cellulose-g-poly cu* 142.7 for Cu** 201
(acrylic acid)/
poly(vinyl alcohol)

12 Carboxymethyl cellulose-based Pb>*, Ni**, Co** 550 (Pb**), 620 (Ni**) 202
cryogels and 760 (Co®")

13 Cellulose grafted with acrylonitrile crt — 203
(CelEnEs)

14 Collagen/cellulose hydrogel beads cu** 67.36 mg g ' for 204
(M-CS/PVA/CCNFs) (cu®)

15 Mercerized cellulose Cu**, Cd*" and Pb** 30.4 (Cu®), 86.0 (Cd*") 205

and 205.9 (Pb*")

16 Cellulose/ZrO, Ni%* 79.0 for Ni** 206

17 Cellulosic graft polymerisation of Co** 11.5 and 11 for Co** 207
glycidyl methacrylate-co-methacrylic

18 Poly(ethylene imine)-modified cellulose cu* 102 208

19 Welan gum-modified cellulose cd*", Pb** and Cu** 83.6 (Cd*"), 77.0 (Pb*") 43

and 67.4 (Cu*")

20 Cellulose acetate (CA)/silica composite cr’* 19.46 for (Cr*) 45

21 Oxidised cellulose-based materials Hg*" 258.75 for (Hg™") 182

22 Cellulose-based composite hydrogel Co®" and Ni** 358 (Co®") and 373 (Ni*") 180
microsphere

23 Cellulose-based hydrogel-modified Pb** and Cu** 879.84 (Pb**) and 209
kaolin 543.50 (Cu®")

24 Carboxymethyl cellulose cd*", Pb** and Cu** 84.4 (Cd*"), 159.4 (Pb"), 210

hydrogel-pectin-based

Environ. Sci.. Adv.

and 125.6 (Cu™")
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graphene derivatives, and supramolecular chemistries into
alginate-based platforms to create highly selective and high-
capacity adsorbents. Their tunable architectures and multi-
functional binding sites facilitate the simultaneous removal of
various metal ions from aqueous environments.

4.2.2.5 Bio-based/biowaste-derived alginate composites. Bio-
based and biowaste materials are gaining popularity, as
studies have shown that alginate composites derived from
orange and nectarine peels (OAF and NAF) exhibit high
adsorption capacities for Cr’" ions. These agro-waste materials
provide additional hydroxyl and phenolic functionalities that
enhance hexavalent chromium's chelation and electrostatic
attraction. Table 2 shows the adsorption capacities of alginate-
based composites for heavy metal removal. Integrating alginate
improves structural integrity and water dispersibility, demon-
strating a green valorisation strategy for effective Cr’* removal,
with adsorption capacities of 224.3 and 256.5 mg g~ *.** A multi-
metal adsorption study using M. oleifera extract encapsulated in
sodium alginate matrices reported modest adsorption capac-
ities for Co**, Ni**, Cu*", Zn>*, manganese ion (Mn>") and
sometimes uranyl ion (UO,>*). Although the uptake values
(1.02-5.8 mg g ") are relatively low, the system uses plant-
derived bioactives to introduce additional binding functional-
ities into alginate networks. The biosorption mechanism is
likely driven by phytochemical interactions combined with the
carboxyl groups of alginates. Pollutants: Co®", Ni**, Cu**, Zn>",
Mn?; adsorption capacities: 5.8, 4.78, 4.6, 1.3, 1.02 mg g~ *.* In
another study, Sodium alginate was functionalised with M.
oleifera seed powder and fabricated via wet spinning to explore
its use for removing heavy metals, particularly Cu®>*, Cd*", and
Ni*", as investigated by Orisawayi et al.*” Although the adsorp-
tion capacity was not reported, future work was discussed to
investigate this further. The study primarily aimed to investi-
gate the natural bioactive compounds in M. oleifera that
enhance metal binding. At the same time, the alginate matrix
provides ionic carboxyl for additional sorption. This combina-
tion illustrates a sustainable approach for producing biode-
gradable, fibre-based adsorbents with a selective affinity for the
metal. The electrospinning process fabricates a hybrid of pulv-
erised M. oleifera seed powder embedded within a sodium
alginate matrix, with polyethene oxide (PEO) as a co-spinning
agent.*” The process was successful, as investigated, aiming to
explore the feasibility of producing fibrous biosorbents that
harness the natural adsorptive capacity of M. oleifera, the ion-
exchange potential of alginate, and the fibre-forming capa-
bility of PEO. While the complete adsorption properties of these
composites have not yet been evaluated, the conceptual inte-
gration of these materials through electrospinning could serve
as a baseline for a potential method for generating nano-
structured materials with improved surface area, porosity, and
enhanced alginate mechanical properties, thereby facilitating
improved interaction with heavy metal ions in aqueous
solutions.

In addition to alginate, cellulose, another abundant,
renewable, and functional biopolymer, has demonstrated
considerable promise in heavy metal ion adsorption, as detailed
in other sections.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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4.3 Cellulose-based adsorbents

Cellulose is the most abundant natural biopolymer on Earth,
consisting of a long-chain polysaccharide composed of B-o-
glucose units, which are often covalently linked by acetal
functionalities between the equatorial (OH) groups on the
carbon atoms, known as (C4) and (C1), via B-1,4-glycosidic
bonds."*'7* Its unique molecular structure contributes to its
exceptional physicochemical stability, particularly its insolu-
bility in water, which arises from the extensive hydrogen
bonding and crystallinity imparted by its glycosidic
linkages."”>"”” The long polymer chains are organised into two
distinct regions: highly ordered crystalline domains confer
mechanical strength and stability, and amorphous regions
enhance chemical reactivity and biological interactions.'”**%
Cellulose is predominantly obtained from plant cell walls,
although microbial sources produce bacterial cellulose with
unique nanostructures.'’®'7*'¥! Increasingly, agricultural resi-
dues are being explored as low-cost, renewable sources of
cellulose for developing sustainable materials. Due to its
intrinsic properties, renewability, biodegradability, chemical
stability, non-toxicity, and the abundance of reactive hydroxyl
groups, cellulose is an excellent platform for fabricating
advanced functional materials. Among various cellulose-based
materials, cellulose hydrogels and their regenerated counter-
parts have emerged as a prominent class of water purification
media.45,176,182

4.3.1 Cellulose composite hydrogels. Cellulose composite
hydrogels are synthesised by blending native or modified
cellulose with other biopolymers, such as chitosan, gelatine,
alginate, nanomaterials, and other biosorbents.’*>'** This
creates an interpenetrating network of several polymer
networks that enhances the surface area and activity for
adsorption.”® These composites offer promising results in
removing toxic heavy metals due to their high swelling capacity,
porous structure, and the synergistic effect of the combined
components.’»'#18 Several works have been developed to
incorporate different cellulose hydrogels into the composite;
however, only a few will be discussed in this section on cellulose
hydrogels for adsorption, as detailed in Table 3 comparing the
varying adsorption capacities of cellulose, regenerated cellu-
lose, and cellulose-based hydrogels for heavy metal removal.
Copper-based Metal-Organic Framework (CuMOF) immobi-
lised on sodium alginate/chitosan/cellulose nanofibril hydrogel
composite was developed and demonstrated an adsorption
capacity of 531.38 mg g~ for Pb*".**” Similarly, the sodium
alginate/cellulose nanofibre composite hydrogel achieved
a higher adsorption capacity of 544.66 mg g~ for Pb>*.**® Multi-
ion removal was also demonstrated by carboxymethyl cellulose/
chitosan/alginic acid hydrogels, which exhibited exceptional
uptake (>750 mg g~ ') for Cr®", Ni**, and Cu**.*** Furthermore,
oxidised carboxymethyl cellulose hydrogels demonstrated
outstanding adsorption capacities of 1250 mg g~' for Pb*",
1111 mg g ' for Cu®, and 407 mg g ' for Ag", revealing the
critical role of oxidation in enhancing metal ion binding."*

4.3.2 Regenerated cellulose composites. In addition to
hydrogels, regenerated cellulose-based composites are another

Environ. Sci.: Adv.
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Fig. 9 Emerging nanocellulose-based modifications of cellulose for enhanced removal of heavy metal ions from water (modified with

permission, Licensed under ACS Publication's terms).***

significant category of adsorbents for removing heavy metal
ions from aqueous solutions.***** These materials are typically
produced by dissolving native cellulose in eco-friendly solvents
such as ionic liquids or alkali-urea systems, then reconstituting
them into films, fibres, or beads through controlled regenera-
tion."> Although these structures do not exhibit the water-
swollen matrix typical of hydrogels, they retain high crystal-
linity and mechanical strength. Cellulose-based hydrogel
microspheres exhibited high removal capacities of 373 mg g *
for Ni*" and 358 mg g~ for Co>",*®° facilitated by the increased
surface area and the formation of micro spherical morphol-
ogies, which provide rapid diffusion pathways and more active
sites for metal binding, carboxymethyl cellulose hydrogel-
pectin-based system demonstrated adsorption capacities of
84.4 mg g~ for Cd**, 159.4 mg g~ for Pb**, and 125.6 mg g~ "
for Cu®*.*»® Despite lower capacities in some systems, such as
mercerised cellulose with 30.4 mg g~ * for Cu®*, Cd** and Pb>*
adsorption capacity of 30.4 mg g~', 86.0 and 205.9 mg per g
Pb”", respectively and that of cellulose acetate/silica composite,
which was 19.46 mg g~' for Cr’". In addition, Regenerated
cellulose can also be blended with other biopolymers or inor-
ganic materials to improve surface reactivity and adsorption
capacity, and the applications have shown that regenerated
cellulose composites are suitable for dynamic filtration systems
and can be engineered for high reusability and targeted removal
of heavy metals."'****'*> Together, cellulose hydrogels and reg-
enerated cellulose composites offer complementary pathways
for creating efficient and sustainable adsorbents.*® Table 3
presents the adsorption capacities of cellulose, regenerated
cellulose, and cellulose-based hydrogel composites for non-
targeted heavy metal ions, as reported in the literature. This

Environ. Sci.. Adv.

highlights the potential limitations of cellulose as a suitable
water treatment material. Their physicochemical diversity and
tunable surface functionality make cellulose-based systems
crucial in pursuing greener water treatment technologies.'”
Recently, advancements in functional materials science have
positioned cellulose, particularly in its nanoform known as
nanocellulose.”**** These materials are emerging sustainable
biopolymers for various water treatment applications. Fig. 9
illustrates the functionalisation of cellulose through chemical
modification.'™* The abundant hydroxyl groups enable the
introduction of various reactive moieties, such as carboxyl,
amine, thiol, and sulfonate groups, as reported.”*>*** This has
been studied to significantly enhance the material's affinity for
heavy metal ions in aqueous solutions, with the functional
group transformations altering the surface charge, coordina-
tion capacity, and hydrophilicity.®>*** These nanocellulose-
based systems exhibit a high surface area, increased porosity,
enhanced mechanical strength, and aqueous stability, all of
which are desirable characteristics for adsorbents specifically
targeting the removal of divalent heavy metal contaminants
such as Pb*', cd**, Cr®', and Cu®' from wastewater 14?14
Furthermore, nanocellulose's high aspect ratio and tunable
functional surfaces facilitate efficient diffusion, rapid ion
exchange, and chelation processes, improving adsorption
kinetics and capacity.***** Consequently, modified cellulose
and its nanostructured derivatives serve as renewable, biode-
gradable, and highly effective materials for the adsorption and
removal of toxic metal ions in water purification systems.>'**"”
While alginate, cellulose derivatives, and their composites
have shown considerable promise as eco-friendly adsorbents in
water purification, their performance can be significantly

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Photographs and modified images of the (a) unpeeled seeds (MOU), (b) shelled seeds (MOS), (c) seed powder (MoP), (d) husk (MOH), (e)
husk powder (MOHP), (f) dried leaves (MODL), (g) leaves powder (MODLP), (h) bark pieces (MP),(i) back powder (BPD).2*¢

enhanced through hybridisation with plant-derived materials
that offer active biosorption properties. One such material, M.
oleifera seed powder, has garnered attention for its rich bioac-
tive compounds and ability to adsorb heavy metal ions effec-
tively. The following section explores the potential of M. oleifera
as a natural biosorbent in sustainable water treatment. Beyond
structural biopolymers like alginate and cellulose, plant-based
biosorbents such as M. oleifera offer complementary adsorp-
tion mechanisms and bioactive functionalities, enriching the
development of multifunctional composite systems for water
purification.

5 M. oleifera-based adsorbents

The M. oleifera tree thrives in tropical and subtropical regions
worldwide. It is often called the “miracle tree” or “drumstick” in

© 2026 The Author(s). Published by the Royal Society of Chemistry

English. Nowadays, M. oleifera has naturalised throughout the
tropics, including regions in Africa, Central and South America,
and Southeast Asia. M. oleifera has been introduced and culti-
vated across Europe for research purposes, enhancing its
accessibility.>**>*°

5.1 Biosorption mechanisms and functional components of
M. oleifera

Research has shown that M. oleifera seeds are primarily protein-
rich and exhibit active functions known for binding with
pollutants. The tree is also reported to have been a preferred
source of nutrition and second-generation biodiesel, and its
components can be used as drugs. They have reportedly
demonstrated an affinity for absorbing carbon dioxide from the
atmosphere.****** Fig. 10 displays the various M. oleifera
biomass samples used in this study, including M. oleifera
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Fig. 11 Illustration of the nature of M. oleifera seeds after 24 hours of
Brilliant Green (BG) and (b) Crystal Violet (CV) sorption.?*”

unpeeled seeds (MOU), M. oleifera shelled seeds (MOS), M.
oleifera seed powder (MoP), M. oleifera husk (MOH), M. oleifera
husk powder (MOHP), M. oleifera dried leaves (MODL), M.
oleifera dried Leaves powder (MODLP), M. oleifera bark pieces
(MOB), M. oleifera and bark powder (MOBP). These components
represent the diverse functional fractions of M. oleifera inves-
tigated for coagulant and adsorbent applications in water
purification. Studies suggest that each part contains a protein
that can be used as an antimicrobial flocculant to remove
wastewater impurities through electrostatic interactions
between the cationic protein and colloids.?*> Some studies have
also shown that M. oleifera, known for its high content of
bioactive compounds, shows promise in various water

)
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the sorption process for heavy metal ions from an aqueous solution: (a)

treatment applications due to its availability, biodegradability,
and non-toxicity. Therefore, the coagulating properties make
them a potential additive for alginate in water purification
applications, presenting a promising alternative to alginate, as
it has been previously used in the manufacture and function-
alisation of alginate.””® However, only a few studies have
explored the combination of M. oleifera with most biopolymers,
such as alginate and cellulose. In the case of heavy metal ions,
M. oleifera has been reported to remove heavy metals such as
copper, cadmium, chromium, and lead at rates of 95%, 76%,
70%, and 93%, respectively.****** In a study on using M. oleifera
seed for water treatment, the final concentration of copper was
below the desirable limit for drinking water (less than
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Fig. 12 A typical illustration step of processing M. oleifera parts for water treatment application.
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Fig. 13 Schematic illustration of the various mechanisms involved in M. oleifera biosorption for removing toxic contaminants from aqueous
solutions, such as Cr>*, V**, and Pb?*. Probable mechanism ion-exchange mechanism between M. oleifera and metal ions (M**) (Open

access).?”

1 mg L’l).m*227 However, the removal of cadmium, chromium,
and lead after coagulation with M. oleifera seed cake coagulant
did not meet the limits of drinking water standards.

This inconsistency is closely related to the underlying
mechanisms governing its removal efficiency was also observed
in studies carried out by Orisawayi et al.,® and study on the
purification of river water using M. oleifera seed for copper
removal for point-of-use household application discussed that
the cationic proteins and bioactive compounds present in M.
oleifera could function primarily as a natural coagulant.***

Several recent studies also discussed that the mechanisms
are highly effective for metal ions such as Cu®’, which exhibit
favourable interactions with the functional groups in the
extract.?>23' However, ions such as Cd*', Pb**, and Cr** and
Cr’" possess lower charge densities, weaker binding affinities,
or distinct hydrolysis behaviours, which could result in less
efficient coagulation and adsorption. This possibly suggests
reason M. oleifera is an excellent coagulant; its capacity as
a high-affinity adsorbent is limited for specific metal species,
and therefore, its performance may require enhancement
through composite formulation or integration with other
biopolymers.®**** Therefore, additional treatments may be
required to meet the standards of the EPA, WHO, EU, and some
indigenous bureau standards, such as those of the indigenous
peoples. The study's findings indicate that M. oleifera seed cake

© 2026 The Author(s). Published by the Royal Society of Chemistry

is suitable as a coagulant and is effective for pre-treatment
applications for removing heavy metals from water systems.**

Fig. 11 presents an example of MOS biosorption comparison
before and after 24 hours of brilliant green (BG) and biosorption
of crystal violet (CV) of typical M. oleifera seed obtained from
literature as when used, it was reported that adsorb heavy metal
ions, these functions provide selective and effective absorption
for various metal ions which belong to Class B, including Hg*",
Ag*, Pd*", P>, P*, Au®’, and Cs™. For instance, Benettayeb
et al. observed an enhancement in sorption for the ions Pb*",
Cd*', and Cu®*.*** Nwagbara et al.**® also demonstrated that
adsorbents with amine groups possess unique properties,
enabling them to adsorb compounds with cationic or anionic
charges at different pH values, which are present in the M.
oleifera seed and capable of removing these heavy metals from
an aqueous solution.® By using composite coagulants,
drinking water standards can be met, and in many cases, heavy
metals are not detected in the treated water. Polymers possess
numerous functional groups, including carboxylic, amine,
hydroxyl, and sulfonic. They can be used as complexing agents
for the adsorptive removal of metal ions from aqueous
solutions.****

5.1.1 Processing pathways and fabrication. The schematic
flow illustrated in Fig. 12 provides a comprehensive overview of
the sequential processing stages and functional applications of
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Table 4 Biosorbents for heavy metal adsorption of various toxic heavy metal pollutants (M. oleifera parts used for heavy metal adsorption)

Biosorbent part of M. oleifera Pollution/target

Adsorption capacity

S. no. with or without modification heavy metal ion(s) (mgg™) References
1 Pure seed/leaves Pb**, cd**, Co** Seed 13.29 (Pb*"), Leaves 49.50 (Pb*"), 30
and Ni** 4.97 (Cd*"), 16.13(Cd*"), 10.94 (Co*")
5.80 (Co™) and 10.16 (Ni*")
and 3.61(Ni*")
3 Pods modified HNO; Pb** and Cd** 35.97 (Pb**) and 256
0.3 M 18.24 (Cd**
4 Pure seed pPb* For s.é (sz)*) 257
5 Leaves modified cr'’ 60.6061 for (Cr*") 258
diethylamine
functionalisation
6 Pure leaves pPb*>* 45.83 for (Pb*") 222
7 Pure seed cd** 357.14 for (Cd*") 259
9 Gum-modified Hg™* 840.34 for (Hg>") 260
acryloylation
reaction
10 Pure seed pods cr't 119.02 for (Cr*") 261
11 Pure seed and pure husk Cu*" and cd* 13.089 (Cu®*) and 262
13.123 (Cd*")
12 Seed modified with oil pPb* 12.24 (Pb*) 263
extraction
to obtain M. oleifera cake
(byproduct)
13 Leaves modified with As™* 6.23 (As™) 264
activated carbon
14 Pure seed-modified oil cd* 7.864 (Cd*") 265
extraction to obtain
M. oleifera cake
(byproduct)
15 Seed oil extraction to obtain crt 3.191 (Cr*h) 266
M. oleifera cake
(byproduct)
16 Leaves esterification with cd*, cu*™* 171.37 (Cd*"), 267
NaOH followed by citric and Ni** 167.90 (Cu®")
acid treatment and 163.88 (Ni*")
17 M. oleifera bark (MOB) cd*" and cu* 39.41 (Cd*") 236
on to MOB and 36.59 (Cu®")

18 M. oleifera bark (MOB) Ni** 30.38 for (Ni*") 268
19 Wood Ccu®*, Nij ?* 11.53 (Cu®"), 269
and zn** 19.08 (Ni*")

and 17.67(Zn*")
20 Leaves citric acid treatment pb* 209.54 for (Pb*") 269
21 Bark pPb** 34.6 for (Pb*") 270

various M. oleifera seed components, including whole seeds,
shelled seeds, unshelled seeds, husk, bark, and gum, for
preparing natural coagulants and bio-adsorbents intended for
heavy metal ion removal in water purification systems.*® M.
oleifera is a multipurpose tree whose biomass contains several
valuable fractions.”*® The whole seed comprises both the kernel
and the seed coat. In contrast, shelled seeds specifically refer to
the kernel, which is the nutrient-rich part, and the unshelled
seeds and husks are more fibrous. The bark contains lignocel-
lulosic compounds suitable for thermal activation.”*® Addi-
tionally, M. oleifera gum, a natural exudate from the bark, is
a polysaccharide-based biopolymer with potential flocculant
and stabilising properties. Each part possesses distinct physi-
cochemical features that dictate its suitability for either coag-
ulation or adsorption applications.***>*

Environ. Sci.. Adv.

The initial processing step involves mechanical disintegra-
tion using grinders, blenders, or a traditional mortar and pestle.
This process reduces particle size, increases surface area, and
facilitates further downstream applications. A sieving stage
follows to ensure particle homogeneity for consistent applica-
tion. The protein-rich shelled seeds and gum exudates undergo
aqueous or solvent-based extraction. The cationic proteins from
the kernel interact with negatively charged colloids in water,
promoting coagulation and flocculation. M. oleifera gum, due to
its polysaccharide backbone and high molecular weight,
enhances coagulation through bridging mechanisms and aids
in viscosity control during composite synthesis.>***** This
process is particularly relevant in systems where organic
turbidity or microbial contamination is a concern. The fibrous
seed husks, bark, and other lignocellulosic fractions are

© 2026 The Author(s). Published by the Royal Society of Chemistry
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subjected to pyrolysis or chemical activation to produce biochar
or activated carbon. These materials exhibit a high surface area
and porosity, essential for effective adsorption of heavy metal
ions‘245,246

Surface functional groups such as hydroxyl, carboxyl, and
phenolic moieties facilitate metal binding through ion
exchange, surface complexation, and electrostatic attraction.
The performance of bio-based composites derived from M.
oleifera, alginate, and cellulose is subsequently enhanced
through systematic material modification techniques to
improve structural integrity, processability, and adsorption
efficiency in water purification systems.****** These modifica-
tions typically begin by mixing the primary biopolymers with
binders or cross-linking agents, such as poly(vinyl alcohol)
(PVA), starch, or modified cellulose derivatives, and the process
seeks to strengthen the network structure, enhance the
dispersion of M. oleifera components, and improve compati-
bility within the matrix materials.>*>>*%>%¢

The modified blends can be fabricated into functional
forms, such as beads, films, fibres, or pellets, each offering
distinct surface area and porosity advantages for water treat-
ment.”* Depending on the desired morphology and end-use
application, various fabrication techniques, including casting,
extrusion, wet spinning, electrospinning, and freeze-drying, are
utilised.?”>#>23

5.2 Heavy metal biosorption mechanism of M. oleifera in
aqueous systems

Fig. 13. Schematic illustration of the various mechanisms
involved in the biosorption of M. oleifera for removing toxic
contaminants, such as Cr’*, V>*, and Pb*"; this was explained by
Benettayeb et al.>*® In a critical review of the emphasis, recent
pieces of evidence study M. oleifera as a biosorbent for water and

View Article Online

Environmental Science: Advances

wastewater treatment. The primary biosorption mechanisms by
which M. oleifera interacts with toxic heavy metal ions. The ion-
exchange mechanism is central, whereby native ions (e.g., Na*,
H', Ca®") present on the biosorbent surface are replaced by
heavy metal ions (M>*), such as Pb>*, Cr**, and V*". The func-
tional groups that facilitate this process reported that are
peculiar to M. oleifera include hydroxyl (-OH), carboxyl (-
COOH), carbonyl (C=0), and amine (-NH,) that are present in
M. oleifera.****>?*>® The adsorption mechanisms encompass
electrostatic attraction between negatively charged functional
groups and metal cations, surface complexation, chemisorp-
tion, and intraparticle diffusion within the porous matrix. The
overall biosorption performance is further influenced by the
solution pH, the surface charge of the adsorbent, and the
specific interaction modes governing metal-ligand binding.
These interactive mechanisms collectively highlight M. olei-
fera's efficiency as a multifunctional biosorbent for remediating
metal-contaminated water.>>>***> Table 4 also presents the bi-
osorbents for heavy metal biosorption of various toxic heavy
metal pollutants (main M. oleifera parts used for heavy metal
adsorption).

An evaluation of the biosorption capacities reported from the
table reveals clear differences in performance among various M.
oleifera plant parts. The gum-derived materials, particularly
those modified via acryloylation, exhibit exceptionally high
adsorption capacities, reaching 840.34 mg g~' for Hg>", indi-
cating a high density of reactive functional groups. Modified
leaves consistently show superior performance, achieving
values above 150 mg g~ * for Cd**, Cu**, and Ni**, especially
when treated with NaOH-citric acid or activated carbon, sug-
gesting that surface functionalisation significantly enhances
metal-binding affinity. Seed-based materials, including seed
cake by-products, also demonstrate promising performance,
with adsorption capacities up to 357.14 mg g ' for Cd*,

Adsorption Capacity (mg/g)
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Fig. 14 Comparison of adsorption capacities of alginate-based composites.
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Fig. 15 Comparison of adsorption capacities of cellulose-based composites.

reflecting their favourable protein and lipid composition. By
contrast, bark, wood, and unmodified seed or pod materials
tend to exhibit lower uptake values. Based on these findings,
there is a clear indication that leaves, gums, and chemically
modified seed-derived materials are the most promising bi-
osorbent components for heavy-metal remediation.

Various fabrication techniques have been employed to
enhance bio-based composites’ adsorption efficiency and
stability, including electrospinning, wet spinning, hydrogel
formation, and hybrid processing. These methods enable the
formation of fibres or gels with high surface area, tunable
porosity, and enhanced stability, all of which are critical for
water treatment applications. While numerous studies have
demonstrated the promising capabilities of M. oleifera, alginate,

and cellulose, significant research gaps remain in integrating
these materials effectively for real-world applications. The
following section identifies these gaps and proposes future
research pathways.

6 Comparative evaluation of sodium
alginate, cellulose composited and the
M. oleifera parts biosorbent

A systematic comparison of sodium alginate, cellulose, and M.
oleifera composites is essential to establish their relative
adsorption performance and identify the most efficient bio-
based materials for heavy metal removal."***”* Although each
of these biopolymers exhibits distinctive structural features and
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Fig. 16 Comparison of the adsorption capacities of parts of M. oleifera with or without modifications.
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Table 5 Comparative findings from the study on electrospun and wet-spun fibre processing and properties
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Electrospinning Wet-spinning Wet-spinning
S. no. Parameter (alginate-based) (alginate-based) (cellulose-based) References
(1) Processing comparison
1 Solubility Water-soluble, Water-soluble, requires Water-insoluble 36
requires ionic crosslinking for retains
blending with stability stability in water
polyethene
oxide (PEO) for
electrospinning and
crosslinking for
stability
2 Processing Electrospinning via Water-soluble, requires Wet-spinning 32 and 276
method high ionic crosslinking for using ionic
voltage application stability liquid (EMIM
onto a DEP),
collector plate then water
coagulation
3 Crosslinking Post-processing Tonic crosslinking via Hydrogen 27 and 36
mechanism electrospinning divalent Ca** bonding-based
crosslinking (egg-box model) structural
using CaCl, regeneration
4 Fibre Nanofibrous Soft polymeric network Dense, well- 27 and 36
morphology structure fibres packed fibres
with a high surface with strong
area interchain
after spinning interactions
5 Spinnability Requires precise Easier to spin but Challenging to 27, 32 and 36
control prone to swelling spin
of viscosity and due to high
voltage viscosity
(2) Mechanical properties
comparison
1 Tensile strength Not reported With different With different 27 and 32
concentrations concentrations
of M. oleifera seed, of
but best at 1% MoP M. oleifera seed,
(lower) but best at 2%
MoP
(higher)
2 Young's Not reported Lower dependent on Higher improved 27 and 32
modulus hydration state stiffness due to
dense
hydrogen
bonding
3 Elongation at Not reported Moderate, decreases with Higher retains 27,32 and 36
break M. oleifera seed due to flexibility
embrittlement at higher M.
oleifera content
4 Structural Not reported Soft and flexible, but Rigid and 277
rigidity weaker than cellulose-based mechanically
fibres stable
5 Fracture Not reported Soft and flexible, but Ductile failure 27,32 and 36
behavior weaker than cellulose-based can elongate
fibres before breaking
(3) Microstructure and porosity
1 Microstructure Highly porous Open pore structure, Dense, compact 27,32 and 36
morphology nanostructure good for ion diffusion structure
2 Pore Excellent, ideal for Moderate, interconnected Lower 27,32 and 36
interconnectivity diffusion-based pores improve diffusion interconnectivity
applications reduces
diffusion
efficiency

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Electrospinning Wet-spinning Wet-spinning
S. no. Parameter (alginate-based) (alginate-based) (cellulose-based) References
Water interaction
& adsorption properties
3 Water Moderate Highly hydrophilic, Water-stable, 27, 32 and 36
interaction hydrophilicity, swells in aqueous resistant to
tunable via conditions degradation
crosslinking
4 Possible Less prone to ion Prone to Ca** ion leaching, Highly resistant 27, 32 and 36
resistance to leaching impacting stability to leaching
ion leaching with possible Ca**
ion
compared to wet-
spun alginate
5 Adsorption Potential is higher Potential high, suitable Moderate, 27, 32 and 36
efficiency due to for multiple metal ions selective for Cu**
nanofibre
morphology,
but adsorption was
not
conducted for these
studies
6 Heavy metal Expected more Broad-spectrum adsorption Selective 27, 32
selectivity selective (cu®', Ni**, cd*) adsorption, and 36
(based on the adsorption due to primarily Cu®*
SEM-EDX surface
characterisation) functionalisation
(recommended for
future studies)
(4) Industrial suitability and
economic perspectives
1 Industrial Best for high surface Best for filtration Best for water 27,32
suitability area applications membranes requiring treatment and 36
(e.g., nanofiltration) mechanical strength systems
2 Recyclability Moderate Possible limited Possibility of 27,32
potential recyclability: recyclability due to more and 36
crosslinking affects ionic crosslinking recyclable
reusability materials
due to hydrogen
bonding
regeneration
3 Cost- Higher cost due to Low-cost, simple Moderate cost, 27,32
effectiveness high-voltage processing, widely ionic and 36
equipment available materials liquid
and polymer processing is
additives expensive
4 Sustainability Sustainable but Highly sustainable, Sustainable, but 278 and
factor requires from seaweed and depends 279
additional plant-based sources on ionic liquid
processing for recycling
stability due to the
addition
of PEO
5 Processing Requires strict Crosslinking control Complex ionic 280 and
challenges control is essential for stability liquid 281
(voltage, viscosity, handling limits
humidity) the
feasibility during
the
dissolution and
wet-spinning
process
6
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Electrospinning Wet-spinning Wet-spinning
S. no. Parameter (alginate-based) (alginate-based) (cellulose-based) References
Scalability for Scalable but Scalable but requires Scalable but 32, 36
mass requires precise crosslinking ionic and 282
production advanced control liquid recycling
electrospinning isa
setups challenge
(5) Industrial suitability and
economic perspectives
1 Industrial Best for high surface Best for filtration Best for water 27, 32, 36 and
suitability area membranes requiring treatment 283
applications mechanical strength systems
(e.g., nanofiltration)
2 Recyclability Moderate Possible limited Possibility of 27, 32, 36 and
potential recyclability: recyclability due more recyclable 283
crosslinking affects to ionic crosslinking materials due to
reusability hydrogen
bonding
regeneration
3 Cost- Higher cost due to Low-cost, simple Moderate cost, 27, 32, 36 and
effectiveness high-voltage processing, widely ionic liquid 284
equipment available materials processing is
and polymer expensive
additives
4 Sustainability Sustainable but Highly sustainable, Sustainable, but 27,32
factor requires from seaweed and depends and 36
additional plant-based sources on ionic liquid
processing recycling
for stability due to
the
addition of PEO
5 Processing Requires strict Crosslinking control Complex ionic 27,32
challenges control is essential for stability liquid and 36
(voltage, viscosity, handling limits
humidity) the
feasibility during
the
dissolution and
wet-spinning
process
6 Scalability for Scalable but Scalable but requires Scalable but 27, 32, 36 and
mass requires precise crosslinking ionic 280-282
production advanced control liquid recycling
electrospinning isa
setups challenge

functional groups that support metal ion binding, their
adsorption efficiencies differ considerably depending on the
degree of chemical modification, composite formulation, and
the physicochemical characteristics of the target ions.'® This
systematic comparison is based on the data retrieved from
Tables 2-4 of this study. Fig. 14 shows the comparison of the
adsorption capacities of alginate-based composites. Alginate
composites show very high adsorption efficiencies, particularly
when hybridised with metal oxides, nano-additives, or func-
tional groups. Notable peak capacities include all metal ions
Pb>" at 1742 mg g~ ' for CaCO;-alginate/chitosan composite,**®
Cr®" with 678.67 mg per g amino-functionalised alginate aerogel

© 2026 The Author(s). Published by the Royal Society of Chemistry

and Cd*" with 464.23 mg g '.>”> The deduction from these
findings shows an extraordinary adsorption capacity after
chemical/nano-based functionalisation.

In addition, Fig. 15 presents the comparison of adsorption
capacities of cellulose-based composites extracted the study
shows the peak values of capacities retrieved from the cellulose-
based composites for metal ions with the highest adsorption are
Pb>" at 1250 mg g~ ', with an oxidised CMC hydrogel with
affinity with for Cu>" at 1111 mg g™, Co>* with 760 mg ¢~ " and
the CMC cryogel Ni*" at 620 mg g~ *.2°2°2 The findings show the
strength of sustained high adsorption across multiple metal
ions, broad selectivity, and stability in aqueous environments.
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Furthermore, Fig. 14 also shows the comparison of the
adsorption capacities of parts of M. oleifera with or without
modification. The M. oleifera-based adsorbent study was limited
to pure M. oleifera parts and modified treatment. Our findings
show high adsorption capacities, particularly when chemically
modified. Peak capacities include Hg>* 840.34 mg g ' for
acryloylated M. oleifera gum,>® Cd** with 357.14 mg g~ ' of the
pure seed, and Pb** with capacities of 209.54 mg g~ for citric-
acid-modified leaves.”**** Overall, the key findings from the
comparative evaluation indicate a clear performance hierarchy
among the three biopolymer systems. Cellulose-based
composites show the highest overall efficiency, with several
materials achieving capacities above 1000 mg g~ for metals
such as Pb*>" and Cu®>'. Alginate composites display very high
peak capacities, including the highest value reported (1742 mg
g ! for Pb*"), but this performance is strongly dependent on
functionalisation. In contrast, M. oleifera biosorbents generally
exhibit moderate adsorption, with higher capacities achieved
only after chemical modification. Overall, cellulose demon-
strates the most stable and versatile adsorption behaviour
(Fig. 16).

7 Consolidated comparative
discussion of electrospinning and wet
spinning

Building upon the comparative evaluation presented in the
preceding section, it is essential to examine how the choice of
fabrication technique further shapes the structural and func-
tional attributes of these biopolymer-based adsorbents using
the specific biopolymers and the biosorbent M. oleifera
composites. The following discussion, therefore, consolidates
the key features of electrospinning and wet spinning, high-
lighting how each method distinctly influences fibre
morphology, active-site accessibility, and overall adsorption
performance.

Electrospinning and wet spinning have been identified as
the key fabrication techniques for biopolymer-based and
absorbent materials. However, consolidated information on the
comparison of these techniques for these specific biopolymers
on how these methods distinctly influence the final adsorbent's
properties of the materials, such as general processing param-
eters, mechanical properties, microstructure and porosity,
water interaction and adsorption properties and industrial
suitability and economic perspectives. This section combines
the findings of this study with relevant literature on biopolymer-
based fibres for wastewater purification. The results align with
previous studies on electrospinning wet-spinning alginate,
cellulose and M. oleifera. The development of bio-based fibre
materials for water treatment addressed in this research is very
crucial in addressing the increasing contamination of both
domestic and industrial wastewater, such as oil and gas,
mining, chemical processing, and textile wastewater, among
others, with heavy metal ions such as Cu®*, Ni**, Pb*", Cr®*, and
Cd**. These contaminants, common in effluents from the oil
and gas, mining, chemical processing, and textile sectors, pose
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critical risks to human health and ecological integrity and
several metals which could pose serious risks to human health,
aquatic ecosystems, and environmental sustainability.*”*

This comparative analysis could serve as a guideline for
researchers and industries currently working in water treat-
ment, particularly those related to wastewater treatment and
management.””* Table 5 shows several comparisons, like the
selected fabrication technique, which might be tailored to
specific treatment goals, whether for heavy metal adsorption,
mechanical durability, or large-scale industrial filtration.

The comparative assessment demonstrates that each fibre
system offers distinct strengths relevant to water purification.
Electrospun alginate fibres offer the highest porosity and
surface area, making them theoretically ideal for adsorption-
based applications; however, experimental data on their
mechanical and adsorption performance remain limited. Wet-
spun fibre, specifically those fabricated from alginate fibres, is
the most cost-effective and sustainable; yet, their tendency to
swell and leach Ca®" compromises long-term structural
stability. Wet-spun cellulose fibres deliver superior mechanical
strength and water stability due to dense hydrogen bonding
when ionic liquid was used,*®* but their compact microstructure
restricts diffusion and adsorption efficiency.

Overall, no single fabrication method is universally optimal.
Instead, the results suggest that hybrid structures integrating
the high surface area of electrospun alginate with the
mechanical robustness of cellulose wet-spun fibres may offer
the most balanced performance for advanced heavy-metal
removal in water purification. Future studies can build on this
analysis by modifying fibre compositions used in our study or
related literature by integrating nanomaterials for enhanced
selectivity to scale up the fibre for production in real-world
applications.

To bridge the gap between scientific research and industrial
adoption, a study has ensured that the development of bio-
based water purification materials, including those incorpo-
rating M. oleifera, aligns with sustainability goals, regulatory
compliance, and practical feasibility.>”* Furthermore, we believe
that countries such as developing nations, where low-cost and
locally sourced materials are essential for clean water access,
can use M. oleifera-based fibre composites to provide a viable,
sustainable, and highly effective solution for addressing heavy
metal contamination in drinking water and industrial
wastewater.

8 Research gaps and future directions

Despite significant progress in developing biopolymer-based
adsorbents for heavy metal remediation, key research gaps
persist in the current literature. Many existing systems depend
heavily on synthetic or chemically modified materials, raising
concerns about sustainability, cost, and potential secondary
pollution. Natural biopolymers like sodium alginate and cellu-
lose are gaining increased attention due to their abundance,
biodegradability, and functional groups suitable for metal ion
binding. However, their full potential is yet to be realised,
particularly in hybrid forms incorporating low-cost biosorbents

© 2026 The Author(s). Published by the Royal Society of Chemistry
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such as M. oleifera. While seed extracts have been extensively
studied as biosorbents because of their cationic proteins and
bioactive components, limited research has been conducted on
their integration with alginate and cellulose using advanced
fabrication techniques like wet spinning and electrospinning.
Despite the rising demand for biodegradable and renewable
alternatives, several studies have focused on synthetic polymers
and unsustainable materials. Integrating alginate, cellulose,
and M. oleifera within engineered fibres marks an emerging
research frontier. These materials can be utilised to develop
adsorbents with tunable adsorption capacities based on opti-
mised parameters such as pH, dosage, and contact time.
However, the experimental frameworks for selecting and fine-
tuning these parameters have not been fully developed.
Furthermore, although the seed has been the most studied part
of M. oleifera, other parts of the plant, such as the bark, husk,
and leaves, contain functional bioactive compounds and should
be comparatively assessed for their adsorption efficacy.

Therefore, future studies should aim to:

(I) Explore underutilised parts of M. oleifera in combination
with alginate, cellulose or their combinations.

(II) Optimise electrospinning and wet spinning methods to
fabricate advanced biopolymeric adsorbents.

(I11) Establish application-relevant parameters for enhanced
adsorption capacities.

(Iv) validate composite performance in real water matrices
and assess their regeneration, reusability potential and detailed
assessment of adsorption performance.

These gaps highlight the need for systematic investigations
that bridge materials science and environmental engineering.
The insights gained from this review provide a foundational
basis for selecting suitable material combinations, fabrication
strategies, and operational parameters for improved heavy
metal adsorption.

9 Conclusion

This review critically evaluates the potential of alginate, cellu-
lose, and M. oleifera-based composites for heavy metal removal
from aqueous systems. These bio-based materials offer envi-
ronmentally friendly, low-cost alternatives to conventional
synthetic adsorbents and align with the goals of sustainable
water treatment. Sodium alginate and cellulose provide the
necessary functional groups for efficient adsorption, while M.
oleifera contributes additional bioactive compounds that
enhance adsorption performance. Although significant prog-
ress has been made in their utilisation, a lack of integrated
systems developed using advanced fabrication techniques such
as electrospinning and wet spinning remains. The novelty of
this study lies in its emphasis on the potential interactions
among these bio-based components and the emerging fabri-
cation strategies that can enhance their adsorption properties.
Based on the systematic comparison of sodium alginate,
cellulose, and M. oleifera composites, alginate-based systems
consistently show that cellulose-based composites offer the
most consistent and broadly effective adsorption performance.
Alginate-based systems can reach exceptionally high capacities,
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though largely when modified. M. oleifera adsorbents remain
effective and sustainable but generally show lower capacities
unless chemically enhanced. Taken together, cellulose emerges
as the most reliable high-performance bio-adsorbent, followed
by alginate and M. oleifera. Notably, the review highlights how
adsorption performance can be tuned through parameter
optimisation rather than solely relying on mechanical strength
or structural modifications. The major gaps remain in devel-
oping sustainable, high-performance bio-based adsorbents.
The combined use of alginate, cellulose, and M. oleifera, espe-
cially within engineered fibres, remains underexplored, and
optimisation frameworks for adsorption parameters are still
limited. Furthermore, most work focuses only on the seed,
leaving other functional plant parts insufficiently investigated.
The findings herein contribute to the body of knowledge by
outlining the suitability of these biopolymers as viable adsor-
bents for water purification and by identifying clear directions
for material selection, design, and implementation. Ultimately,
this review provides a basis for designing future studies to
improve adsorption capacities through the development of
tailored composites using sustainable materials and processes.
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Federal Government of Nigeria, through its relevant ministries,
investigate and promote the utilisation of abundant natural
resources such as M. oleifera, seaweeds (for alginate extraction),
and cellulose-rich ago-residues. Furthermore, establishing
accessible electrospinning and wet-spinning facilities for
researchers working in this area would significantly enhance
national research capacity and foster innovation in sustainable
water treatment technologies. Harnessing these bioresources
for sustainable water treatment technologies could enhance
national environmental strategies and contribute to achieving
the UN Sustainable Development Goals (SDGs).
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