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Multi-technique computational assessment
of fluoride uptake in enamel using
PIGE, NEXAFS, and Raman spectroscopy†
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The uptake of fluoride in the enamel matrix is an effective strategy to prevent demineralization and

caries formation. In this study a comprehensive methodology is developed to evaluate and understand

the uptake of fluoride in human enamel. Twenty-six healthy anterior teeth were sectioned in half; one

half remained untreated, while the other was treated with 50 mg mL�1 NaF (equivalent to 22.6 mg of

fluoride) through three 1-minute applications over a 12-day period, following the manufacturer’s

guidelines. Fluoride uptake was quantified with particle-induced gamma-ray emission (PIGE), revealing

an average increase of 160% in treated samples. The formation of calcium fluoride (CaF2) and

fluorapatite-like structures was confirmed through near edge X-ray absorption fine structure (NEXAFS)

analysis. Due to the absence of reference spectra for hydroxyapatite, fluorapatite, and calcium fluoride,

finite difference method near edge structure (FDMNES) simulations were employed to computationally

model the fluorine K-edge and the Ca L-edge spectra. Density functional theory (DFT) and time-

dependent DFT (TDDFT) approaches were applied to enhance spectral accuracy, enabling a refined

comparison with experimental data. To establish a rapid and laboratory-based screening technique,

Raman microscopy was used to analyze fluoride-treated and untreated samples. Spectral data were

evaluated using both full-spectrum analysis and specific spectral features, including band intensity,

full-width at half maximum (FWHM) of Raman peaks, and phosphate symmetric stretching depolarization

ratios. Furthermore, machine learning algorithms were applied to classify treated and untreated enamel

samples. The random forest classifier demonstrated strong predictive performance, successfully

distinguishing fluoride-treated samples. This methodological approach provides an effective framework

for analyzing fluoride uptake in enamel, potentially guiding future preventive dentistry strategies.

1. Introduction

Based on epidemiological evidence, it is estimated that around
2.4 billion people suffer from dental caries, a chronic infectious
disease that results in the demineralization of human tooth
enamel.1 This destruction of the calcified tissues of the tooth
occurs through acidic attack resulting from bacteriological
activity (mainly Streptococcus mutans),2 which metabolize
carbohydrates and produce acids as by-products, thus leading
to a decrease in pH in the oral cavity.

Another leading cause of enamel deconstruction is tooth
erosion beginning with the demineralization of the surface
layers of enamel and ultimately progressing to significant loss
of tooth structure. The acids responsible for dental erosion can
be intrinsic or extrinsic.3 While extrinsic factors are related
to eating habits (use of carbohydrates) and lifestyle, intrinsic
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factors can be caused by systemic diseases.4 In this context,
direct exposure to acids in the oral cavity promotes the demi-
neralization of hydroxyapatite (Ca5(PO4)3(OH) � HAp), due to
the sub saturation of minerals in relation to the surrounding
microenvironment.4,5

Several studies6,7 have demonstrated that the application of
topical fluoride agents in enamel could prevent the formation
of dental caries by strengthening the tooth matrix.

The replacement of hydroxyl groups with smaller fluoride
ions should result in a more stable apatitic structure. If the
OH� ion in the pure hydroxyapatite is completely replaced
by a fluoride ion (F�) the resulting mineral is fluorapatite
[Ca5(PO4)3F].8 The lower solubility and greater mechanical
strength of FAp compared to HAp increases the mineral’s
resistance to demineralization, thus reducing the development
and prevalence of caries.9,10 In a situation where the enamel
has been demineralized, its repair is possible by re-embedding
the lost ions. An increase in the pH of saliva is a necessary
condition for this process to take place, so in the presence of
fluoride ions, remineralization occurs faster and at a lower pH
and the restored enamel becomes stronger.10

However, apart from the iso–ionic exchange of fluorine for
hydroxyl, there are other forms of fluoride ion reactivity with
apatite: there can be crystal growth of fluorapatite from super-
saturated solutions or the apatite dissolution and formation of
CaF2-like crystals, and alternative loosely bound forms of
fluoride on the enamel crystallite surface.11

In general, regardless of the efficacy of fluoride in in vitro
studies, clinical results are mostly below expectations and are
mainly due to the lack of reliable methods for assessing the
formation of FAp in enamel, which would make it possible to
select the best candidate materials for clinical tests and the
development of efficient tooth fluoridation materials.12

Since the condition of human teeth is determined by
changes occurring in the phase composition of the tissue at
the micro and nano level, the use of spectroscopic methods of
molecular identification is the most promising and sensitive
tool to precisely assess such changes in the dental enamel.13

Raman spectroscopy is most often used for the examination of
tooth samples to evaluate the demineralization effect of fluori-
nated pharmaceutical products, such as whitening gels,14,15

protective varnishes16,17 and gustative stimulants18 mainly by
gauging the depolarization ratio of the symmetric stretching of
phosphate. Although the efficacy of the protective effect against
demineralization was proven in these studies, there is a lack
of evidence of the factual formation of FAp, perhaps due to
the low-resolution of the used system, or limited availability of
datasets.

In this study we compare the Raman profiles of dental enamel
with and without the application of topical NaF, with the ambition
of identifying the formation of novel phases in the enamel
composition using this non-destructive technique. For this pur-
pose, we used supervised and unsupervised machine learning
(ML) algorithms to further evaluate and classify our samples.

Raman spectroscopy generates a large multivariate dataset
that consists of a series of data points representing the intensity

of Raman scattering at specific frequencies. Advances in artifi-
cial intelligence (AI), particularly in machine learning (ML)
algorithms have become effective tools for analyzing complex
Raman datasets, by optimizing computational time and pre-
processing of spectral data19 and identifying patterns in the
dataset as well as performing classification in a more efficient
way.20,21 These algorithms can identify and classify different
molecular species, phases, or materials present in a sample
based on the spectral data.20

The validation of the uptake of fluorine in the enamel was
performed using the particle induced gamma-ray emission
(PIGE) technique, whereas the evaluation of alterations in the
electronic structure of some enamel samples was performed
using near edge X-ray absorption fine structure (NEXAFS). PIGE
and NEXAFS are very sensitive techniques that require the use
of large facilities, such as particle accelerators for proton beams
and synchrotron radiation, respectively. While PIGE has been
used profusely to quantify low-Z elements like fluorine in
hydroxyapatite matrices,14,18,22,23 the use of NEXAFS has been
seldomly exploited24,25 so the characterization of the structure
of hydroxyapatite-based samples has been limited.

In this study, samples of human teeth enamel were evaluated
via polarized Raman microscopy, PIGE and NEXAFS in order to
search for conclusive evidence of the formation of fluorapatite in
the enamel and to establish a methodology for this evaluation
using a low maintenance laboratory-based technique, with screen-
ing capabilities, such as Raman microscopy.

2. Materials and methods
2.1. Sample description and preparation

Twenty-six anterior healthy teeth, extracted for periodontal or
orthodontic reasons and preserved in a 0.5% (w/w) chloramine
solution for no longer than 6 months, from the LIBPhys-
FMDUL tooth bank, were selected. The samples were selected
by experts and the exclusion criterion was the presence of
lesions. Hydroxyapatite is an anisotropic material, thus, signal
intensity might be affected by the crystallographic orientation.26,27

This way, and in order to minimize the effects of crystallographic
orientation of the samples, specimens were obtained only from
molar teeth with a precision diamond saw (Buehler Isomet
1000, USA). Because human teeth in the biobank are anon-
ymized and we are not aware of previous history of fluoride
treatments, paired specimens were obtained from each tooth,
one for the control group (C) and another for the treatment
(with NaF paste) group (T).

Specimens from the T group were treated with Colgates

Duraphats, containing 50 mg ml�1 of NaF, equivalent to 22.6 mg
of fluoride. The treatment consisted of 3 applications, 1 minute
each, over a 12-day period. After each application, the specimens
were brushed under running water using a soft toothbrush in
order to remove traces of the paste, and were stored in vials at
room temperature with damp cotton to prevent dehydration.

No further preparation was required for the characterization
of the samples using PIGE, Raman or NEXAFS.
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2.2. Particle induced gamma ray emission (PIGE)

The prepared samples were evaluated using PIGE in order to
gauge the uptake of fluorine. The experimental work for PIGE
was carried out at the Centro Nacional de Aceleradores (CNA) in
the Seville 3 MV Tandem accelerator, using 3800 keV protons.
The current used was approximately 2 nA, and the total charge
collected was 0.5, 1 or 1.5 mC per measurement. Before entering
the reaction chamber, the beam passes through a collimator
which defines a beam spot of around 0.5 mm on the sample,
allowing, in this case, three different spots per mandible to be
analyzed. The fluorine gamma-rays from the 19F(p,p0g)19F nuclear
reaction, at 197 keV, and the sodium gamma-rays from the
23Na(p,p0g)23Na, at 440 keV, were detected by a Ge(HP) (hyper
pure germanium) semiconductor detector.

Peak intensities were obtained using the MatLabs (Math-
Works, USA) function trapz (trapezoidal numerical integration)
that computes the approximate integral via the trapezoidal
method. Quantification was performed using the certified reference
material (CRM) (Bone Ash – NIST 1400) according to:28

Csample ¼
YsampleSsample EFð Þ
YCRMSCRM EFð Þ

� CCRM

where Csample and CCRM, are the element concentrations in the
sample and CRM, respectively; Ysample and YCRM, are element
gamma-ray yields (net peak areas) for the sample and CRM,
respectively, normalized to the beam charge of the incident
protons (corrected by counting dead time); Ssample and SCRM,
are stopping powers for the proton beam of energy 3800 keV. The
CRM Bone Ash – NIST 1400 was chosen to be as similar as
possible to the samples, to avoid the calculation of the stopping
powers of all of them, for which the majority composition must
be estimated. To check if the same stopping power assumption
is valid, some estimations have been done. In addition to the
gamma ray detector, particle and X-ray detectors were also
placed during the experiment to obtain the composition of
the samples (a silicon surface barrier detector at 151 and a SiLi
detector at 451 with respect to the sample normal). The
stopping power of the CRM bone ash – NIST 1400 is 75.6 keV
(mg cm�2)�1.29 Two random spots of analysis on the samples
have been chosen to calculate their stopping power and the
obtained values were 78.12 keV (mg cm�2)�1 and 76.74 keV
(mg cm�2)�1. Hence, the differences in the stopping powers
are 3.3% and 1.5%. With these partial results it is plausible to
use the same stopping power for the samples and for the
reference material with an uncertainty below 5%.

2.3. Polarized Raman microscopy

Polarized Raman spectra of the samples were obtained using an
XploRA confocal microscope (Horiba Jobin-Yvon, France,) with
a 785 nm laser. Using an entrance slit of 200 mm, and a confocal
hole of 500 mm, the scattered light collected by the objective
was dispersed onto the air-cooled CCD array of an Andor iDus
detector with a 1200 lines per mm grating. In this way, the
spectral range investigated was from 250 cm�1 to 2150 cm�1

with a spectral resolution of 4 cm�1. A 100� objective (N.A. = 0.9)

was used to focus on the surface of enamel, as well as a 50%
neutral density filter rendering an incident power on the sample
of 4.8 � 0.4 mW (laserchecks, Edmund optics, Germany).
Spectra were recorded without polarization and with parallel
and cross polarization between the linearly polarized laser
source and the analyzer. Each spectrum was obtained by 3
accumulations of 15 seconds each and 15 spot analysis were
performed for each sample.

2.3.1. Preprocessing of the Raman spectra. To better
exploit Raman spectroscopy capabilities there is the need to
establish an optimized methodology for spectral preprocessing
of spectra before model development. Raman scattering is a
weak process, which often results in low signal to noise ratios.
Reducing experimental noise is generally done in three sepa-
rate steps: (1) cosmic ray removal, (2) signal smoothing, and
(3) baseline subtraction.19,30 The cosmic ray removal was
performed through the integrated software LabSpec (Horiba/
Jobin-Yvon Xplora, France); the other steps were performed
using Matlabs software (MathWorks, USA).

Spectral smoothing was achieved by using a Savitzky–Golay
second order filter with a window size of 25 datapoints, using
the Matlabs function sgolayfilt. Afterwards, the fluorescence
background was subtracted using the Matlabs function detrend
which removes the best straight-fit line from the data. Each
spectrum was then normalized by its maximum value to ensure
that the outcome of the analysis is independent of different
Raman scattering collection geometries and variation on the laser
intensity.21 After identifying the regions of interest, each peak was
fitted to a Gaussian function, using the gauss1 function.

After spectral preprocessing, Raman data were evaluated
considering (A) the entire spectrum range; and (B) the extracted
spectral features, as described in the next subsection.

2.3.2. Features extracted from the Raman spectra. To gauge
changes in the HAp matrix and eventual changes into FAp, four
vibrational bands were evaluated: the most intense Raman
peak present at B960 cm�1, attributed to symmetric stretching
vibration of the phosphate groups of hydroxyapatite; less intense
peaks at B430 cm�1 and at B590 cm�1, attributed to symmetric
(n2) and asymmetric (n4) bending vibrations of the same groups,
respectively; and a band at B1070 cm�1 (n3), corresponding to
the symmetric stretching of carbonate. The following features
were extracted for each peak, yielding a total of 13 features
extracted:31–33

– Centroid, providing insight into changes in the substrate.
– Full width at half maximum (FWHM), related to the

crystallinity of the apatite crystals.16

– Intensity, related to the amplitude of the Raman scattering
process and providing information about the crystal structure
of the materials.

– Depolarization ratio of the (n1) of phosphate (r959), provid-
ing information about the crystal symmetry and orientation of
the enamel rods. This parameter was determined, in each spot,
according to:

r959 ¼
I959?
I959k
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where I9598 is the intensity of the Raman band at B959 cm�1

using parallel polarization and I959> is the intensity of the
Raman band at B959 cm�1 using cross polarization between
the linearly polarized laser source and the analyzer.

2.4. Near edge X-ray absorption fine structure (NEXAFS)

The NEXAFS measurements were performed at the GELEM-PES
end station of the GELEM Dipole beamline at the BESSY II
electron storage ring operated by the Helmholtz-Zentrum
Berlin für Materialien und Energie.34

The RGBL-PES dipole offers an energy range between 80–
1500 eV, which covers all absorption edges we aim to measure.
It provides moderate flux that is of importance for the radiation-
sensitive materials. NEXAFS spectra in the total electron yield
(TEY) mode were acquired by measuring the sample drain current
with a Keithley ammeter, while for the fluorescence yield (FY)
mode a BRUKER detector was utilized. A combination of TEY
and FY modes of XAS at GELEM-PES allowed us to compare the
properties of the surface and bulk of the materials.

2.4.1. Finite difference method near edge structure (FDMNES)
code. Due to the scarcity of reference spectra in the literature as well
as certified reference materials for the materials under study
(hydroxyapatite, fluorapatite, calcium fluoride) we proceeded
with the simulation of the NEXAFS spectra of several compounds
to find a match for our measured samples. The F K-edge NEXAFS
spectra of CaF2 and Ca5P3O12F (named FAp) were simulated
using the finite difference method near edge structure
(FDMNES) code.35,36 FDMNES employs density functional theory
(DFT) with an optional spin-dependent local exchange–correla-
tion potential. For all calculations, the muffin-tin (MT) approxi-
mation was applied to model the potential, ensuring a 10%
overlap of the MT spheres. The simulations also include transi-
tions and relativistic effects, with corrections applied via time-
dependent DFT (TDDFT) using an internal local kernel imple-
mented within FDMNES for a better comparison. Theoretical
spectra were generated using clusters constructed from the
crystallographic structures of the two materials. A cluster cutoff
radius ranging from 6–11 Å from the chosen photo absorber
atom was employed. This range was selected as it produces
theoretical spectra where the main features of the K-edges are
accurately reproduced, with convergence achieved upon further
increases in the cutoff radius. As reported in the literature, the
fluorine K-edge is highly sensitive to the electronic structure of
the compounds studied. This sensitivity arises due to the core–
hole lifetime of fluorine, which can range from approximately
0.10 to 0.25 eV, depending on the local coordination environ-
ment of the F atom. To ensure a fair comparison, the convoluted
spectra of CaF2 and Ca5(PO4)3F were calculated using the same
core–hole width (B0.21 eV). The full width at half maximum
(FWHM) for the two compounds shows a separation of approxi-
mately 2 eV, highlighting their relative spectral shifts. The
combination of the pre-edge region and tail features suggests
that the local structure around the fluorine (F) atom corresponds
to CaF2 and Ca5(PO4)3F. The low-intensity peak observed
for Ca5(PO4)3F may be attributed to several factors, such as a
fluorine-enriched environment or doping on O-sites.

The Ca L2 and L3 edge spectra were also calculated using the
FDMNES package, employing the PBE96 functional and includ-
ing spin–orbit interaction. A cluster cut-off radius of approxi-
mately 3.0 Å, corresponding to the first coordination shell, was
used in the calculations. The Fermi energy was determined self-
consistently, considering the excited state of the absorbing
atom. The spectra were convoluted with a Gm width of 0.5 for
both CaF2 and Ca5P3O12F structures. Additionally, a hydroxy-
apatite structure was modelled (Ca5P3O12.5H0.5F0.5) (named as
HAp) and structurally relaxed within DFT to enable a compara-
tive analysis with both CaF2 and the Ca5P3O12F system.

To overlap plots of simulated and experimental data, the
simulated data were normalized after subtracting the pre-edge
region with a linear function and the post-edge region with a
2nd-order polynomial function, with similarity to the proces-
sing steps of experimental data.

3. Univariate analysis and descriptive
statistics

To compare the Raman spectra of enamel with and without
application of Duraphats paste, the extracted features were
compared to evaluate if there were significant changes between
them. Statistical analysis was performed using OriginPro soft-
ware (v.9.9.0.225 OriginLab Corporation, USA). Statistical ana-
lyses were conducted using OriginPro software (v.9.9.0.225,
OriginLab Corporation, USA). The normality of the distribution
of each studied variable was assessed with the Shapiro–Wilk
test. For data that followed a normal distribution, the means
were compared using the Student’s t-test for independent
samples, after confirming the homogeneity of variances via
Levene’s test. In cases where normality was not observed, the
non-parametric Kruskal–Wallis test was employed under the
null hypothesis that the medians of the distributions are equal,
with rejection occurring if the p-value was below the designated
significance level (0.05).

4. Machine learning methods

In order to further extract information from the Raman data,
different unsupervised and supervised multivariate analysis
methods were used, both directly on the pre-processed spectra
and on the extracted features.

4.1. Principal component analysis

Principal components analysis (PCA) is an unsupervised method
often used to reduce the dimensionality of large datasets while
preserving the most relevant information in the data. It trans-
forms a set of correlated variables into a smaller set of uncorre-
lated variables, the principal components (PC), which are linear
functions of the original variables that maximize the variance.37

PCA has shown to be particularly relevant in the distinction of
human enamel samples affected (1 cavity) or severely affected
(over 3 cavities) when compared with sound enamel samples.32

Timchenko et al.38 also used a PCA based methodology for the
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evaluation of extracted features from the Raman spectra of
enamel, dentin and cementum regions of sound teeth and teeth
with periodontitis. PCA was performed in Matlabs using the pca
function and the scores were plotted in OriginLabs software.

4.2. Random forest classifier

Random forest (RF)39 classifier is a meta estimator that fits
several decision tree classifiers on various random subsamples
with replacement of the dataset and uses averaging to improve
the predictive accuracy and control overfitting. A RF classifier
was used by Zhang et al.40 to identify the Raman spectra
obtained from different types of brain tissue, while Amjad
et al.41 developed a RF-based model to study milk samples of
different origins (cow, goat, buffalo and human).

In this work, the parameters used to optimize the model
were 30 trees in the forest, bootstrap = true, 4 samples to split
an internal node and Gini impurity to measure the quality of
the split. Then the features importance was calculated to
compare with the features extracted and assess whether they
are correlated.

The RF model was programmed on python language using
Spyders from the Anacondas Prompt. The dataset was divided
on training (80% of the data) and test (20% of the data) using
the python function train_test_split imported from sklearn.
model_selection, where the data was stratified to balance the
classes and the data were normalized using the function
preprocessing.MinMaxScaler imported from sklearn.

5. Results and discussion

Fig. 1 shows the obtained results for PIGE analysis of the paired
samples. Results showed an average increase of 160% in F
concentrations in the test samples compared with the control
samples. Furthermore, no significant increase of Na was
detected on the two groups of samples, confirming the intro-
duction of F in the matrix and not the reminiscence of paste on
the surface (Fig. 1b).

In order to further evaluate the chemical alterations in the
structure of the samples we performed NEXAFS. Fig. 2a pre-
sents the comparison of NEXAFS spectra at the F K-edge of the
control and test samples. Both spectra are characterized by an
intense peak around ca. 688 eV and a variety of mostly smaller
peaks at higher energies. In the F K-edge NEXAFS spectrum
of the control sample main spectral features at ca. 687.5 and
690.9 eV can be observed, as well as a shoulder at ca. 695–696 eV.
The shape of the spectra as well as its characteristic features fit
very well with the literature references of the fluorapatite one.42

It is worth noting that the well-defined structure at 707–712 eV is
related to Fe L2,3-edge transitions arising from natural iron
incorporation in the enamel matrix.43 The F K-edge NEXAFS
spectrum of the treated sample exhibits peaks at ca. 688, 691.3,
694.7, 697.8, 702.8, and 706.2 eV and broader structures at higher
energies. It corresponds very nicely to the literature data on
the CaF2.44

Fig. 2b and c compare the obtained spectra with the simu-
lated spectra with more similar features. In this way, the
obtained results showed that control samples were similar to
fluorapatite, as a result of a low concentration fluoride uptake
in enamel, from either systemic or topical sources.8 On the
other hand, test samples present a NEXAFS spectrum with
similar features as calcium fluoride. Factors relevant to the
deposition of this product in vitro can be increased time of
exposure, increased concentration, lowered pH, saliva and
calcium pre-treatment.8 The paste was applied according to
the manufacturer’s indications, in air, without saliva, however
the increased fluoride concentration of the NaF paste, was
favorable to the formation of CaF2.

Fig. 3a demonstrates the Ca-L2,3 edge of treated and control
samples. Both spectra consist of two main L3 and L2 (spin–orbit
related peaks), together with two smaller peaks (A1, A2, and
B1, B2) preceding the L3 and L2 edges, respectively, with the
difference between A1-L3, and B1–L2 being higher than between
A2-L3 and B2-L2.

This multi-peak pattern originates from the crystal field
splitting and is related to the symmetry of the atoms neighboring

Fig. 1 Comparison of the (a) fluorine and (b) sodium concentration obtained for all the studied samples. Error bars correspond to the maximum
deviation to the average value for the three measurements.
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the Ca2+ ion in the first co-ordination sphere. It is well established
that spectral intensity, number of visible peaks as well as
the energy separation between the pre-peaks and the major
features are unique and can serve as a fingerprint for the
certain Ca-containing compounds.44 The spectra of the treated
and control samples are obviously characterized by different
values of the peaks splitting in L3 and L2 edges. For the control
sample the b2–b1 separation is 1.1 eV that fits well with the
simulated data for FAp (Fig. 3b) and appears shifted by 0.3 eV
for HAp.44 Regarding the treated samples, spectra show features
at the same energy positions as the CaF2 reference sample, while
A2 and B2 are more separated in energy from the respective L3

and L2 edges in the simulated CaF2 spectra (Fig. 3c).
Regarding the Raman spectra, Fig. 4 shows a comparison of

the Raman spectra for the control and test paired samples, and
we could identify differences in less intense peaks attributed
to symmetric bending vibrations and asymmetric stretching
vibrations, namely, shifts in the peak’s centroid or intensity.
However, considering the NEXAFS results, and in a first attempt
to analyze and compare the samples, the characteristic band of
CaF2 at B322 cm�1 could not be identified in the test group.
Taking into account the probed volume of the Raman measure-
ments (considering the wavelength of the laser and N.A. of the
lens) the depth of measurements should be to 1.1 mm.45 This is
much higher than the NEXAFS probed volume (up to 100 nm46

in fluorescence mode) indicating that the formation of CaF2

should occur superficially.
It was thought that calcium fluoride formation on enamel

was unfavorable because it dissolves readily in saliva. However,
research shows that at neutral pH, calcium fluoride is
quite insoluble and can remain on tooth surfaces for weeks
after fluoride application. This stability is attributed to the
adsorption of secondary phosphate (HPO4

2�) and pellicle pro-
teins on its surface. During acidic conditions, such as a caries
attack, primary phosphate (H2PO4

�) dominates, leading to
calcium fluoride dissolution. The fluoride released under these
conditions is incorporated into hydroxyapatite, reinforcing
enamel. Afterwards, calcium fluoride is restabilized by second-
ary phosphate and proteins, serving as a pH-controlled fluoride
reservoir.8

Table 1 presents the statistical analysis of the different
parameters extracted from the spectra. As can be seen, for all
parameters, the differences found between the control group
and the test group are not significant.

To further evaluate the differences and try to discriminate
between groups, principal components analysis was performed.
Fig. 5a and b present the PCA score plots obtained using the
full preprocessed spectra and the features extracted from the
spectra. As can be seen, both approaches presented a high
overlap of the scores for the control and test groups with

Fig. 2 Comparison of the NEXAFS spectra at the F K-edge obtained for (a) the control and test groups, and (b) the control group and simulated spectrum
of Ca5(PO4)3F and (c) the test group and simulated spectrum for CaF2.
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variance explained by PC 1 of little over 40%. On the other
hand, a cumulative explained variance of 93% is obtained
by the 3rd PC for approach A – the full spectrum, while this

percentage of explained variance is only obtained by the 4th PC
when considering the spectral features extracted. This might be
indicative that other features of the spectrum, besides the main
phosphate and carbonate vibrational bands are informative to
better characterize the samples.

Although PCA is capable of identifying some important
structural information in the data it has less discrimination
power due to the fact that it is an unsupervised procedure. It
does not identify features or patterns that are important for
discriminating between groups, rather it extracts new features
that compactly represent the data.30 Often, the interpretation of
the complex biochemical information obtained through vibra-
tional spectroscopic techniques requires further data analysis
using supervised procedures, such as, the RF classifier. Table 2
presents the performance metrics for the used RF classifiers
following approaches A and B. For both approaches, the
classifier achieved a good predictive performance, being able
to distinguish whether samples underwent treatment or not.

Conclusion

This study demonstrates a comprehensive approach to evaluating
fluoride uptake in human enamel, integrating advanced analytical
techniques with machine learning for improved insight. Through
the combined use of particle-induced gamma-ray emission

Fig. 3 Comparison of the NEXAFS spectra at the Ca L-edge obtained for (a) the control and test groups, (b) the control group, Hap and Fap simulated
spectra and (c) the test group, CaF2 reference sample and simulated spectrum.

Fig. 4 Comparison of the Raman spectra for the control and test sam-
ples. As an inset, it is highlighted the slight shift for the symmetric
stretching band of phosphate.
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(PIGE), near edge X-ray absorption fine structure (NEXAFS), and
Raman spectroscopy, we quantitatively and qualitatively assessed
fluoride uptake and the formation of fluoride-based compounds.

PIGE analysis revealed a significant increase in fluoride concen-
tration, ranging from a 39% increase to 709% increase in treated
samples, confirming the effectiveness of NaF in enhancing fluor-
ide retention within the enamel matrix. NEXAFS further substan-
tiated the formation of CaF2, highlighting its role as a stable
fluoride reservoir in treated samples.

A key advancement in this study lies in the application
of machine learning algorithms, particularly random forest
classifiers, to Raman spectral data for distinguishing between
treated and untreated enamel samples. By extracting spectral
features, such as band intensity, full-width at half maximum
(FWHM) of specific Raman peaks, and depolarization ratios,
we demonstrated that machine learning algorithms can effec-
tively differentiate subtle chemical and structural changes

Table 1 Descriptive statistics of the different parameters extracted from the Raman spectra

Band Feature Sample Mean SD Minimum Median Maximum p value

PO4
3� V1 Position Control 964.7 0.3 964.1 964.8 965.4 0.44

Test – NaF 964.8 0.2 964.4 964.8 965.2
FWHM Control 16.3 0.2 16.0 16.2 17.1 0.28

Test – NaF 16.4 0.4 15.9 16.2 17.5
Intensity Control 17.8 0.2 17.4 17.8 18.5 0.15

Test – NaF 17.7 0.3 16.9 17.7 18.5
Depolarization ratio Control 0.6 0.1 0.5 0.6 1.0 0.90

Test – NaF 0.6 0.2 0.3 0.6 1.0
PO4

3� V2 Position Control 445 2 441 444 447 0.27
Test – NaF 444 2 440 444 449

FWHM Control 30 3 27 29 39 0.22
Test – NaF 30 2 27 30 35

Intensity Control 6.1 0.5 5.3 6.0 7.3 0.34
Test – NaF 6.4 0.6 5.6 6.4 8.4

CO3
2� V1 Position Control 1068 4 1029 1049 1056 0.71

Test – NaF 1070 20 1034 1048 1142
FWHM Control 47 6 34 48 56 0.65

Test – NaF 48 9 32 46 77
Intensity Control 2.0 0.2 1.7 2.0 2.5 0.36

Test – NaF 2.1 0.2 1.8 2.1 2.7
PO4

3� V4 Position Control 586 1 584 586 589 0.3
Test – NaF 587 2 584 587 593

FWHM Control 20 5 15 18 37 0.19
Test – NaF 21 8 17 19 58

Intensity Control 4.5 0.7 3.7 4.3 6.6 0.09
Test – NaF 5 2 3 5 13

Fig. 5 PCA plots obtained using (a) the whole spectrum and (b) selected features.

Table 2 Performance metrics for the used RF classifiers following
approaches A (full spectrum) and B (derived parameters)

Group Approach A Approach B

Precision Control 100 80
Test – NaF 80 100

Recall Control 75 100
Test – NaF 100 75

F1-score Control 86 89
Test – NaF 89 86

Accuracy 87.5 87.5
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induced by fluoride treatment. This data-driven approach not
only revealed previously unappreciated patterns within the spectra
but also showed that even slight variations in vibrational modes
could serve as reliable indicators of fluoride uptake. The super-
vised machine learning models achieved robust classification
performance, confirming their utility in the context of spectral
analysis for biomaterials research.

The integration of these methods underscores the potential
of machine learning in enhancing the interpretation of Raman
spectra, especially in complex biological samples where over-
lapping signals and subtle spectral shifts present challenges to
traditional analysis. By streamlining the process of feature
extraction and analysis, machine learning can provide a power-
ful tool for rapid screening and evaluation of dental treatments.

In conclusion, this multi-technique approach establishes
a reproducible framework for assessing fluoride uptake
in enamel and highlights the transformative role of machine
learning in advancing Raman spectroscopic analysis. Future
research may explore the application of this methodology to
in vivo studies, aiming to refine predictive models and investi-
gate the long-term stability of fluoride uptake in dental enamel.
These findings have important implications for preventive
dentistry, as they support the development of targeted fluoride
treatments that optimize enamel remineralization and caries
resistance.
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