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Autonomous process optimization (APO) is a technology that has recently found utility in a multitude of

process optimization challenges. In contrast to most APO examples in microflow reactor systems, we

recently presented a system capable of optimization in high-throughput batch reactor systems. The

drawback of APO in a high-throughput batch reactor system is the reliance on reaction sampling at

a predetermined static timepoint rather than a dynamic endpoint. Static timepoint sampling can lead to

the inconsistent capture of the process performance under each process parameter permutation. This is

important because critical process behaviors such as rate acceleration accompanied by decomposition

could be missed entirely. To address this drawback, we implemented a dynamic reaction endpoint

determination strategy to capture the product purity once the process stream stabilized. We

accomplished this through the incorporation of a real-time plateau detection algorithm into the APO

workflow to measure and report the product purity at the dynamically determined reaction endpoint. We

then applied this strategy to the autonomous optimization of a photobromination reaction towards the

synthesis of a pharmaceutically relevant intermediate. In doing so, we not only uncovered process

conditions to access the desired monohalogenation product in 85 UPLC area % purity with minimal

decomposition risk, but also measured the effect of each parameter on the process performance. Our

results highlight the advantage of incorporating dynamic sampling in APO workflows to drive

optimization toward a stable and high-performing process.
Introduction

Articial intelligence (AI) has multiple denitions, but
perhaps the most comprehensive description was invoked by
the social scientist Marvin Minsky as “the science of making
machines do things that would require intelligence if done by
humans.” The eld of AI is wide-ranging, encompassing
subelds such as machine learning, computer vision, natural
language processing, robotics, and autonomous systems.1

Autonomous process optimization (APO) is the human
intervention-free self-optimization of input process parame-
ters such as catalyst and temperature in order to minimize or
maximize process output parameters such as yield, purity,
and selectivity.2–7 APO involves the denition of the search
space, in other words, the selection of the input and output
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tion (ESI) available. See DOI:

9

process parameters, as well as the “closed-loop” integration of
an optimization strategy with an automated experimental
execution platform such as a liquid handling robot with an
online analytical instrument such as a liquid chromatography
instrument with UV detection.

Optimization algorithms determine the input parameters
that result in the minimum or maximum output parameters for
an objective function, f(x). An objective function can be as
simple as the quadratic function f(x) = x2, but in reality,
objective functions in the chemical sciences are seldom this
simple. In fact, mapping out the objective function of a chem-
ical process would require the experimental sampling of each
possible input parameter permutation. Due to the impracti-
cality of the large number of experiments required by such an
approach, the construction of a surrogate model from a subset
of experiments is oen preferred. As additional samples are
evaluated in each optimization round, the model is rened.
This approach to optimization has been coined sequential
model-based optimization (SMBO, Fig. 1).8 Common examples
in the chemical sciences include Stable Noisy Optimization by
Branch and Fit (SNOBFIT),2,9 which relies on linear regression,
and Bayesian Optimization (BO),10–15 which commonly relies on
Gaussian Process (GP) regression.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d3sc06884f&domain=pdf&date_stamp=2024-05-11
http://orcid.org/0000-0002-1393-9493
http://orcid.org/0000-0003-1262-6126
http://orcid.org/0000-0002-9650-6844
http://orcid.org/0000-0002-6102-815X
http://orcid.org/0000-0002-9268-7545
http://orcid.org/0000-0002-4345-3005
https://doi.org/10.1039/d3sc06884f
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc06884f
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC015019


Fig. 1 Schematic of sequential model-based optimization (SMBO). Fig. 2 Photobromination process optimized through dynamic
sampling-driven autonomous process optimization.

Fig. 3 High-throughput reaction profiling evaluating NBS in the
presence of 22 acid additives, along with replicate additive-free
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We recently applied an autonomous Bayesian Optimization
strategy to the optimization of a Suzuki–Miyaura cross-coupling
process in high-throughput batch reactors.16 High-throughput
batch reactors offer an advantage over the microow reactors,
which have historically been utilized in the APO eld, in that
they provide broader versatility with respect to the physical
processes they tolerate (for example, solid–liquid heteroge-
neous processes). Batch reactors also offer higher throughput
via parallelization in order to generate data for surrogate
models more efficiently, however, experiments are typically
sampled at predetermined static timepoints rather than at
dynamic endpoints.17–20 We devised a novel dynamic sampling
strategy in which each high-throughput batch experiment could
be sampled over time and terminated upon reaction endpoint
detection via a real-time plateau detection algorithm.

The importance of dynamic sampling cannot be overstated
in the context of APO, particularly in the optimization of
complex chemical reactions through techniques such as SMBO.
This crucial technique not only allows for the automatic
adjustment of the number of samples taken during run-time,
saving precious experimental resources, but also provides an
accurate means of capturing the process output upon reaction
completion. This is particularly useful in reactions with
a propensity for decomposition, where dynamic sampling
allows each reaction to run its course.

Dynamic sampling proved particularly useful in the optimi-
zation of a pharmaceutically relevant radical photobromination
process with the propensity for decomposition through the
generation of side product 3 (Fig. 2).21,22 We sought to under-
stand the impacts of process conditions on the process perfor-
mance and to identify conditions that would avoid
decomposition. In addition, we sought to understand the
process performance impacts of parameter permutations close
to the optimum in the least number of experiments. Without
dynamic sampling through a plateau detection algorithm,
sampling could potentially terminate prior to the reaction
stream reaching stability to the point of reaction completion or
decomposition, resulting in the inaccurate capture of the
process performance. Herein we describe the implementation
of a dynamic sampling-driven SMBO strategy to optimize this
photobromination process.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Results and discussion
Pre-autonomous optimization studies

Prior to commencing APO studies, we initiated our work with
high-throughput reaction proling studies to narrow down the
process parameters of interest. These studies uncovered
a starting point for optimization and identied a variety of acid
additives that promoted rate acceleration in the presence of
NBS (Fig. 3). For example, the addition of 10mol% of anhydrous
phosphoric acid (H3PO4) generated product 2 in 79 UPLC area
% in 1.5 hours. The second best option appeared to be phenyl
phosphonic acid (PPA), generating product 2 in 78 LC area % in
1.5 hours. This rate acceleration was accompanied by the
generation of 5 LC area % of dibrominated side product 3. The
reaction was very slow in the absence of acid additive and pla-
teaued upon generating 50 UPLC area % product aer six hours
of reaction time. Poor reactivity was observed with DBDMH,
even in the presence of acid additive (see ESI† for details).
conditions.
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Fig. 4 NMR reaction monitoring of (a) all reaction components at
15 °C under light–dark cycling, (b) all reaction components at 15 °C
under constant light conditions, and (c) starting material 1 and NBS at
15 °C under constant light conditions. 1 equiv. 1, 1.2 equiv. NBS and
10 mol% H3PO4 in ACN-d3 (0.07 M) irradiated with 445 nm LEDs for
80–120 min at 15 °C.
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UPLC area % of starting material 1 (blue), product 2 (green)
and side product 3 (red) measured over 9 hours in 1.5 hour time
intervals. Conditions: 63 mmol 1, 69.3 mmol NBS and 6.3 mmol
acid additive in ACN (0.25 M) irradiated with 405 nm LEDs at 60
mW (level 1) intensity for 9 h at 10–30 °C.

Although we had uncovered a suitable starting point for
optimization, we were concerned that several experiments
reached a conversion plateau prior to full starting material
consumption. We suspected that decomposition of the bromi-
nation reagent was responsible for conversion plateaus, but did
not have a full grasp of the decomposition mechanism. Lack of
understanding around a decomposition mechanism posed
a signicant risk for the optimization. We therefore embarked
upon LED-illuminated NMR spectroscopy studies for moni-
toring photochemical reactions that had been developed in
2019 and implemented in the monitoring of multiple photo-
chemical reactions,23–25 including a recently reported Wohl–
Ziegler bromination.21

UPLC analysis proved to be a suitable method for monitoring
starting material 1, product 2 and side product 3, but failed to
effectively monitor the bromation reagent (NBS) and succini-
mide levels due to their lack of strong chromophores. NMR
proved to be a complementary method for gaining an under-
standing of the fate of NBS. Two LED NMR experiments were
carried out at 15 °C that monitored starting material 1, product
2, dibrominated side product 3, NBS and succinimide concen-
trations over time. The rst experiment was a light–dark study,
where the reaction was irradiated for 10 minutes, aged in the
dark for 10 minutes, and then irradiation resumed for 100
minutes (Fig. 4a). No changes in reaction species concentra-
tions were observed over the 10 min dark period, indicating the
absence of a dark reaction or decomposition pathway. This
observation allowed for us to turn off the lights during auton-
omous optimization sample analyses. Overall mass balance
with respect to 1, 2, and 3 remained steady over time and the
mass balance with respect to NBS and succinimide also
remained steady over time. The second experiment was a reac-
tion monitoring study under constant irradiation. Here, we
noted that 20 mol% of the NBS had converted to succinimide
prior to initiation and that the reaction plateaued due to full
consumption of the NBS prior to starting material consumption
(Fig. 4b and c).

In order to further understand the early formation of succi-
nimide, we prepared a representative mixture of starting
material 1 and NBS in anhydrous ACN and observed that
15.3 mol% of succinimide had already formed prior to our rst
NMR measurement (the level remained constant over 20 hours
in the dark). In order to rule out the possibility that the source of
succinimide was the reagent bottle, we prepared a 70 mM
solution of NBS from the same reagent bottle and observed only
0.6 mol% succinimide. Similarly, the addition of H3PO4 to NBS
resulted in a measurement of 0.5 mol% succinimide in solu-
tion. In contrast, the addition of starting material 1 to NBS
resulted in the immediate formation of 18.6 mol% succinimide
and, unsurprisingly, the addition of starting material 1 and
H3PO4 to NBS resulted in the formation of 18.4 mol%
succinimide.
7162 | Chem. Sci., 2024, 15, 7160–7169
We speculated that pyridazinone 1 might have formed an N-
brominated complex in equilibrium, and were unsure whether
this species could serve as an effective bromination reagent. In
order to provide evidence for the formation of an N-bromopyr-
idazinone species, we carried out NMR internal standard assay
measurements of the concentrations of pyridazinone 1 and
succinimide in two solutions, the rst containing pyridazinone
1 alone and the second containing pyridazinone 1 along with
one molar equivalent of NBS. The rst assay measured the
single component mixture to be 76.0 mM in pyridazinone 1
while the second assay measured the mixture to be 58.7 mM in
pyridazinone 1 and 23 mM in succinimide based on their cor-
responding N–H signals. Reaction plateau variability could be
based on changes in the equilibrium distribution between NBS
and the proposed N-bromopyridazinone species under varied
process conditions. Nonetheless, the LED NMR studies allowed
us to determine that the preparation of stock mixtures con-
taining pyridazinone 1 and NBS could potentially lead to
plateau variability issues, and thus, all future stock solutions for
autonomous optimization were prepared individually for each
reaction component.

Dynamic-sampling driven autonomous optimizer design

We developed a high-throughput autonomous photochemistry
optimizer with dynamic sampling by modifying a Chemspeed
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Input and output parameters for optimization

Input parameters Range Unit

Reagent NBS, DBDMH Reagent
Additive 8 acids Acid
Solvent ACN, DMC Solvent
Reagent equivalents 1.0–1.5 Molar equivalents
Additive loading 1–25 mol%
Rxn temperature 5–35 °C
Light intensity stage 1, 2, 3, 4, 5 Stage

Output parameters Objective Unit

LC area % product Maximize LCAP
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SWING XL robot to incorporate a high-throughput photoreactor
with automated light and temperature control, online UPLC
system for rapid outcome analysis, and installed an ultra-high-
pressure sampling valve for dynamic end point determination.
We also developed a plateau detection algorithm and selected
open-source optimization algorithms for autonomous optimi-
zation. Finally, we developed a data integration strategy among
components and established a Python interface to congure
input parameters, experiment suggestions, and to relay results
to the optimizer code for the next experiment (Fig. 5, see ESI†
for details).

A key feature of this system was a novel photoreactor that
could maintain a low temperature while accessing all ve light
intensities (60–385 mW). For this, we worked with an external
vendor to develop a novel temperature-controlled reactor (TCR)
with cooling channels that decreased the number of wells from
96 to 48. This reactor achieved excellent temperature control at
all ve light intensity levels (Fig. 5).
Optimization search space

With the hardware and soware components in place, and the
reaction plateau mechanism better understood, the experi-
mental search space was designed (Table 1). The goal of the
optimization was to uncover process conditions that afforded
rate acceleration while maintaining process stream stability. A
wide variety of categorical input parameters were selected,
including bromination reagents (two options), acid additives
(eight options) and solvents (two options). The bromination
reagents and solvents were represented through one hot
encoding, while the acid additives were represented through
feature encoding, where the reported rst pKa values in water
Fig. 5 Components of a Chemspeed SWING XL system for high-
throughput autonomous photochemistry optimization with dynamic
sampling.

© 2024 The Author(s). Published by the Royal Society of Chemistry
were used.26 Despite our understanding that the reaction would
be executed in organic solvents, we reasoned that ranking the
acids through their pKa measurements in water would still be an
effective representation of relative acidity (Table 2). Three
continuous parameters were included in the search space,
including reagent equivalents, additive loading and reaction
temperature. We hypothesized that reagent equivalents on the
high end would lead to higher levels of side product 3, while
additive loading and temperature would be positively correlated
to rate acceleration. A discrete parameter was also included in
the search pace, where ve discrete light intensity stages were
explored. The ve intensity stages corresponded to light inten-
sity measurements of 60, 125, 190, 255 and 385 mW per LED.

Finally, the search space was focused on a single optimiza-
tion output, the UPLC area % of monobrominated product 2,
measured at 210 nm wavelength. Our goal was to maximize the
amount of desired product 2 while minimizing the amounts of
starting material 1 and side product 3. Prior experiments
revealed that the UPLC area % of product 2 correlated very well
with the solution yield of product 2; thus, the analysis was
limited to this output parameter measurement for simplicity
(see ESI† for details).
Autonomous optimization experiments

Aer demonstrating excellent reproducibility under standard
reaction conditions (see ESI† for details), three autonomous
process optimization (APO) campaigns were commenced. Each
Table 2 Eight acids included in the optimization listed in order of
increasing first pKa (H2O)

Acid pKa 1 (H2O)

Hydrochloric acid (HCl) −8.0
Sulfuric acid (H2SO4) −3.0
2-Picolinic acid 1.0
Phenylphosphonic acid (PPA) 1.9
Phosphoric acid (H3PO4) 2.1
DL-lactic acid 3.9
Acetic acid (HOAc) 4.8
Water (H2O) 15.7

Chem. Sci., 2024, 15, 7160–7169 | 7163
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Fig. 7 Reaction profiles of the second campaign with Gaussian
process (GP) model-based Bayesian optimization (BO) sampled with
the expected improvement (EI) acquisition function. D-optimal design
seed in rounds 1–8. Colored by round.
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campaign began from the same set of eight D-optimal seed
experiments, where one acid additive was explored in each
experiment under different combinations of the remaining
parameter points. Each campaign included between 34 and 48
sequential iterations that were executed and proled over two
minute intervals. Experiments could not be parallelized due to
equipment constraints. The optimized output parameter was
the nal area % of product 2 upon reaching the reaction
plateau. In order to maximize diversity, the optimizer code was
congured to switch to random sampling mode once the model
failed to predict outcomes that exceeded the maximum nal
UPLC area % of product 2. Once the model generated improved
predictions in light of these random evaluations, the optimizer
code was congured to switch back to optimization mode.

The rst optimization campaign explored the implementa-
tion of a linear regression (LM) model based sequential opti-
mization strategy with a predicted mean acquisition function
and was executed for 46 iterations (Fig. 6). The second optimi-
zation campaign explored the implementation of a Gaussian
process (GP) model based Bayesian optimization (BO) strategy
with an expected improvement (EI) acquisition function and
was executed for 34 iterations (Fig. 7). The third optimization
campaign explored the implementation of a Gaussian process
(GP) model based Bayesian optimization strategy (BO) with
three alternating acquisition functions, including expected
improvement (EI), probability of improvement (PI) and upper
condence bound (UCB). The nal campaign was executed for
48 iterations (Fig. 8).

The time course data reveals three general categories of
kinetic proles. In the rst kinetic prole, excellent rate accel-
eration is observed, but this acceleration is accompanied by
rapid decomposition aer reaching a maximum product level
Fig. 6 Reaction profiles of the first campaign with a linear regression
model (LM) based optimization sampled with the predicted mean
acquisition function. D-optimal design seed in rounds 1–8; random
sampling in rounds 22–24, 26–27, 30–31, 33, 34, 33–36, 38–39, 42–
46. Colored by round.

Fig. 8 Reaction profiles of the third campaign with Gaussian process
(GP) model-based Bayesian optimization (BO) sampled with alter-
nating expected improvement (EI), probability of improvement (PI),
and upper confidence bound (UCB) acquisition functions. D-optimal
design seed in rounds 1–8; random sampling in round 10. Colored by
round.

7164 | Chem. Sci., 2024, 15, 7160–7169
(for example, plot 5 in Fig. 6). In the second kinetic prole,
moderate and controlled rate acceleration is observed, resulting
in moderate to high product formation (for example, plot 28 in
Fig. 7). In the third kinetic prole, the reaction is slow and the
plateau is reached at very low product levels (for example, plot
26 in Fig. 8). The ideal process would display the second kinetic
prole, reaching a high level of product in a controlled fashion,
with a low risk of decomposition. We observed that both BO
campaigns converged to optima exhibiting the second kinetic
© 2024 The Author(s). Published by the Royal Society of Chemistry
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prole category (Fig. 7 and 8), while the LM campaign did not
appear to converge at all, but this can bemostly attributed to the
optimizer code focusing on random sampling past iteration 21
(Fig. 6). These results, along with the virtual benchmarking
studies provided in the ESI section,† indicate the implementa-
tion of a Gaussian process (GP) model-based Bayesian optimi-
zation approach (BO) as a superior optimization strategy.

Moreover, monitoring the reaction plateau and reporting the
reaction outcome at the plateau point resulted in a much more
meaningful comparison among the varied process conditions.
Take, for example, the cases of iteration 19 and 39 in the rst
optimization campaign (plots 19 and 39 in Fig. 6, with their 4
minute and nal samples colored red). If both iterations were
sampled at 4 minutes, it would have appeared that 19 out-
performed 39. Instead, sampling both iterations at their plateau
points (10 minutes for 19 and 12 minutes for 39) revealed that,
in fact, 39 signicantly outperformed 19 upon reaction
completion, because decomposition was observed in 19 aer 4
minutes of reaction.

Although the time course data presented in Fig. 6 through
Fig. 8 demonstrated the various kinetic proles that could be
observed in the photobromination reaction under study, addi-
tional visualizations that would provide deeper insights around
local and global optima were still needed. Given that three
categorical parameters were under evaluation, including
reagent, additive and solvent, we hypothesized that multiple
local optima were likely to exist. This certainly made the
Fig. 9 Visualization of the first campaign with a linear regression model
function. Grouped by reagent, solvent, additive and round. Sorted by ad

© 2024 The Author(s). Published by the Royal Society of Chemistry
optimization more challenging. For multivariate data, we found
the combined bar chart, line and scatter plot format to be the
most informative data visualization technique (Fig. 9–11).

Visualization of the multivariate data from rst LM based
optimization campaign demonstrates the importance of
reagent, solvent and additive selection (Fig. 9). NBS out-
performed DBDMH under a majority of conditions and DMC
appeared to yield optimal results in combination with
a broader selection of acid additives. The optimizer appeared
to focus on HCl and H2SO4, which promoted signicant rate
acceleration, however the kinetic proles with these additives
aligned with the rst category (decomposition aer
a maximum product level) at higher additive loadings. Visu-
alization of the multivariate data from the second and third
BO campaigns answered some of the questions that arose
from the rst campaign (Fig. 10 and 11). The second campaign
also focused on HCl and H2O4 with NBS in DMC, with similar
observations around decomposition under high loadings of
these two additives. Here, acetic acid with NBS in DMC was
sampled in higher detail, and this additive appeared to
promote moderate rate acceleration to generate high product
levels. The decomposition observed with the lower pKa acids
(HCl and H2SO4) at higher loadings did not appear to be an
issue with acetic acid. The third campaign shied the focus
from the lower to higher pKa acids, such as phosphoric, lactic,
and acetic acid. This is likely because of the implementation of
the UCB acquisition function, which was designed to explore
(LM) based optimization sampled with the predicted mean acquisition
ditive loading. Colored by plateau time.

Chem. Sci., 2024, 15, 7160–7169 | 7165
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Fig. 10 Visualization of the second campaign with Gaussian process (GP) model based Bayesian optimization (BO) sampled with the expected
improvement (EI) acquisition function. Grouped by reagent, solvent, additive and round. Sorted by additive loading. Colored by plateau time.
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unsampled regions of the parameter space, thus, it is not
surprising that additional local optima were revealed with the
implementation of this acquisition function. Although lactic
Fig. 11 Visualization of the third campaign with Gaussian process (GP) m
pected improvement (EI), probability of improvement (PI), and upper
solvent, additive and round. Sorted by additive loading. Colored by plate

7166 | Chem. Sci., 2024, 15, 7160–7169
acid promoted moderate rate acceleration, the reactions were
still quite fast, reaching their plateaus within 8 and 20
minutes. What is preferred about lactic acid, from a process
odel-based Bayesian optimization (BO) sampled with alternating ex-
confidence bound (UCB) acquisition functions. Grouped by reagent,
au time.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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chemistry perspective, is the robustness in product purity
levels observed across the entire sampled range, with minimal
decomposition risk.

The autonomous process optimization experiments ulti-
mately identied two optimal conditions for this process: (1) 1.5
equivalents NBS with 1.0 mol% H2SO4 in DMC, under a light
intensity stage of 2 at 5 °C for 8 minutes (1) 1.5 equivalents NBS
with 8.5 mol% lactic acid in DMC, under a light intensity stage
of 1 at 15 °C for 20 minutes and, both resulting in the genera-
tion of 85 UPLC area % of product 2. The algorithmic optimi-
zation of a multivariate parameter space in tandem allowed for
a broad variety of parameter combinations to be explored,
unveiling two local optima, the latter displaying behavior more
amenable to large scale processing.
Parameter importance modelling

Although the visual analyses presented up to this stage provided
an understanding around categorical parameters such as
reagent, solvent and additive, as well as some understanding
around continuous parameter effects such as additive loading,
the multivariate nature of the data made it difficult to measure
individual continuous parameter effects. For this, we turned to
Random Forest (RF) modeling, a machine learning technique
that is especially effective in modeling categorical data.27

When applied to the combined APO data, RF modeling was
used to rank the inuence of each parameter on the process
outcome, as well as model the partial dependence of continuous
parameters such as additive pKa and additive loading on pre-
dicted product 2 UPLC area % (Fig. 12). The ranking of
parameter impacts aligned with our qualitative observations,
where reagent, solvent, additive pKa and additive loading were
Fig. 12 Random forest (RF) model of the combined autonomous optim
plots of predicted product 2 UPLC area % on additive pKa and loading.

© 2024 The Author(s). Published by the Royal Society of Chemistry
determined to be most critical, while light intensity stage and
temperature were determined to be less critical. The minimal
impact of light intensity on reaction performance is not
surprising because the Wohl–Ziegler bromination is proposed
to proceed through a radical chain mechanism. In radical
reactions with low quantum yields, light intensity can be
a critical optimization parameter and should be investigated.28

The partial dependence plots of additive pKa and loading on
predicted product 2 UPLC area % also aligned very well with our
qualitative observations, where optimal performance with lower
pKa additives was observed at lower loadings.

As multivariate optimization data sets become more
complex, parameter importance modeling will become critical
for the interpretation of APO data. The random forest feature
importance scores are computed by permuting each feature and
calculating the percent increase in mean squared error on the
out-of-bag data. Although it can provide valuable insights on
which features are more informative for the model prediction,
we need to be cautious about the limitations that the feature
importance ranking may be biased by many factors, such as
overtting, correlated features, imbalanced data, and categor-
ical variables with more levels. The partial dependence plot
provides a straightforward summary of the marginal effect of
a feature on the outcome, but this average effect may also be
biased in the presence of correlated features. Therefore, it is
important to consider multiple model interpretation tech-
niques in conjunction with domain knowledge to gain
a comprehensive understanding of the input feature impacts. If
resources allow, it is more rigorous to evaluate model general-
izability or validate any scientic observation/hypothesis on
prospective out-of-sample experimental data. In addition, we
ization data ranking of parameter influences and partial dependence
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could have opted to rank parameter importance through the
underlying linear and Gaussian process models, but decided
a uniform modeling technique across all optimization
campaigns, which leverage different modeling methods, would
be more consistent.

Conclusions

In conclusion, we developed an autonomous process optimi-
zation (APO) system for the optimization of photochemical
processes in batch microplate reactors with key reaction
monitoring and real-time plateau detection capabilities. We
applied this system to the optimization of a Wohl–Ziegler
photobromination process. Even with a complex input param-
eter space including the combination of three categorical and
three continuous parameters along with one discrete param-
eter, our optimization approach uncovered multiple local
optima. It was critical to optimize multiple parameters in
tandem, such as additive choice and additive loading, in order
to identify conditions that balanced rate acceleration and
decomposition.

Our dynamic sampling strategy was key to the identication
of three kinetic proles associated with the process, which were
largely inuenced by reagent, solvent, additive, additive pKa,
and additive loading, leading to the identication of
decomposition-free conditions under high weak acid loadings
or low strong acid loadings. Finally, the plateau detection
capability allowed for reporting the process outcomes once
process stream stability was reached, capturing accurate purity
readings. As a bonus, the implementation of random forest (RF)
modeling unveiled valuable process insights.

Future optimizations around processes with the propensity
for decomposition will be more successful the development of
algorithms capable of modeling time course data. The conclu-
sions reached through visual inspection of the reaction proles
proved highly valuable and the incorporation of this valuable
data in the automated decision-making process would signi-
cantly enhance future algorithmic process optimization efforts.
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22 C. Bottecchia, F. Lévesque, J. P. McMullen, Y. Ji,
M. Reibarkh, F. Peng, L. Tan, G. Spencer, J. Nappi,
D. Lehnherr, K. Narsimhan, M. K. Wismer, L. Chen, Y. Lin
and S. M. Dalby, Org. Process Res. Dev., 2022, 26, 516–524.

23 D. Lehnherr, Y. Ji, A. J. Neel, R. D. Cohen, A. P. J. Brunskill,
J. Yang andM. Reibarkh, J. Am. Chem. Soc., 2018, 140, 13843–
13853.

24 Y. Ji, D. A. DiRocco, C. M. Hong, M. K. Wismer and
M. Reibarkh, Org. Lett., 2018, 20, 2156–2159.

25 Y. Ji, D. A. DiRocco, J. Kind, C. M. Thiele, R. M. Gschwind
and M. Reibarkh, ChemPhotoChem, 2019, 3, 984–992.

26 Bordwell pKa Table, https://organicchemistrydata.org/
hansreich/resources/pka/#pka_general.

27 D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher and
A. G. Doyle, Science, 2018, 360, 186–190.

28 E. B. Corcoran, J. P. McMullen, F. Lévesque, M. K. Wismer
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