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Design of functional binders for high-specific-
energy lithium-ion batteries: from molecular
structure to electrode properties

Tian Qin,†ab Haoyi Yang,†b Quan Li,*b Xiqian Yu *ab and Hong Li ab

The binder adheres to each component of the electrode to maintain the structural integrity and plays an

irreplaceable role in a battery despite its low content. Polyvinylidene difluoride (PVDF), as the dominant

binder in commercial battery systems (for cathodes), has acceptably balanced properties between

chemical/electrochemical stability and adhesive ability. However, in the pursuit of high-specific-energy

batteries featuring high mass loading, high voltage, and large volume changes, the PVDF binder is unable

to satisfy the versatile electrode demands and extreme operation conditions. Therefore, developing novel

binders with task-specific functionality is of urgent need. Herein, we review the recently developed design

strategies of functional binders from the insight of molecular design. The functions and failure mechanisms

of the binders are elucidated first. Starting from the basic moiety (functional group) of the polymer

molecule, how the constituents, molecular structure, and assembly into a supramolecule will affect the

properties of the binders, and furthermore the performance of the electrodes, is discussed at length.

Finally, we summarize and provide a future outlook on the opportunities and challenges of functional

binders towards future high-specific-energy lithium-ion batteries.

Keywords: Functional binders; Molecular design; High-specific-energy electrodes; Lithium-ion batteries.

1 Introduction

The development of renewable energy technologies is
imperative for sustainable development. However, the

intermittent nature of renewable energy necessitates the
corresponding energy storage technology represented by
rechargeable batteries. Renowned for their high energy density,
high power density, and long life, lithium-ion batteries (LIBs)
have been widely used in portable electronic devices, electric
vehicles, and grid-scale energy storage systems.1–3

Increasing the energy density of LIBs remains a critical
bottleneck for broadening the consumer market.4 To date,
significant efforts have been focused on the development of
novel active electrode materials and electrolytes for both
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academic and market scenarios.5–7 In contrast, the role of
binders is much underestimated, and less effort has been
devoted to improving battery performance via exploring and
developing novel binders, compared to the rapid evolution of
cathode and anode materials. Despite their small amount
(∼5 wt%) and inactivity, binders play a pivotal role in
improving the electrochemical performance of batteries.8–13

There are many categories of binders, of which PVDF is
the most widely used. PVDF ((CH2CF2)n) is a commonly used
fluorinated plastic in daily life as coatings, binders, etc., and
the major large-scale fabrication methods of PVDF are
emulsion or suspension polymerization with a vinylidene
fluoride monomer, surfactant, and initiator.14 Due to partial
substitution of H atoms with F atoms in the vinylidene
fluoride monomer compared with ethylene, PVDF possesses
superior chemical, electrochemical, and thermal stability due
to the higher bond energy of C–F bonds than C–H bonds.15

The electrochemical window of PVDF is about 5 V and the
thermal decomposition temperature is up to 400 °C.16

Meanwhile, the presence of H is beneficial for the formation
of hydrogen bonds (C–H⋯F or O–H⋯F). The interaction of
PVDF with intermolecular polymer chains or adherent

surfaces by van der Waals forces and simultaneous hydrogen
bonds can ensure the mechanical strength (30–70 MPa) of
binders and adhesive strength. In stark contrast, completely
F-substituted polytetrafluoroethylene (PTFE) exhibits weaker
tensile strength (20–35 MPa) and adhesion due to the lack of
intermolecular hydrogen bonds.17,18 Moreover, PVDF has a
swelling behavior (∼30%)19 and good crystallinity due to its
linear molecular configuration. Thus, PVDF delivers good
ionic conductivity after the uptake of electrolyte.20 In short,
PVDF shows appreciable comprehensive properties in
practical aspects. That is why, when employed as a binder in
LIBs, PVDF exhibits well-balanced performance, and it has
become the most dominant binder (usually in cathodes). The
annual demand for battery-grade PVDF has reached the level
of ten thousand tons in China, which has also brought about
a rapid rise in PVDF prices.

Despite its successful application in conventional battery
systems, such as lithium cobalt oxides (LiCoO2, LCO) (<4.6 V)
or lithium iron phosphate (LiFePO4, LFP)/graphite, PVDF has
not perfectly satisfied the requirements for utilization in high-
specific-energy electrode materials in next-generation battery
systems, e.g., Ni-rich layered oxide cathodes (LiNixCoyMnzO2 (x
+ y + z = 1), NCMxyz),19,21 high-voltage LCO (≥4.6 V),22 Li-rich
Mn-based oxide (xLi2MnO3·(1 − x)LiMO2 (M = Mn, Ni, Co),23,24

LRMO) cathodes, spinel oxide (LiMn2O4, LMO; and
LiNi0.5Mn1.5O4, LNMO) cathodes,25 silicon anodes,26–30

silicon oxide anodes31,32 and lithium metal anodes.33–35

There are some pivotal challenges in next-generation electrode
materials that PVDF does not satisfactorily cover: (1) ultra-high
mass loading. It is a feasible and effective way to increase the
battery energy density by increasing the electrode areal mass
loading,36,37 but with the increase of the loading, higher
requirements are put forward for the adhesive strength of the
binder to maintain the integrity of the electrode.38–41 However,
the electron cloud density and the polarizability of PVDF are
low, so the interaction between PVDF and other molecules
through van der Waals forces is relatively weak, which is
insufficient for ultra-high mass loading electrodes (>20 mg
cm−2);17,18 (2) large volume variations. This is the most
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common and intractable problem in many high-capacity
cathodes and especially in anode materials, such as LCO
(−11.7%)42 and Si (more than 300%).29 For silicon anodes,
repeated volume changes easily lead to the loss of the contact
between particles and conductive additives, as well as between
the electrodes and the current collector. In addition, iterative
volume changes over the cycles break the solid electrolyte
interphase (SEI) and expose the electrode surface to the
electrolyte, which re-generates the new SEI and consumes the
electrolyte. In addition, the mechanical stresses originating
from the volume changes can cause particle pulverization,
which results in detachment of particles from the electrode
surface.9 However, PVDF is difficult to adapt to large volume
changes due to a weak adhesive force and poor mechanical
properties. The large volume changes result in binder failures,
such as binder debonding, polymer plastic deformation, and
even fracture.43,44

In addition to the basic need of adhesion, some specific
functions can also be realized via functional binders to boost
the batteries' electrochemical performances significantly,
although it is commonly considered that other electrode
components, such as electrolytes and additives, are primarily
required to realise these functions. These unique functions
that PVDF does not possess are afforded by the binder
molecule design and are as follows. (1) Mitigating interface
degradation: a variety of high-voltage cathodes, such as LCO,
NCM, LMO, LRMO, etc., will release oxygen at high voltage,
of which the aftermaths are surface lattice reconstruction
and transition-metal dissolution into the electrolyte.45–48

Meanwhile, other active species from the electrolyte, such as
free radicals and HF, can attack the cathode and anode
surfaces and accelerate this process.49,50 The by-products
built up on the surface are recognized to result in an
unstable cathode electrolyte interphase (CEI) and SEI. These
effects will reduce the structural stability and impede the
electrode dynamics, further degrading the battery
performance. Concerning this problem, PVDF does not
protect the electrode interface well enough. Owing to the low
electron density of C–F bonding, PVDF is also unable to
capture various active intermediates and thus it is difficult to
inhibit the interface degradation.51 (2) Providing electronic or
ionic conductivity: due to the poor electric and ionic
conductivity of most active materials, additional conductive
materials, such as conductive carbons or electrolytes, are
required in the electrodes, which reduces the overall energy
density of the batteries. Although PVDF can permit ion
diffusion after swelling, it does not conduct electrons, which
also hinders charge transfer and affects battery rate
performance.20 (3) Improving thermal stability: As the energy
density increases, the thermal safety of the new electrode
system generally decreases.52,53 Novel high-specific-energy
electrode materials may pose potential thermal safety risks,
but this has not been explored in great detail.54 Owing to the
large amount of electrolyte absorbed by PVDF, the thermal
safety of batteries can be compromised.55 (4) Homogeneous
dispersion of the electrode components: particles are prone

to self-agglomeration as the size decreases, such as Si
nanoparticles.56 The interaction of PVDF with the hydrophilic
surface of the active materials is weak (owing to the low
polarity of C–F bonding) and it is thus difficult to promote
uniform dispersion of the electrodes.19 (5) High compatibility
with new manufacturing: for example, in the preparation of
sulfide-based all-solid-state batteries, the solution-based
processing requires the use of a weakly polar solvent to avoid
the reaction of the strong polar solvent with the sulfide
electrolyte, but low-polarity solvents cannot easily dissolve
conventional polar binders such as PVDF.57 Because of the
incompatibility of PVDF with the wet-slurry manufacturing of
sulfide solid electrolytes, new binders suitable for solid-state
electrolyte manufacturing need to be developed.58 In
addition, the chemical and electrochemical compatibilities of
binders with other electrode components also need to be
considered carefully. It is believed that, because there is
partial substitution of hydrogen atoms by fluorine atoms in
PVDF, the strong electron-withdrawing inductive effect of the
fluorine atoms leads to strong acidity of the hydrogen on the
β-carbon, which easily undergoes an alkali- or nucelophile-
induced E2 elimination reaction to eliminate HF.59 The
generated HF and water cause serious damage to the
electrode interface, as demonstrated by previous reports in
the literature.60 In addition, the double bonds generated by
the E2 elimination are prone to cross-linking with other
PVDF molecules to increase the viscosity of the slurry,
resulting in poor fluidity and uneven coatings.61 The base
usually comes from the residual base on the cathodes and
NMP solvent. Especially with high-nickel cathodes, the gel
phenomenon of the slurry is more intractable. In addition to
upgrading the manufacturing process or neutralizing the
basic environment, the alkali resistance of the binder needs
to be considered when designing the binders. Anyhow, it
should be noted that the prior and basic concern for a binder
is always the adhesion.

Therefore, it is of great importance to develop new
functional binders with careful design. We are expected to deal
with the following challenges for high-specific-energy
electrodes: (1) high mass loading; (2) large volume change; (3)
high voltage; (4) low rate performance; (5) potential thermal
risk; and (6) the compatibility of new manufacturing (e.g.,
preparation of solvent-free electrodes or sulfide-based all solid-
state batteries). The binders are expected to possess the
following characteristics: (1) high adhesive and mechanical
strength; (2) high elasticity or self-healing ability; (3) the ability
to mitigate interphase degradation; (4) high electric and ionic
conductivity; (5) the ability to improve thermal safety and wide-
temperature operability; and (6) the ability to promote the
heterogeneous dispersion of each component.

Rational molecular design is highly effective when
developing new binders for improved battery
performance.62,63 From the view of the molecular structure,
the binder is a polymer material with multiple molecular
moieties and corresponding properties from micro- to macro-
views, such as molecular weight and molecular weight
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distribution, functional groups and topologic molecular
configurations (linear, branched, hyperbranched and network
cross-linking). The interaction forces can hence be designed
in binder molecules based on the molecular structure, which
includes molecular bonding and intermolecular bonding
(also known as supramolecular interactions).10 Molecular
bonds are mainly covalent bonds between polymeric units.
Intermolecular forces are typified by van der Waals forces
and secondary bond forces (hydrogen bonds, ion–ion,
dipole–dipole, π–π interactions, coordination and
hydrophobic interactions). Hydrophobic interactions should
be avoided because they induce binder agglomeration. To
obtain the functional binders, common modification and
synthesis methods for functional polymers include grafting,64

copolymerization,65 cross-linking,66 and blending.51 Well-
designed polymers with different molecular structures and
interaction forces have been applied to achieve customized
and functional modifications to improve the task-specific
performance of high-specific-energy electrodes.

Common binders used in electrodes include PVDF, PTFE,
poly(acrylic acid) (PAA), styrene-butadiene rubber (SBR),
polyethylene oxide (PEO), sodium carboxymethylcellulose
(CMC), and alginate. The elementary properties of these
binders, including tensile and compressive mechanical
properties, adhesive force, and thermal properties are
summarized in Tables 1, 2, 3 and 4, respectively. Among
them, the tensile parameters, including elastic modulus,
yield elongation, yield strength, ultimate strength, and break
elongation, indicate the resistance for the volume expansion
of the electrodes, while the compressive parameters,
including reduced modulus, and hardness, present the
strength of the electrodes to maintain the structural integrity

when pressure is applied. Based on this endeavour, we are
able to compare these seven common binders in terms of
adhesion, tensile strength, elasticity, swelling, ionic
conductivity, thermal stability, and oxidation stability, as
shown in Fig. 1. It is worth noting that the comparison is
semi-quantitative because the collected data is from different
papers under different experimental methods and conditions.
PVDF still has a better comprehensive performance than
other binders.16 The fully fluorinated form, PTFE, has
extremely unbalanced performance, whereby its mechanical
properties and oxidation stability are the best, while the
adhesion and conductivity are inferior. PAA, CMC and
alginate, widely used in anodes, appear inferior in terms of
mechanical properties than PVDF, but they are water-soluble
and rich in carboxyl or hydroxy groups contributing to
stronger adhesion.67–69 SBR has very high elasticity and is
usually blended with CMC to complement each other’s
disadvantages.70 It is well-known that PEO has an
outstanding ionic conductivity but inferior resistance to
oxidation under high voltage.71

Herein, in this review, we firstly aim to present the
effect of molecular structure on the properties of the
binders and on the macroscopic electrochemical properties
of the electrode. We highlight the versatile influences of
the binders on the mechanical, interfacial, electrical,
thermal and dispersive properties of the electrodes. The
fruitful efforts in binder molecule design are summarized
according to the functionality of the binders, and in each
section we will present the function/failure mechanics of
the binders and the corresponding molecular design
strategies. We hope to provide insight into the function of
binders in various high-specific-energy electrode materials,

Table 1 The tensile mechanical properties of binders

Category Binders
Characteristic
functional groups

Elastic
modulus
(MPa)

Yield
elongation
(%)

Break
elongation
(%)

Yield
strength
(MPa)

Ultimate
strength (MPa) Reference

Alkane-based PVDF Fluorine 1400 30 30 40 40 16, 32, 43,
44, 72–77

PTFE Fluorine 400–1800 — 50–650 9–30 10–43 78
PAA Carboxyl 450 <5 <5 <10 <10 30, 32, 79,

80
PEO Ether 700 — <10 — 15 16, 32, 74
SBR Alkene, phenyl 1.31 — 385 — 3.33 70
PAA-P(HEA-co-DMA) Hydroxy, carboxyl,

catechol
1.6 ∼50 >400 0.8 1.2 30

SHP Ureido >3.6 75 300 0.9 1 81
Anti-aging binder Amino 60 120 280 70 70 72
N-P-LiPN Ionized fragment,

carboxyl, sulfonic acid
∼80 8 >30 4 4 28

DPGP–PEI/PVDF Amino, catechol, ether,
pentafluorophenol

∼800 5 70 40 40 51

PEO-polycarbonate Ether, phosphate
group, ester

0.33 >1000 >1000 >3.5 >3.5 65

PR–PAA Carboxyl, hydroxyl,
urethane, ether

2 50 400 1 1.6 26

Polysaccharide-based CMC Carboxyl, hydroxy 1400 — <10 — 40 69, 79, 82
Alginate Carboxyl 1400 — 15 — 30 73, 82, 83
CMC–CNT Carboxyl, hydroxy 1000 ∼2 ∼2 20 20 84

Inorganic UCFR Ionized fragment 60 5 6 3 3 85
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especially for the ones that suffer from large volume
changes, mechanical fracture, reactive interfaces or even
poor conductivity. Finally, we provide a future perspective
on the research of binders with regard to advanced
characterization methods and simulations for the next
generation of high-specific-energy electrodes.

2 Functionality of binders in LIBs
2.1 Mechanical properties

2.1.1 Improvement of adhesion and mechanical strength.
Keeping an effective contact between the active materials,
conductive carbons and current collector, and maintaining

Table 2 The compressive mechanical properties of binders

Category Binders Characteristic functional groups
Reduced
modulus (MPa) Hardness (MPa) Reference

Alkane-based PVDF Fluorine 600–4000 25–200 16, 32, 43, 44, 72–77
PAA Carboxyl ∼8000 ∼200 30, 32, 79, 80
PEO Ether 500–1000 70–82 16, 32, 74
SBR Alkene, phenyl 5.57 0.27 86
HOS-PFM Fluorene, carbonyl, ester ∼9000 ∼200 32
N-P-LiPN Ionized fragment, carboxyl, sulfonic acid group 900 20 28
Mn-COP Mn2+-Loporphyrin, thioureido — 70 44
3F1V Hydroxyl, ether 1500 50 87

Polysaccharide-based XG Hydroxy, ester, ionized fragment 1000 25 66, 82
GG Hydroxyl 1500 24 66, 75
TG Carboxyl, hydroxyl 3500 324 74
N-GG-XG Hydroxyl, ionized fragment 1500 30 66
Gelatin Hydroxyl 1800 25 66
GG-g-PAM Hydroxyl, amide 2100 60 75

Table 3 The adhesive forces of binders

Category Binders Characteristic functional groups Adhesion force (N cm−1) Reference

Alkane-based PVDF Fluorine ∼1 16, 32, 43, 44, 72–77
PAA Carboxyl 1.5 30, 32, 79, 80
PEO Ether <0.5 88, 89
SBR Alkene, phenyl 0.1–0.5 90, 91
C10 Phenyl, carboxyl 0.05 58
Anti-aging binder Amino 8.9 72
DPGP–PEI/PVDF Amino, catechol, ether, pentafluorophenol 0.67 51
PEO-polycarbonate Ether, phosphate group, ester 6 65
Spandex Ether, urethane, ureido 1.66 43

Polysaccharide-based CMC Carboxyl ion 1.1–1.7 69, 79, 82
Alginate Carboxyl ion 2 73, 82, 83

Inorganic APP Phosphate 0.3 92

Table 4 The thermal properties of binders

Category Binders Characteristic functional groups Tg (°C) Td (°C) Reference

Alkane-based PVDF Fluorine −38 400 16, 32, 43, 44,
72–77

PTFE Fluorine −103 400 78
PAA Carboxyl 115 150 30, 32, 79, 80
PEO Ether −50 350 16, 32, 74
SBR Alkene, phenyl −60 400 93
HOS-PFM Fluorene, carbonyl, ester — >800 32
PAA-P(HEA-co-DMA) Hydroxy, carboxyl, catechol 83 — 30
PEO-polycarbonate Ether, phosphate group, ester −40 200 65
c-PEO-PEDOT:
PSS/PEI

Amino, ether, sulfonic acid group, ethylene
dioxythiophene

— >200 94

PVDF-TrFE-g-SPS Fluorine, sulfonic acid group 100 400 95
Spandex Ether, urethane, ureido — 300 43
(Deprotect) TBA-b-BR Carboxyl 210 400 96

Polysaccharide-based CMC Carboxyl ion 55 300 69, 79, 82
Alginate Carboxyl ion 119 200–500 73, 82, 83
TG Carboxyl, hydroxyl — 250 74
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the integrity of the electrode are the most fundamental and
important functions of binders. Conversely, binding failure
refers to the loss of adhesive force, which leads to the
detachment of electrodes from current collectors and the
delamination of active materials from electrode surfaces.
This structural destruction contributes to the disruption of
ion and electron pathways and the loss of active materials,
which is closely associated with the capacity decay. Therefore,
the binder adhesion is of great importance to normal battery
operation.97,98 The adhesion failure mechanisms can be
typically summarized as being due to three reasons: contact
interface destruction, binder rupture and adherend breakage
(Fig. 2a). Interface destruction means adhesive force
disappearance and a loss of contact between the binders and
adherend. Binder rupture refers to the breakdown of
molecular adhesion, and adherend breakage means the
rupture of the adherend (i.e., electrode). Upon increasing the
mass loading of electrodes for high-specific-energy batteries,
stronger adhesion is required to attach to more active

materials and maintain the structural stability.89,99 However,
the commonly used binder PVDF cannot ideally cover the
aforementioned need. The C–F bonds in PVDF interact with
adherends via weak van der Waals forces and the adhesion is
insufficient to maintain the electrode integrity when the
loading is extremely high. At the same time, PVDF readily
absorbs electrolyte, i.e., swelling, which weakens the
adhesion and mechanical strength of the binders and leads
to potential instability of electrode integrity.

Targeted at the failure mechanism, the corresponding
solutions for adhesion failure and binder rupture are the
improvement of interfacial adhesion and binder cohesion.
From the perspective of molecular design, adhesion can be
enhanced by introducing functional groups with stronger
interactions with interfaces, such as hydrogen bonds,29

coulombic attraction38,85 and π–π stacking,31,100 in place of
van der Waals forces. Inspired by mussels, which can adhere
on stones in water tightly, catechol, abundant in the byssus
of mussels, was demonstrated to have a powerful adhesion

Fig. 1 Comparison of the basic properties of common binders, i.e., PVDF, PTFE, PAA, SBR, PEO, CMC, and alginate.
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Fig. 2 Modification strategies to improve the adhesion and mechanical strength of functional binders. (a) Typical adhesion failure mechanisms of
binders. (b) Optical image of a mussel and the chemical structure of dopamine (inset). (c) Molecular structures of catechol-grafted alginate (Alg-C)
and PAA (PAA-C). (d) Peeling-off test for Si electrodes with alginate-based binders and PVDF. (b)–(d) are reproduced with permission.29 Copyright
2013, Wiley. (e) Schematic illustration of the interaction between charged binders. (f) Zeta potential of Si and Si with the charged binders. (g) The
relationship of the delivered areal capacity and mass loading of a SiOx/graphite anode. (e)–(g) are reproduced with permission.38 Copyright 2023,
Wiley. (h) Chemical structure of xanthan gum (XG). (i) Schematic illustration of double helical structure and multiple short chains of XG. (j) Cycling
performance of Si electrodes with XG-based binders, CMC and alginate at 1 C. (h)–(j) are reproduced with permission.82 Copyright 2015, Royal
Society of Chemistry. (k) Tensile test of PFA and PVA films. (l) Initial charge/discharge profiles for Si electrode with 3F1V, 2F2V and 1F3V; (m) cycling
performance of the Si electrode using 3F1V at different loadings. (k)–(m) are reproduced with permission.87 Copyright 2019, Wiley.
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structure due to strong interaction between the hydroxyl
groups and a hydrophilic surface, such as a Si surface
(Fig. 2b).29 The catechol structures were grafted onto PAA and
sodium alginate as PAA-C and alginate-C (Fig. 2c). Peeling-off
tests indicated that the Si anodes with alginate-C binders
exhibited stronger adhesive forces than the alginate- and
PVDF-based Si anodes (Fig. 2d). Alginate-C/Si and alginate/Si
in half-cell tests exhibited capacities of more than 2000 mA h
g−1 and 1500 mA h g−1, respectively, both with an average
coulombic efficiency exceeding 99% after 400 cycles. This
strategy of grafting catechol structures onto binder molecules
has also been validated by many other works that report
enhanced adhesion.51,101–103 Coulombic attraction is also a
powerful option to enhance the adhesion of binders. Han
et al. designed two kinds of copolymer binders with a positive
and negative charge, respectively, derived from a quaternary
ammonium salt and a sulfonate.38 The coulombic
interactions between positive and negative binders, and
between positive binders with a negatively charged surface of
Si particles, guarantees the cohesion within binders and the
integrity of the particle–binder surface, as shown in Fig. 2e.
Zeta potential tests proved the positively or negatively
charged properties of Si particles, Si/positive binders, Si/
negative binders and Si/positive binders/negative binders
(Fig. 2f). As mentioned above, the tight adhesion is beneficial
to high mass loading. The capacity is evidently reduced when
the areal mass loading of SiOx/graphite anodes with
poly(acrylamide) as binders exceeded 6 mg cm−2. In contrast,
ultra-high-loading electrodes could be fabricated with the
charged binders. The mixture mass loading reached 14 mg
cm−2 and the areal capacity reached 10.2 mA h cm−2 without
capacity loss (Fig. 2g).

Binder molecular strength can be increased by cross-linking,
which can be divided into physical cross-linking and chemical
cross-linking. Physical cross-linking indicates there are strong
intermolecular interactions without chemical bonding, such as
double-helix structures.66,82,104 For example, the Choi group
used xanthan gum (XG) as a binder. The structural formula is
shown in Fig. 2h.82 Attributed to the hydrogen bonding
attraction of the saccharide backbone and the electrostatic
repulsion of the side chains, XG was wrapped in a double helix,
which immensely enhanced its molecular mechanical strength
(Fig. 2i). Meanwhile, analogous to millipedes’ pads, the side
chains interacted with the silicon surface via large quantities of
noncovalent interactions, such as hydrogen bonds and ion–
dipole interactions, further enhancing the adhesion. Compared
to various polysaccharide binders, native-XG exhibited excellent
cycling performance (Fig. 2j). The capacity retentions of Si/
native-XG, Si/alginate and Si/CMC (typically CMC refers to Na-
CMC unless otherwise stated) were 72.2%, 50.3% and 49.7%
after 200 cycles, respectively. It should be noted that Si/
renatured-XG provided a far inferior capacity retention, either
because the double-helix structures were damaged under
heating conditions, or due to possible agglomeration. Chemical
cross-links entail the formation of intermolecular chemical
bonds, which significantly enhance the strength of the binder

networks compared with physical cross-links.105,106 For
instance, the hydroxyl groups of CMC and the carboxylic
groups of PAA can initialize a condensation reaction under
vacuum conditions at 150 °C, and the product demonstrated
improved molecule rigidity allowing it to better adapt to the
large volume change.56 Assisted by ionic cross-linking agents,
Wu et al. utilized Mn2+, Al3+, Ba2+, Na+, Ca2+ and Zn2+ to cross-
link alginate, among which Al3+-alginate and Ba2+-alginate have
the most obvious effect on the improvement of viscosity and
hardness in a Si electrode.107 Moreover, Li et al. utilized
epichlorohydrin (ECH) to cross-link peach gum (PG), named as
PG-c-ECH, for use as Si anode binders.108 Nanoindentation
tests demonstrated that Si@PG-c-ECH had larger modules and
hardness. The Si@PG-c-ECH electrodes exhibited a discharge
capacity of 2060 mA h g−1 after 200 cycles and a capacity
retention of 88.8% (based on the second cycle). In contrast,
Si@sodium alginate and Si@PG have only 40.4% and 66.5%
capacity retention, respectively.

Apart from electrodes, binders can also be utilized for
solid-state electrolytes. Cao et al. used ethyl cellulose as a
binder in a sulfide-based electrolyte (Li6PS5Cl).

109 Benefitting
from the adhesion of the binder, the electrolyte exhibited
superior mechanical strength and integrity. Thinner and
more rigid electrodes can be prepared. The thickness of the
sulfide electrolyte was 47 μm and there was no fracturing,
even at 80 MPa compression stress. As the thickness and
mass of the electrolyte decreases, the energy density of the
battery can be increased. Using a cell comprising a LCO/Li3-
InCl6 cathode (55 μm), Li6PS5Cl electrolyte (50 μm) and Li–In
anode (30 μm), the all-solid-state battery delivered 175 W h
kg−1 gravimetric energy density and 670 W h L−1 volumetric
energy density.

An ingenious strategy can improve both adhesion and
strength simultaneously, that is, the combination of rigid
and flexible chains in polymeric binders. Rigid chains
provide strength, while soft chains provide adhesion.
Poly(furfuryl alcohol) (PFA) has a high Young's modulus and
high ultimate strength, while polyvinyl alcohol (PVA) has a
large ultimate elongation and low ultimate strength (Fig. 2k).
Therefore, combining soft PFA and rigid PVA via an in situ
polymerization, Lu′s group constructed a 3D interpenetrating
binding network for Si anodes.87 Different ratios of PFA and
PVA were utilized including 75 : 25, 50 : 50 and 25 : 75,
denoted as 3F1V, 2F2V and 1F3V, respectively. Initial charge
specific capacities of the Si anodes with 1F3V, 2F2V and 3F1V
binders were 2692.6, 2822.3, and 2916.5 mA h g−1,
corresponding to coulombic efficiencies of 67.3%, 78.5%,
and 79.9%, respectively (Fig. 2l). 3F1V with superior capacity
fulfillment also showed good cycling performance for Si
electrodes, even at a high mass loading of 4.9 mg cm−2

(Fig. 2m). Full batteries were assembled using LRMO
cathodes and Si anodes, and they delivered an areal capacity
of >10 mA h cm−2 and an energy density of >300 W h kg−1.

2.1.2 Volume change accommodation. Many high-specific-
energy electrodes are inevitably confronted with severe
volume changes upon large amounts of Li uptake/release
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during charge and discharge, such as high-voltage oxide
cathodes (LCO (11.7%), Li2MnO3 (40.8%)),42 alloy anodes
(silicon anodes (∼300%)), conversion electrodes (sulfur
cathodes (∼80%), metal oxides (20–100%), metal fluorides
(10–40%), metal sulfides (40–170%)),110,111 and even lithium
metal anodes. The problems induced by volume change are
schematically illustrated in Fig. 3a. The repeated volume
fluctuation induces poor contact between the active material
particles and inactive functional components in the electrode
matrix. Delamination is induced as the electrode particles
undergo as little as 7.5% volume change according to the
theoretical prediction.112 This issue actually impairs the
structural integrity and disrupts the charge transport
pathways. Furthermore, vulnerable electrode–electrolyte
interfaces cannot endure severe volume changes, and are
easy to break. In addition, the exposed surface of the active
materials will consume extra electrolyte and Li ions as well as
regenerate thicker interfaces, causing capacity losses and a
large interfacial impedance. Moreover, the stress/strain
resulting from huge volume changes intensifies the particle
pulverization, especially for microparticle silicon (SiMP)
compared to nanoparticle silicon (SiNP), leading to the
exposure of more surface to the electrolyte. Also, dispersed
particles lose the pathways to transfer electrons and ions.
Some strategies are proposed to ameliorate the negative
effects from volume change, such as a special yolk–shell
structure113 and an elastic binder.30 Although binders are
believed to be an ideal volume buffer inside the electrode
matrix, the binder itself suffers from mechanical failure. The
stress–strain curve of polymers is shown schematically in
Fig. 3b. When the stress arising from volume changes is
within the elastic limit of the polymers, the polymers'
deformation belongs to elastic deformation, which means
that the polymers can recover when the stress is removed.
Therefore, as we expected, the binders can endure repeated
volume changes. But when the stress exceeds the yield
strength, the polymers' deformation belongs to plastic
deformation, meaning that the strain cannot recover
completely when the stress is removed and residual strain
becomes permanent deformation. The ability of binders to
limit volume change is thus diminished. Furthermore, when
the stress exceeds the ultimate strength, polymers fracture
and the binders fail.

In the face of the large volume change, the stress can be
dissipated through the binder layer to alleviate the particle
damage caused by particle expansion and extrusion. The
molecular design offers effective strategies for binders that
accommodate strong volume changes: (a) dissipate energy via
sacrificial bonds and disperse accumulated stress via the
branched configuration of the binders; (b) buffer the stress
via the deformation and relaxation of highly elastic binders;
and (c) overcome the repeated volume change via the
dynamic bonds of intermolecular interactions to provide self-
healing ability.

A method was proposed by Zhang et al. utilizing PAA and
carboxylated nitrile butadiene rubber (XNBR) with tannic acid

(TA) as a cross-linker to construct a binder (named PTBR) for
SiMP and SiOx anodes.114 This has gradient bonding energy
as shown in Fig. 3c. Among these bonds, in addition to a
series of reversible hydrogen bonds with different bonding
energies as sacrificial bonds, covalent bonds are formed by
the amidation reaction between the carboxyl groups of the
binder and the amino groups of amino-functionalized carbon
nanotubes to provide stronger bonding. With the volume
variation of Si anodes, the hydrogen bonds dissociate
successively to dissipate energy and disperse stress
uniformly, which is profitable to reduce damage to the
electrode from large volume expansion. The finite element
modelling validated the conclusion that PTBR binders can
indeed improve the uniform dispersion of stress in Si anodes
during lithiation compared to PT binders (a mixture of PAA
and TA) without XNBR (Fig. 3d). Atomic force microscopy
(AFM) was used to characterize the stress dispersion by the
plastic work of electrodes.75,114 The average plastic work of
SiMP/PTBR was smaller (0.991 keV) and dispersed even more
than SiMP/PT (2.947 keV). Branched structures of dendrimers
can disperse stresses because the tensile force, F, is dispersed
through n branches, so the force on each branch is reduced
to F/n.10 Hyperbranched β-cyclodextrin polymers (β-CDp) can
be used as binders.115,116 Jeong et al. showed Si electrode
surfaces with β-CDp had less cracks via scanning electron
microscopy (SEM) compared with linear alginate binders.117

In addition, Si anodes with β-CDp demonstrated better long
cycling performance compared to linear binders, such as
alginate and PVDF. The capacity retention of Si/β-CDp was
50.6% compared with Si/alginate (27.1%), whereas the
capacity of Si/PVDF rapidly decayed during 25 cycles.

Owing to their high elasticity and flexibility, binder layers
can buffer the strain/stress via deformation and relaxation.
The Choi group designed a binder with a thread-ring
structure in which polyrotaxane (PR)—comprising of
polyethylene glycol (PEG) threads and α-cyclodextrin (α-CD)
rings—is covalently integrated with PAA, and the binder is
named PR–PAA.26 According to physical principles, the
movable PR is analogous to movable pulleys and can reduce
the tensile force proportionate to the number of PR moieties,
improving the ability to endure extreme stretching stress.
Another feature was that the sliding motion of the molecular
pulleys equalized the strain on the all-polymer chains in
contrast to conventional cross-linking architecture, where the
pressures were locally concentrated on shorter chains
because the cross-linking sites were fixed. As shown in
Fig. 3f, when the strain was small, the PAA chain rearranged
along the load direction to buffer the stress. But with a
further increase in strain, the ring sliding of PR played a
dominant role to release the stress, which allowed PR–PAA
films an astonishing maximum stretch up to 390%, while
only 37% was found for PAA films. At a current density of
0.033 C, the initial discharge capacity of PR–PAA-based SiMP
anodes was 2971 mA h g−1 with a coulombic efficiency of
91.22%, while the values are 2579 mA h g−1 and 81.61% for
PAA-based anodes (Fig. 3j). At 0.2 C, PR–PAA-based SiMP
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Fig. 3 Modification strategies to accommodate volume changes of electrodes. (a) Typical problems induced by the electrode volume change.
Reproduced with permission.9 Copyright 2018, Royal Society of Chemistry. (b) Schematic representation of the stress–strain curves of polymers. (c)
The gradient cross-linking bonds of PTBR binder. (d) The stress distribution of lithiated Si particles of μSi/PT and μSi/PTBR through the finite
element simulation. (e) The distribution of plastic work on the surface of μSi/PT and μSi/PTBR from AFM. (c)–(e) are reproduced with permission.114

Copyright 2019, Wiley. (f) Comparison of stress–strain curves of PR–PAA with PAA films, and schematic mechanical interaction of PR–PAA. (g) Initial
charge/discharge profiles of the PR–PAA-SiMP and PAA-SiMP electrodes. (h) Discharge areal capacity of the PR–PAA-SiMP and PAA-SiMP
electrodes over cycling. The inset is the coulombic efficiencies of PR–PAA-SiMP. (f)–(h) are reproduced with permission.26 Copyright 2017,
American Association for the Advancement of Science. (i) Chemical structure of the Spandex binder and illustration of hydrogen bonding between
Spandex and Ag particles. (j) Schematic illustration of controlling the large volume change during lithiation and delithiation of the silver–carbon
composite electrodes. (i) and (j) are reproduced with permission.43 Copyright 2022, American Chemical Society. (k) Working mechanism of
dynamic cross-linking of β-CDp and 6AD on a silicon surface. (l) Chemical structures of 6AD and 1AD. (m) Comparison of cycling performance
based on different binders in Si electrodes. (k)–(m) are reproduced with permission.27 Copyright 2015, American Chemical Society.
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anodes maintained an areal capacity of 2.43 mA h cm−2 after
150 cycles, which is 91% of their initial capacity. In
comparison, after 50 cycles, the PAA-based electrode only
kept 48% of its initial capacity (Fig. 3h). The lithium metal
anode, the ideal next-generation anode, is also faced with a
large volume change during the deposition and dissolution
of lithium. Carbon nanotubes (CNTs) can be employed as a
3D scaffold to guide uniform Li deposition and prevent Li-
dendrite growth but easily suffer ruptures due to a large
tensile stress generated during the lithium uptake–release
cycles. Therefore, based on the same binder molecule, the
Choi group used PR–PAA for lithium metal anodes to
alleviate CNT fracturing and enhance the cycling stability.118

The LFP–Li full cells with CNTs but without PR–PAA binders
maintained 60% capacity retention after 50 cycles. In
contrast, the cell with CNTs/PR–PAA maintained 65%
capacity retention after 140 cycles. Another molecular design
example is via the deformation of flexible polymer chains to
release the stress. A binder comprised of soft and rigid
chains, known as “Spandex”, was applied to a silver–carbon
composite anode with large volume changes upon lithiation/
delithiation.43 The rigid chains consisting of ureido and
phenyl structures were riveted on the surface of Ag via
hydrogen bonding interactions. And the soft chains
consisting of polyethylene glycol (O–R–O segment) endowed
the binders with elastic adjustment (Fig. 3i). The soft
segment can be stretched during lithiation, but is
unstretched during delithiation, realizing the reversible
change of the binder network structure (Fig. 3j). It has been
demonstrated that the Spandex binders perform well in many
electrode systems, including LFP119 and NCM cathodes.120

Apart from anodes, cathode materials also undergo
volume changes,42 which become more severe in solid-state
batteries due to the rigid solid–solid contact. Although a large
pressure (over 50 MPa) is usually necessary in solid-state
battery configurations to inhibit volume changes and retain
the interfacial contact, it can be impractical for
applications.121 Gregory et al. synthesized a block
polycarbonate binder to buffer the volume changes of
NCM811 (∼6%) in Li6PS5Cl electrolyte.65 This binder
demonstrated high tensile strain (1000% without breaking),
excellent elastic recovery (∼98.3%) and high compression
resistance. Benefitting from the extraordinary elasticity,
under a low pressure of 1 MPa, the solid-state batteries with
the binder showed a capacity retention of over 90% after 80
cycles and over 70% after 500 cycles.

In addition to strong cross-linking (described in section
2.1), there is another type of cross-linking via weak
intermolecular interactions, such as hydrogen bond
interactions,81,88,122–124 disulfide bond interactions,125 host–
guest coordinated interactions,27 ionic interactions,38,126 etc.
The binding network constructed by strong cross-linking
could be too rigid to sustain a large volume change.
Comparatively, the weak cross-linking due to reversible and
dynamic intermolecular connections endows the polymer
with a self-healing ability. A polymeric binder comprising

hyperbranched β-CDp and a dendritic gallic acid cross-linker
incorporating six adamantane units (6AD) was applied to
silicon anodes.27 β-CDp adhered on the surface of Si tightly
via hydrogen bonds and was cross-linked by 6AD in which
adamantane reversibly inserted into the cavities of β-CDp
through host–guest interactions (Fig. 3k). In contrast, 1AD
cannot cross-link with β-CDp. The molecular structures of
6AD and 1AD are shown in Fig. 3l. Adamantane was extracted
from the cavities of β-CDp when the Si expanded but inserted
into it when the Si contracted, which dynamically adjusted
the network structures. In cycling tests, alginate, PAA and
CMC showed rapid capacity decay, reaching only 21.7%,
25.2%, and 30.5% capacity retention, respectively, after 150
cycles, resulting from the linear structures and poor elastic
properties. However, β-CDp/6AD retained capacity retention
up to 90% after the same number of cycle. It is noteworthy
that β-CDp/1AD only has a capacity retention of 23%, which
proves that, despite host–guest interactions, the lack of a
cross-linker cannot preserve the integrity of the electrodes
(Fig. 3m). Polyurea consists of a urea (–NH–CO–NH–)
structure, where dual hydrogen bonds (N–H⋯OC) are
formed. The abundant hydrogen bonds are sufficient and
powerful enough to provide a self-healing ability and tension
resistance. For example, Bao's group developed binders that
included a urea structure (named as self-healing polymers
(SHPs)) for Si anodes.81,123,124 The strain of an SHP could
reach 300% without breaking, and the self-healing
phenomenon of electrodes with an SHP was observed. The
initial discharge capacity and capacity retention of Si anodes
with an SHP was 2617 mA h g−1 at 0.4 A g−1 and 80%,
respectively, after 90 cycles.

Although a dynamic architecture through weak cross-
linking is an efficient strategy to overcome volume changes,
reversible bonds are in turn easy to break apart and hence
cannot provide persistent mechanical strength during
prolonged cycling. Lee et al. proposed an interesting concept
of an “adaptive binder”.127 Its backbone was polysaccharides
(e.g., hyaluronic acid (HA), CMC or alginate) grafted with
gallol (GA) (1,2,3-trihydroxybenzene) moieties. When the
volume of the SiMP changed in the early cycles, the binder
would reposition and reorient via hydrogen bond cleavage
and regeneration, leaving sufficient space to adapt to volume
variation. Then, when the binder volume changes became
relatively stable in the later cycles, the intermolecular
interactions converted from reversible supramolecular
interactions into irreversible covalent linkages. The fixed
framework largely improved the structural stability of the
electrode over prolonged cycling. Rheological tests showed
the mechanical property of the slurry was obviously enhanced
after 120 hours of aging because of the formation of covalent
bonds. In order to compare the cyclability of HA–GA and HA
as binders, SiMP anodes were tested in a half cell at 1 C. The
HA–GA binder showed 1153 mA h g−1 capacity even at the
end of the 600th cycle. But the HA binder exhibited a rapid
decrease of capacity down to ≈1000 mA h g−1 at the 100th
cycle and 347 mA h g−1 at the 600th cycle.
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2.2 Mitigating interfacial degradation

Owing to the thermodynamic instability, a CEI or SEI will be
formed on the contact between electrodes and electrolyte. A
large number of reports have shown that the electrochemical
performance of batteries is starkly related to the properties of
the interphase layers. Therefore, how to construct efficient
and stable CEIs and SEIs is a research focus.

In high-voltage transition-metal (TM) cathodes, there are
particularly severe challenges to be faced with the interface.
The continuous decomposition of the electrolyte at the
cathode surface is considered to be one of the most
important causes of interfacial degradation.128 The electrolyte
readily reacts with the cathode surface to produce the as-
termed CEI.129,130 In addition, various reactive intermediates
from the electrolyte, such as HF, free radicals, etc., can
destroy the pristine CEI and trigger more side reactions.
Additionally, the intrinsically unstable crystal structure at the
cathode surface in the high delithiated state undergoes
dissolution of TM ions and release of O2, inducing chemical
crossover with the anode surface. In fact, in addition to the
prevalent approaches of electrolyte design and electrode
coating, the rational molecular design of binders has also
proved to be an efficient strategy to mitigate the interfacial
degradation.131 Binders with a special design can uniformly
coat the cathode surface with strong adhesion as an artificial
CEI, and scavenge/absorb a variety of reactive intermediates
to protect the surface structure and alleviate electrolyte
decomposition to some extent. In addition, it is reported that
the crystal structure of cathodes at the surface can be
stabilized by the binders to inhibit TM-ion dissolution.

Li et al. used polyaniline (PANI) as a binder for ultrahigh-
nickel layered oxide cathodes (LiNi0.94Co0.06O2) at 2.8–4.4 V.132

Uniform and stable artificial CEIs were constructed at the
surface of the cathodes. Time-of-flight secondary ion mass
spectrometry (TOF-SIMS) results showed that the CEI of the
PANI samples was regulated to a dual-layer structure consisting
of inorganic (PO2

−/POF2
−) and organic (C2HO−) layers, which

were thinner and more homogeneous compared to that of PVDF
(Fig. 4a), and importantly, free of a transition-metal species
layer (NiF3

−/CoF3
−). In contrast, the CEI of the PVDF samples

featured a triple-layer structure, comprising inorganic species in
the exterior layer, organic species in the intermediate layer and
dissolved transition-metal species penetrating into the interior
layer. A thin and stable artificial CEI ensures long-term cycling.
The full cell of graphite/LiNi0.94Co0.06O2 with PANI as a binder
at C/2 rate and 25 °C exhibited 81% capacity retention after
1000 cycles, while that with PVDF only exhibited 47% capacity
retention. The capture of various reactive intermediates, such as
HF, free radicals and active oxygen, plays a critical role in
stabilizing the cathode interphase. HF from the hydrolysis of
LiPF6 usually degrades the CEI. The imine nitrogen in PANI
could be coordinated to F−,132 and the sulfonic anion group in
Nafion could attract H+,45 both of which are helpful for
scavenging HF from the decomposition of a lithium salt and
solvents. A photostabilizer (PS) as an anti-aging binder additive

(shown in Fig. 4b) was proposed by Mu et al., realizing the
capture of free radicals from the electrolyte and active oxygen
from the cathodes at high voltage.72 The author designed
delicate experiments to validate this anti-aging ability. When PS
and PVDF were added to the free-radical detection reagent (1,1-
diphenyl-2-picrylhydrazyl free radical) or to the 1O2 indicator
(indocyanine green), the color of the solution became colorless
from purple or green, but the sample but only PVDF did not,
which proved the absorption of free radicals and active oxygen
by the PS. Online differential electrochemical mass
spectrometry (DEMS) results further indicated that the PS
ameliorated the release of O2 during operation (Fig. 4b). In
addition, the agent has been demonstrated to have universal
radical-capture abilities in various layered oxide-based cathodes,
including NCM, LRMO, and LCO cathodes, and under different
working conditions (Fig. 4c).

The irreversible migration of TM ions leads to a phase
transition from layer phases to spinel phases or/and a rock-
salt phase, accompanied by the dissolution of TM ions and
release of O2. Jin et al. synthesized a DPGP–PEI/PVDF binder
by cross-linking a functionalized terpolymer named as DPGP
with polyethylenimine (PEI), and mixing with PVDF for use
in NCM811 cathodes at 2.8–4.5 V.51 The polar and electron-
rich functional groups of DPGP–PEI, including catechol and
amide groups, interact with the positive TM ions at the
interfacial lattices, constraining the dissolution of TM ions to
stabilize the surface structure. The high-angle annular dark-
field scanning transmission electron microscopy (HAADF-
STEM) results revealed that the surface of the PVDF-based
NCM811 cathodes consisted of a rock-salt phase in the outer
layer, a thick spinel phase in the intermediate layer and a
layered phase in the bulk. In contrast, only a thin layer of
spinel phase was formed on top of the layered structure of
the DPGP–PEI/PVdF-based NCM811 cathode without the
presence of the rock-salt phase (Fig. 4d). Furthermore, the
XRD refinement results indicated a lower degree of Li/Ni
cation mixing in the DPGP–PEI/PVdF-based NCM811 cathode.
The working mechanism of DPGP–PEI/PVDF that mitigates
the interfacial and structural degradation is illustrated in
Fig. 4e. The TOF-SIMS showed that the cycled graphite anode
surface with DPGP–PEI/PVDF exhibited lower content of Co,
Mn and Ni ions than that with PVDF, demonstrating that
DPGP–PEI suppresses ion dissolution and cathode-to-anode
crossover. LRMO cathodes with high capacities over 200 mA
h g−1 are more prone to surface degradation of the lattice
structure because of the involved oxygen redox reaction,
where the vacancies left from the released O are easily
captured by TM ions, accelerating the irreversible migration
of TM ions. According to the work of Xu et al.,
polyacrylonitrile (PAN) was used as the binder for LRMO
cathodes, which coordinates with positive TM ions at the
surface through CN triple bonds to prevent TM ion
migration.23 Density functional theory calculations showed
the energy barrier of Mn ion migration in delithiated LRMO
cathodes was lower (+2.58 eV) with PAN than that without
PAN (+3.59 eV) (Fig. 4f). Remarkably, the energy barrier of Ni
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Fig. 4 Modification strategies to mitigate interphase degradation. (a) Interfacial components of cathodes with PVDF and PANI. Reproduced with
permission.132 Copyright 2020, American Chemical Society. (b) O2 evolution of NCM811/Li half cells with PVDF and anti-aging binders in the online
DEMS system. (c) Capacity retention of various electrode systems under various test conditions with PVDF and the anti-aging binder. (b) and (c)
are reproduced with permission.72 Copyright 2021, American Chemical Society. (d) HAADF-STEM images of the DPGP–PEI/PVDF- and PVDF-based
NCM811 particles after 1000 cycles. (e) TM-ion scavenging mechanism of DPGP–PEI/PVDF and the chemical structure of DPGP (inset). (d) and (e)
are reproduced with permission.51 Copyright 2023, Wiley. (f) The migration energy barriers of Mn and Ni with or without PAN binder. Reproduced
with permission.23 Copyright 2022, Wiley. (g) In situ Raman evolution of PVDF–LCO and DSL–LCO at the Eg and A1g peaks during the first cycle. (h)
The charge–discharge curves of PVDF/LCO and DSL/LCO at the first and 10th cycles. (i) The cycling performance of PVDF/LCO and DSL/LCO
during 100 cycles at 0.5 C. (g)–(i) are reproduced with permission.22 Copyright 2021, Wiley.
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ion migration in delithiated LRMO cathodes without PAN is
−0.66 eV, which meant favorable Ni ion migration. However,
the migration barrier of Ni ions rose to +2.28 eV with PAN,
meaning ion migration was inhibited effectively (Fig. 4f).
Huang et al. designed dextran sulfate lithium (DSL) binders
to enhance the interaction with the LCO surface by sulfonic
anion groups, which could suppress the detrimental phase
transition from the O3 phase to the H1–3 phase.22 In situ
Raman spectroscopy showed that the PVDF/LCO electrode
exhibited obvious attenuation in the Eg (O–Co–O bending
vibration) and A1g (Co–O stretching vibration) peaks, while
the DSL/LCO cathode showed reversible evolution of the Eg
and A1g peaks during the first cycle from 2.8 V to 4.6 V
(Fig. 4g). This was attributed to the interaction between DSL
and LCO that greatly prevents the irreversible breaking of
Co–O and O–Co–O bonds at the surface, and further
suppresses the deep-going structural collapse during the
high-voltage LCO cycling. Fig. 4h shows the discharge curves
of the first and tenth cycles for high-voltage LCO and Fig. 4i
shows the cycling performance of PVDF/LCO and DSL/LCO at
0.5 C. DSL/LCO retained a higher capacity retention of 93.4%
after 100 cycles compared to PVDF/LCO (61.5%).

There are also many challenges at the anode interphase,
such as large impedance, structural instability, etc. Likewise, an
effective SEI can be constructed using a binder coating to
alleviate the decomposition of electrolyte at the interface.133–135

A functional binder can modify the SEI composition via an
electrochemical reaction to improve the electrical and
mechanical properties of the SEI, facilitating the
electrochemical performance of batteries.68 Pradhan et al.
synthesized a B-bearing caffeic acid-based binder for graphite
anodes.136 Compared with the solvent and salts, the lower
unoccupied molecular orbital (LUMO) energy level of this
binder could facilitate the preferential reduction to form a
borate-rich SEI. The borate-rich SEI decreased SEI resistance
and improved the electrode dynamics. Furthermore, it is
reported by Wang et al. that due to a lower LUMO energy level,
a poly(vinylamine) (PVAm) binder containing amino (–NH2)
and amide (–NH–CHO) groups could also be preferentially
reduced and form an N-rich SEI that is Li-conductive and has
good mechanical properties.137 The Li 1s X-ray photoelectron
spectroscopy (XPS) spectra verified the presence of Li–N at the
Si/PVAm surface. Consequently, it was further proved by the
electrochemical impedance spectroscopy (EIS) that Si/PVAm (52
Ω) exhibited lower interfacial impedance in comparison to Si/
PVA (65 Ω) and Si/PVDF (123 Ω), which is attributed to the
N-rich SEI. A cycling test of the Si anodes was performed to
investigate the influence of PVAm. Si/PVAm delivered 2000 mA
h g−1 capacity after 200 cycles, while Si/PVDF and Si/PAA only
delivered 66 and 820 mA h g−1 capacity, respectively, after the
same number of cycles.

2.3 Electrical properties

2.3.1 Improvement of electrical conductivity. Low
electrical conductivity is the bottleneck of rate performance

of the active materials.138,139 Although added conductive
carbons can enhance the electrical conductivity of electrodes,
large volume changes during cycling lead to the loss of
contact between the conductive carbons and the active
materials (Fig. 5a).9 If binders are endowed with the ability to
conduct electrons then, benefitting from the flexibility of the
binders, the electrical pathway can always be guaranteed
despite drastic volume changes. The conductive binder
represents a pivotal application scenario to possibly avoid the
use of conductive carbon (Fig. 5a).140 Generally, electrically
conductive polymers have a conjugate structure with
alternating single and double bonds, and a lower energy gap
between the bonding orbitals and antibonding orbitals than
that of a non-conjugate structure and thus delocalized π

electrons can be transported directionally under an electric
field. The introduction of polarons through redox or doping
can further reduce the energy gap and realize the satisfactory
conductivity of the conducting polymers (Fig. 5b). In contrast,
it is well known that PVDF is electrically insulating due to its
non-conjugated structure.

Conductive polymers are typified by polyfluorene,
polythiophene, polyaniline, polypyrrole, and so on. The most
obvious way to design conductive binders is to imitate these
conductive polymers as molecular backbones that are supposed
to ensure the adhesion property. Liu's group chose poly(9,9-
dioctylfluorene-co-(9H-fluorene)) (HPF) as the baseline and
introduced carbonyl groups into the fluorene units, producing
poly(9,9dioctylfluorene-co-fluorenone) (PF), to regulate HPF's
LUMO energy level. The decreased energy level difference
enhances the electrically conductivity. Based on this method,
they developed a series of n-type polyfluorene-based
multifunctional binders, such as poly(9,9-dioctylfluorene-co-
fluorenone-co-methylbenzoic ester) (PFM) and poly(9,9-di(oxy-
2,5,8-trioxadecane) fluorene-co-(9,9-dioctylfluorene)-co-
methylbenzoic ester) (PEFM) (Fig. 5c).32,141–143 The high
conductivity (∼1 × 10−6 S cm−1) of these binders contributes to
the superior electrochemical performance. More importantly,
an inspiring strategy that manipulates the properties of
polymers by producing hierarchically-ordered structures (HOS)
was proposed.32 As we know, proteins achieve advanced
functionality by forming higher-order structures, through
processes such as structural folding and multi-molecule
arrangement, whereas advanced functionality is impossible
with primary structures alone. Similarly, the removal of alkyl or
alkoxy side chains of polyfluorene-based binders by thermal
treatment could enhance the π–π interactions between chain
segments and hence build HOS of the binders. A schematic
diagram of HOS is shown in Fig. 5d. This strategy extended the
ordered range of the microstructure and reduced the
amorphous intercrystallite regions, where carriers are expected
to move more efficiently. Abundant micro-crystal orientations
in HOS-PFM due to π–π stacking between the aromatic chains
were observed directly by four-dimensional scanning
transmission electron microscopy (4D-STEM) (Fig. 5e). As a
result, this seemingly simple method significantly improved
the mechanical properties, electric (∼0.1 S cm−1) and ionic (a
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Fig. 5 Modification strategies to improve the electronic conductivity of electrodes through functional binders. (a) Comparison of conventional
conductive agents and conductive binders during volume changes. Reproduced with permission.9 Copyright 2018, Royal Society of Chemistry. (b)
The electrically conductive mechanism of a conjugated polymer through polaron transport. Reproduced with permission.154 Copyright 2015, Royal
Society of Chemistry. (c) Structural formula of the polyfluorene-based multifunctional conductive binders. (d) Schematic diagram of HOS binders
with higher-order structures. (e) Micro-crystal orientations of HOS-PFM from 4D-STEM. (f) Battery cycling of m-SiOx anodes with PFM and HOS-
PFM (9.6 wt% and 18.1 wt%). (g) Cycling performance of high-content m-SiOx anodes (88 wt%, 94 wt% and 99 wt%) without conductive carbon
additives but with HOS-PFM. (h) The comparison of cycling performances of m-SiOx anodes with various binders during 50 cycles. (c)–(h) are
reproduced with permission.32 Copyright 2023, Springer Nature. (i) Chemical structure of conjugated PFA. (j) The relationship of power density and
volumetric density with PFA- and PVDF-based LFP electrodes. (i) and (j) are reproduced with permission.149 Copyright 2019, Wiley. (k) Graphical
illustration of an in situ polymerized conductive adhesive network. (l) Cycling performance of in situ polymerized PANI/Si and PVDF/Si. (k) and (l)
are reproduced with permission.150 Copyright 2013, Springer Nature.
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Li+ diffusion coefficient of 1.2 × 10−11 cm s−1) conductivity of
the binders by constructing higher-order structures without
introducing new functional groups. The cycling performance of
the HOS-PFM-based microparticle SiOx (m-SiOx) anodes was
significantly better than PFM despite the lower content of HOS-
PFM (9.6 wt%) (Fig. 5f). The high-loading HOS-PFM-based m-
SiOx (88 wt%, 94 wt% and 99 wt%) still retained high
coulombic efficiency and capacity retention without any
conductive carbons (Fig. 5g). Fig. 5h shows that the
electrochemical performance of polyfluorene-based conductive
binders (HOS-PFM, HOS-PM, HOS-PF and HOS-PEM) can be
significantly improved by the HOS strategy in stark contrast to
the conventional binders (PAA, LiPAA, PI, PVDF and CMC/SBR)
and non-HOS binders (PFM).

Polythiophene, a common conductive polymer, can also
be used as the backbone of multifunctional binders.
Introducing long alkane chains144–146 or Li-ionized alkyl
carboxylate groups with various lengths20,147 into
polythiophene, can increase both ionic and electronic
conductivities. These binders exhibit exceptional
electrochemical performances in a wide variety of electrode
systems, such as graphite,147 silicon147 and Fe3O4 (ref. 20)
anodes, as well as V2O5 (ref. 144 and 146) and LFP145

cathodes. Another well-explored thiophene-based polymer,
namely poly(3,4-ethylene dioxythiophene) doped with
poly(styrene sulfonate) (PEDOT:PSS), was also exploited as a
binder. Higgins et al. investigated the effect of formic acid
(FA) doping on the conductivity of PEDOT:PSS and optimized
the content of FA (10%).148 The cycling tests showed PEDOT:
PSS/SiNP with 10% FA has the highest specific capacity of
2681 mA h g−1 in the second cycle and 1950 mA h g−1 at the
100th cycle in comparison to CB/LiPAA, PEDOT (no FA) and
PEDOT (5% FA). Because of the enhancement of electrical
conductivity, PEDOT:PSS/SiNP exhibited superior rate
performance compared to other binders.

In situ polymerized PFA as a conductive binder has been
employed in LFP electrodes.149 The extended conjugated
regions were beneficial to decreasing the energy gap between
the HOMO and LUMO and hence improve the conductivity
(Fig. 5i). From Fig. 5j, it is evident that the PFA binder affords
the LFP electrode a higher energy density and power density
compared to PVDF. Furthermore, the in situ polymerized
PANI cross-linked with phytic acid constructed a 3D
conductive network for Si anodes (Fig. 5k).150 The in situ
PANI/SiNP composite electrodes exhibited a relatively stable
reversible capacity of 1600 mA h g−1 after 1000 cycles. In
comparison, PVDF/SiNP and the mixed PANI/SiNP have rapid
capacity decay (Fig. 5l). Moreover, polypyrrole (PPy) can also
be employed as a conducting binder. The in situ polymerized
and cross-linked PPy formed a conductive gel framework,
which demonstrated superior electrochemical performance
in Si and Fe3O4 anodes.

151,152

In addition to the use of conducting polymers as the
backbone of binders, the electronic conductivity can also be
improved by grafting large conjugated fragments. For
example, molecules of the polycyclic aromatic hydrocarbon

pyrene were grafted onto polyacrylate as side chains.153 The
pyrene groups are close enough together to readily self-
assemble into an ordered structure, which can further
improve the electrical conductivity due to stacking of the
aromatic moieties. Furthermore, an inorganic composite
binder made of carbon nanotubes interwoven in cellulose
was proposed.84 Benefitting from ultra-high electrical
conduction (816 S m−1) of the inorganics, electrodes with this
binder possessed superior rate capability. At high current
density (10 mA cm−2), LCO with this binder delivered 2.6 mA
h cm−2 capacity, but LCO with PVDF barely has capacity due
to the polarization.

2.3.2 Improvement of ionic conductivity. Analogous to the
electronic conductivity, ionic conductivity plays a
fundamentally important role in the kinetics of electrode
processes and rate capability.155,156 Improving the ionic
conductivity of liquid- or solid-state electrolytes, and active
materials is the prevalent approach to this issue. Ionically
conductive binders, due to their flexibility and elasticity, can
easily adapt to deformation and sustain the continuous ionic
pathway, especially in all solid-state batteries. Therefore, the
ionically conductive binders can provide sustained ionic
conduction in spite of large volume changes, while other
components in the electrode cannot. In a similar manner to
the polymer electrolyte, electron-rich polar moieties on the
binders can coordinate with dissociated Li+. In the
amorphous region of polymers, orientational interchain or
intrachain transport of Li+ under an electron field is
therefore realized by the wiggling of the chain (Fig. 6a).157

Moreover, polyelectrolyte126,158 or polyanion159 binders can
also enhance lithium-ion conduction because the anions are
fixed on the polymer and hence cations (e.g., Li+) are only
involved in oriental migration (Fig. 6a). Actually, PVDF can
absorb certain amounts of electrolyte and acquire ionic
conductivity. However, the ionic conductivity is relatively low,
and the swelling in turn impairs the adhesion of PVDF.

Reducing the crystallinity and increasing the amorphous
region is one of the efficient ways to increase the ionic
conductivity of polymers. Increasing the degree of bifurcation
of the polymer weakens the interactions between the chain
segments and prevents the orientational alignment of the
linear chains, which can reduce the crystallinity of the
polymer. Jiang et al. grafted alkoxy chains onto linear PAA to
reduce the crystallinity of PAA.160 The degree of
polymerization, molecular weight and Tg of the binders were
regulated by the proportion of PAA and the cross-linker,
tetra(ethylene glycol) diacrylate (TEGDA). The higher the
cross-linker content, the lower the degree of polymerization
and Tg, which evidenced more amorphous regions and
higher ionic conductivity. The feed ratio of TEGDA and
acrylic acid increased from 0 to 0.2, and Tg decreased from
109.0 to 87.2 °C. The ionic conductivity of a series of binders
increased from 5.77 × 10−5 to 5.01 × 10−4 S cm−1. As the
degree of branching in the binders increased, the interfacial
resistance decreased and the capacity retention of the
corresponding Si anodes increased.
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Fig. 6 Modification strategies to improve the ionic conductivity of electrodes through functional binders. (a) Schematics showing the ionic
conduction mechanism of polymers. Reproduced with permission.157 Copyright 2021, Royal Society of Chemistry. (b) The internal resistance of
PVDF- and BBP-based NCM811 cathodes at different SOCs, and the structural formula of the BBP (inset). (c) Swelling tests of PVDF and BBP films.
(d) Rate performance of PVDF- and BBP-based NCM811 cathodes. (b)–(d) are reproduced with permission.19 Copyright 2022, Wiley. (e) Cycling
performance and (f) initial coulombic efficiency of Si anodes with different binders. (g) Areal capacity and coulombic efficiency of high-mass-
loading Si anodes with N-P-LiPN binders (28.88 mg cm−2) during cycling. (e)–(g) are reproduced with permission.28 Copyright 2020, Wiley. (h)
Schematic diagram of electrolyte-free electrodes with ionically conductive binders. (i) The comparison of rate performance of electrolyte-free
electrodes with Li-CMC and Na-CMC as binders. (j) Comparison of volumetric capacities of the electrolyte-free electrodes with Li-CMC and Na-
CMC and composite electrodes. DFT calculation of Li diffusion energy with Na-CMC and Li-CMC in the (k) in-plane and (l) out-of-plane directions.
(h)–(l) are reproduced with permission.162 Copyright 2022, Elsevier.
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The grafting of flexible and ionically conductive chains,
such as alkoxy chains and amino groups, onto binders can
also enhance ionic conductivity. For instance, a
multifunctional amphiphilic bottlebrush polymer (BBP) was
synthesized by Kim et al., which consisted of polynorbornene
and PAA.19 The structural formula is shown in Fig. 6b. Due to
the introduction of the acrylic moieties, the ionic transport
and adhesive strength were simultaneously enhanced by the
electron-rich carboxyl group. The galvanostatic intermittent
titration technique (GITT) results showed that the internal
resistance of BBP/NCM811 is lower than PVDF/NCM811 at
different state of charge (SOC) values (Fig. 6b). At the same
time, unlike PVDF, which realizes ionic conductivity through
electrolyte uptake, BBP circumvents the damage of swelling
to the structural stability and weakened adhesion of the
binders due to the rigid structure of cyclopentane. Swelling
tests showed the volume change of the BBP film is smaller
than for PVDF (Fig. 6c). As a consequence, BBP/NCM811
demonstrated improved rate capability from 0.2 C to 3 C
higher than PVDF/NCM811 (Fig. 6d). Another example is
dopamine-grafted PAA mixed with PVA as a multifunctional
binder (PAA-DA/PVA) for Si anodes.161 Both GITT and EIS
tests indicated that Si@PAA-DA/PVA had superior dynamical
properties to Si@PAA/PVA and Si@CMC/SBR, as successive
amide groups on the side chains could accelerate the
transport of lithium ions.

Introducing ionized functional species, especially Li+, into
the binders, namely polyanion binders, has also been shown
to facilitate the transport of Li+. Li et al. mixed partially
lithiated PAA and partially lithiated Nafion (NF) as a binder
(N-P-LiPN) for Si anodes.28 The lithium-ionized functional
groups reduced the ionic diffusion barrier and increased
ionic conductivity.162,163 At 0.2 C, N-P-LiPN/Si exhibited a
discharge capacity of 2143 mA h g−1 after 100 cycles (Fig. 6e).
Fig. 6e showed that the non-lithiated binders (N-PN, PAA and
NF) possessed inferior capacity retention compared to the
lithiated binders (N-P-LiPN, P-LiPAA and P-LiNF). And the
individual binders (P-LiPAA, P-LiNF, PAA and NF) are all
inferior to the mixed binders (N-P-LiPN and N-PN), which
indicates the synergistic function of the lithiated binders.
Most notably, N-P-LiPN/Si exhibits the highest initial
coulombic efficiency of 93.18% (Fig. 6f). Furthermore, ultra-
high-mass-loading Si anodes (28.8 mg cm−2) delivered an
areal capacity of 49.59 mA h cm−2 with cyclability of 30 times
(Fig. 6g). Sulfonated poly(styrene) (SPS) ionomers were
grafted onto poly(vinylidene fluoride-co-trifluoroethylene)
(PVDF-TrFE) for MoS2 electrodes.95 The SPS formed ionic
channels by self-assembly to facilitate ionic transport. At a
current density of 0.5 A g−1, MoS2 with PVDF-TrFE-g-SPS
binders delivered a discharge capacity of 862.0 mA h g−1 and
retained 91.0% capacity after 1000 cycles compared with a
450.1 mA h g−1 discharge capacity and ≈69% capacity
retention of PVDF-TrFE binders.

Specially, Shin et al. synthesized a Li-CMC binder by
substituting Na+ in Na-CMC with Li+ to improve the ionic
conductivity.162 There was no obvious difference between Na-

CMC and Li-CMC in a conventional liquid electrolyte for
graphite electrodes because the ionic transport between
electrodes was mostly realized by the electrolyte. But when
applied in all-solid-state batteries without a solid electrolyte,
the ionic transport was entirely dependent on the conductive
binder inside the electrodes (Fig. 6h). The Li-CMC/SBR/
graphite electrode delivered a higher capacity than the Na-
CMC/SBR/graphite electrode (Fig. 6i). These electrolyte-free
electrodes can achieve higher volumetric capacities compared
with the composite electrodes with a solid electrolyte,
because composite electrodes are thicker in the presence of
additional, substantial electrolyte inside the electrodes
(Fig. 6j). Molecular dynamics simulations indicated the faster
lithium-ion diffusion kinetics in Li-CMC than in Na-CMC,
especially along the out-of-plane direction (Fig. 6k and l).

2.4 Thermal properties

2.4.1 Improvement of thermal safety and wide-
temperature operability. Battery thermal safety is affected by
many factors, such as the electrolyte, while less attention is
paid to the binders. How binders affect thermal safety and how
to improve thermal safety through binder design, including
preventing thermal runaway and battery combustion under
abusive conditions such as overcharging, are worth
consideration.164 In addition, there are specific application
scenarios that require the battery to operate in a wide range of
temperatures, which puts additional requirements on the
binders. These above-mentioned issues are associated with the
binder’s intrinsic thermal property.165 As shown in Fig. 7a, with
increasing temperature, the thermal disturbance of the
polymeric chain is enhanced, which changes the mechanical
properties of the polymers. When the temperature exceeds the
viscous flow temperature (Tf), polymers change from a high
elastic state to a viscous flow state, and the wettability increases
but the mechanical strength decreases. The Tf data of some
common binders have been collected, including for PVDF (160
°C),77 PTFE (327 °C),78 PEO (65 °C).166 As a result of the change
in state, the fluidity of the polymers increases, and it is hard
for the binders to maintain their structural integrity. More
importantly, once exceeding the decomposition temperature
(Td), the polymer begins to decompose, and the binders
completely fail to work, affecting the battery safety. On the
other hand, at low temperature, when the temperature is lower
than Tg, the polymer chains gradually freeze and the polymer
begins to crystallize, resulting in a loss of viscoelasticity and
interface affinity, which means the polymer is no longer
capable of binding the electrodes together.

How binders affect the thermal safety of batteries has
been studied in detail by Gribble et al.55,167 The influence of
PVDF binders integrated with carbon black (CB) on the
thermal stability of graphite anodes was investigated in
comparison to PEDOT:PSS.55 The differential scanning
calorimetry (DSC) results for lithiated and electrolyte-wetted
graphite anodes with PVDF/CB, PEDOT:PSS or PEDOT:PSS/CB
showed that the heat from SEI decomposition was 143 J g−1,
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Fig. 7 Modification strategies to improve thermal stability of electrodes through functional binders. (a) Schematic diagram of the deformation–
temperature curve of polymers. (b) Decomposition temperatures of PVDF and PI-FTD. (c) DSC curves of charged NCM811 with PVDF and PI-FTD
binders. (b) and (c) are reproduced with permission.168 Copyright 2019, Elsevier. Voltage and temperature profiles of 1 A h pouches comprising (d)
PVDF@NCM and (e) PI@NCM overcharged to 10 V. The insets are the digital photographs of the pouch cells after overcharge. (d) and (e) are
reproduced with permission.169 Copyright 2016, Elsevier. (f) Schematic showing the flame-retardant mechanism of APP-based sulfur electrodes.
Surface morphology of (g) S-APP and (h) S-PVDF electrodes after burning. (f)–(h) are reproduced with permission.92 Copyright 2018, American
Chemical Society. (i) Graphical illustration of the inorganic adhesive framework of UCFR and its special functions. (j) The dimensional evolution of
Al, PVDF/LFP and UCFR/LFP at different temperatures. (k) Photographs of PVDF/LFP and UCFR/LFP on a flame. (l) Cyclability of UCFR/LFP after
thermal treatment at 750 °C. (m) Cyclability of UCFR/LFP at different temperatures ranging from RT to 160 °C. (i)–(m) are reproduced with
permission.85 Copyright 2019, Wiley.
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37.5 J g−1 and 102 J g−1, and the total heat was 2.13 kJ g−1,
1.51 kJ g−1, 1.93 kJ g−1, respectively. The reason for this
difference was that PEDOT:PSS with a lower specific surface
area than carbon black has less electrolyte absorption and
heat release. Moreover, a more stable and thinner SEI was
formed on the surface of the electrodes with PEDOT:PSS,
which raises the initial decomposition temperature and
reduces the heat release from SEI decomposition. A similar
thermal issue was reported by Pham et al. through binder
design.168 As a special engineering plastic, polyimide exhibits
many special properties, such as high mechanical strength
and thermal stability, which can be used in the design of
thermally stable binders. A fluorinated polyimide (PI-FTD)
binder containing trifluoromethyl and phthalimide structures
was synthesized,168 and thermogravimetric analysis indicated
the decomposition temperature of PI-FTD was up to 500 °C,
while that of PVDF was 433.8 °C (Fig. 7b). The DSC test of
NCM811 cathodes charged to 4.4 V showed that the
exothermal heat of PVDF/NCM811 was higher and the initial
exothermal temperature of PVDF/NCM811 was lower than PI-
FTD/NCM811 (Fig. 7c). In addition to the improved thermal
stability of the binder itself, the protection of the electrode
surface by PI-FTD and the construction with a stable CEI was
also responsible for the improved thermal safety of the
electrodes. Overcharging, as a kind of electrical abuse, is a
concern with regard to the thermal safety of practical battery
operation, and can lead to a risk of thermal runaway. Qian
et al. utilized a polyimide binder, which also contained a key
phthalimide structure, to restrain the thermal runaway of
pouch cells with NCM cathodes.169 When the batteries were
charged to 10 V, the temperature of polyimide binder/NCM
was just 80 °C, while that of PVDF/NCM reached 1000 °C
(Fig. 7d and e).

Some specific binders with flame-retardant characteristics
can significantly enhance battery safety. It was proposed by
Zhou et al. that ammonium polyphosphate (APP) could be
employed as a flame-retardant binder for sulfur cathodes.92

The flame-retardant mechanism arose due to the presence of
decomposition products of APP, including water and
nonflammable NH3, that lowered the reaction temperature
and cut off the supply of oxygen. Meanwhile, an insulating
polymer layer was formed on the electrode surface that
further retarded the spread of the flames (Fig. 7f). The XPS
results indicated that the S-signal intensity on the surface of
S/APP remained unchanged after burning. But a greater C
signal and lower S signal was detected on the S/PVDF surface,
which possibly resulted from the carbonization of organic
matter and the volatilization of S. SEM results showed that
porous structures were found on the surface of S/PVDF after
combustion, while the surface of S/APP was uniformly coated
(Fig. 7g and h). Some biopolymers have also been proved to
have a flame retardant ability. Tragacanth gum (TG) as the
binder of sulfur cathodes prevented the burning of a S/TG
electrode even at temperatures over 180 °C.74 The authors
argued that, in the presence of abundant hydroxy groups, as
the temperature increased the biopolymers underwent

dehydration–condensation reactions. The as-formed inert
coating effectively blocks the positive electrode from the
flame. Furthermore, phosphides and nitrides (e.g.,
polyphosphonitrile) are considered to have good thermal
stability and are commonly used as flame-retardant
materials. A eugenol phosphazene (EP) binder was
synthesized by Monisha et al. for sulfur cathodes.170 With the
increase of EP content, the specific ignition time, specific
self-extinguishing time and limiting oxygen index of EP/S all
decreased, demonstrating that EP efficiently reduced the
flammability of S cathodes. The XPS results showed that the
NP signal disappeared after combustion, but the S signal
was preserved. It is proposed that phosphazene was
decomposed into polyphosphoric acids, carbonaceous char
and gases (e.g., N2 and NH3), which inhibited further
combustion. Likewise, a flame-retardant framework was
constructed with cross-linked hexachlorocyclotriphosphazene
in the binder.171 The S/C cathodes with this binder could
withstand a high temperature of 250 °C and not be ignited.

In contrast to most binders made of organics, inorganic
binders have higher thermal stability and nonflammability
while ensuring adhesion. Interestingly, an ultrahigh-capacity
and fire-resistant (UCFR) inorganic adhesive framework
comprising hydroxyapatite nanowires (HAP), conductive
carbons and carbon fibers, was proposed by Li et al.85 Unlike
polymers where intermolecular interactions occur between
functional groups, the inorganic framework maintained
structural integrity through electrostatic self-assembly, as
shown in Fig. 7i. Benefitting from the powerful electrostatic
attraction, the UCFR/LFP cathodes had an extremely high
loading (108 mg cm−2) and areal capacity (16.4 mA h cm−2).
Moreover, owing to the high content of conductive material
in the binder, this inorganic framework had ultra-high
conductivity (3.69 S cm−1), so it can be directly used as
flexible electrodes without a current collector. More
importantly, this inorganic framework can endure extremely
high temperatures. As shown in Fig. 7j, large areas of Al foil
and PVDF/LFP had decomposed at 1000 °C, but UCFR/LFP
basically had almost no change. A more direct experiment
showed that UCFR/LFP electrodes maintained dimensional
and current continuity on the flame over 10 min, while
PVDF/LFP is burnt out after 10 s (Fig. 7k). Even after heat
treatment at 750 °C, UCFR/LFP still maintained
electrochemical activity and could be charged and discharged
reversibly (Fig. 7l), which was almost impossible for
conventional organic binder-based electrodes. Even at the
high temperature (160 °C), UCFR/LFP could satisfy high-rate
(2 C) working (Fig. 7m).

As the temperature decreases, the properties of binders
change significantly. For example, thermal motion of chains
is suppressed and polymers transfer from the high-elastic
state to the glass state below Tg, which heavily impair the
adhesive ability of the binders. Eom et al. compared PVDF
and CMC/SBR as the cathode binders for a 2 A h NCM523/
graphite pouch battery at low temperature.93 In fact, the Tg of
PVDF (−35 °C) was lower than for CMC/SBR (−5 °C), which
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means PVDF does not crystallize at lower temperature (−35
°C) and maintains its viscoelastic property. Furthermore,
from −30 °C to 45 °C, PVDF had higher electronic
conductivity than CMC/SBR. At −30 °C, the anodes with PVDF
discharged more capacity (0.86 A h) than CMC/SBR (0.79 A
h). The cycling performance at low temperature (−10 °C)
showed the PVDF-based battery maintained 0.6 A h capacity
after 100 cycles, while the CMC/SBR-based battery only had
0.4 A h. It has also been shown that polyaniline was used as
a binder for LiNi0.94Co0.06O2 cathodes, which can discharge
at low temperature (−20 °C) and high rate (5 C), contributing
to the high conductivity of polyaniline.132

2.5 Dispersion properties

2.5.1 Improvement of electrode homogeneity. Electrodes
generally consist of active materials, conductive carbons,
binders, and voids filled with liquid or solid electrolytes.
Whether these components are uniformly dispersed has a
huge impact on the electrochemical performance of
batteries.172–174 For instance, during the drying process, the
binder will migrate as the solvent evaporates, resulting in
accumulation of the binder on the upper surface of the
electrodes.175 The heterogeneous dispersion of binders gives
rise to insufficient adhesion where binders are deficient and
electron pathways are hence blocked.176

Binders with polar functional groups can improve the
affinity and adhesion to hydrophilic interfaces, such as those
of silica-based materials. But, at the same time, polar
functional groups are also not satisfactory for the dispersion of
hydrophobic materials, including various carbonaceous
materials, such as graphite and conductive carbon.
Amphiphilic binders can promote the dispersion of hydrophilic
active materials and hydrophobic carbonaceous constituents
simultaneously.79,100,104 Hu et al. designed a triblock copolymer
binder, referred to as PESA, consisting of phenyl, alkoxy, and
carboxyl groups for silicon/graphite anodes.100 Among
functional groups, the phenyl group has a fair affinity with
graphite surfaces via π–π interactions, while the carboxyl group
is attracted to silicon surfaces via hydrogen bonding. Moreover,
the alkoxy group satisfies the stretchability of polymers
(Fig. 8a). As exhibited by the optical photos in Fig. 8b, the water
slurry of Si/C components with the PSEA binder is visually
dispersed more uniformly (right) compared to CMC/SBR
binders that were obviously stratified (left). Peeling-off tests,
which were influenced by the homogeneity of each component
and the interactive strength between each component and
binders, indicate the higher average peeling-off force for PSEA-
based electrodes (163 N m−1) compared with CMC/SBR (100 N
m−1) and PAA (24 N m−1) (Fig. 8c).

Another example is a renatured DNA (reDNA) skeleton
conjugated with alginate segments via noncovalent bonds to
yield an amphiphilic brush-structure binder.104 Denaturation
upon heat treatment opened up the DNA double helix, while
the subsequent renaturation by cooling did not completely
restore the base-pair pairing, where the heterocyclic aromatic

moieties were exposed to enhance the interactions with the
hydrophobic surfaces of graphite and conductive carbon. In
addition, the alginate segments showed a strong affinity with
the hydrophilic surfaces of silicon. Optical microscopy
images showed less agglomeration on the Si@reDNA/alginate
surface than on Si@alginate. Furthermore, the images after
peeling-off showed less Cu surface exposure for Si@reDNA/
alginate than for Si@reDNA, Si@DNA and Si@alginate, which
was attributed to the even adhesion from the homogeneous
distribution of each component.

As for electrolyte infiltration inside the electrode, for
instance, the electrolyte had a smaller contact angle on a Si
electrode with a PAA-DA/PVA binder possessing abundant
hydroxyl and carboxyl groups (14.6°) compared to that for a
Si electrode with a CMC/SBR binder (23.9°), demonstrating
that the electrolyte on the surface with a PAA-DA/PVA binder
had a larger surface tension and better wettability.161 The
swelling properties of binders can also accelerate electrolyte
infiltration through electrolyte uptake. By grafting a flexible
and long epoxy chain, the weight change of the binder after
swelling due to electrolyte uptake was up to 468.8%
compared to PVDF (29.1%) and CMC (24.2%).103 A drop of
electrolyte disappeared completely on the electrodes with the
grafted binders within 3 minutes. In addition, binders with a
3D skeleton-structure can also accelerate electrolyte
dispersion due to the large porosity and specific surface
area.84,85,177,178 Wang et al. proposed a composite binder
consisting of carbon nanotubes interwoven by cellulose to
construct a 2D reticular nanosheet structure (named as 3C-
binder) (Fig. 8d).84 The contact angle of the electrolyte on the
electrode surface with PVDF was initially 79° and was
maintained at 33° after 30 s. In contrast, the contact angle of
the 3C-binder was initially 55° and electrolyte permeated
through the electrode completely after 5 s, which was
attributed to the binder’s porous structure (Fig. 8e).

The dispersion of the binders themselves in a solvent
depends mainly on the polarity of the solvents and binders.
PVDF is generally soluble only in organic solvents with strong
polarity, such as NMP, which is however toxic and causes
environmental pollution. Water is an ideal green solvent and is
hoped to replace NMP in electrode manufacture. Therefore,
aqueous binders are widely employed and investigated, such as
PAA. Aqueous binders need to have sufficient hydrophilic
groups, such as hydroxyl, carboxyl, and amino groups, to
ensure water solubility.179 Bio-polymers and their derivatives
are promising candidates, attributed to their water solubility,
biodegradability and sustainability, such as CMC and
polysaccharides (e.g., alginate).180,181 A tragacanth gum-based
binder was used in lithium–sulfur batteries, which had
characteristics of nonflammability, water solubility and
environmental compatibility.74 Based on this binder, the
batteries demonstrated superior electrochemical performance.

Plagued by the toxicity of the traditional NMP solvent and
the huge energy consumption in the electrode drying
process,182 it is a promising strategy to free the use of
solvent and develop the solvent-free electrode preparation
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Fig. 8 Modification strategies to improve the homogeneity of electrodes through functional binders. (a) Schematic illustration of the interaction of the
three-block PSEA binder with graphite and silicon in Si/C composite anodes. (b) Photographs of the water slurry of Si/C with CMC/SBR or PSEA. (c) The
peeling-off tests of Si/C electrodes with PESA, CMC/SBR and PAA. (a)–(c) are reproduced with permission.100 Copyright 2022, Wiley. (d) Schematic
diagram of 3C composite binder. (e) The contact angles of electrolyte on electrodes with PVDF or 3C binders at different testing times. (d) and (e) are
reproduced with permission.84 Copyright 2021, Wiley. (f) Schematic diagram of the dry-coating manufacturing process for electrode preparation. (g)
The relationship between normalized average peeling-off force and electrode thickness for slurry-based LNMO and dry LNMO electrodes. (h) Cycling
performance of slurry-based LNMO and dry LNMO electrodes. (f)–(h) are reproduced with permission.78 Copyright 2023, Royal Society of Chemistry. (i)
Graphical illustration of the compatibility among sulfide electrolyte, binder and solvent. Reproduced with permission.109 Copyright 2021, Wiley. (j)
Schematic illustration of click binder synthesized by thiol–ene click reaction grafting a carboxyl group onto SBS. (k) The solubilities of different binders
in various solvents with different polarities, and the compatibility of a sulfide electrolyte with solvents. (j) and (k) are reproduced with permission.58

Copyright 2019, American Chemical Society. (l) Synthesis method of (deprotect) TBA-b-BR. (m) Peeling-off test of NCM electrodes with the protected
and deprotected binders. (l) and (m) are reproduced with permission.96 Copyright 2020, Wiley.

Industrial Chemistry & MaterialsReview

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


Ind. Chem. Mater., 2024, 2, 191–225 | 213© 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

manufacturing as shown in Fig. 8f.78 It is a challenge for the
binder to disperse uniformly in the electrode without a
solvent as a dispersant.183 PTFE is attracting much attention
because it can maintain a viscous flow state under moderate
heating and present a stretched fiber-state under a strong
shearing force. Therefore, thermal dispersion can be realized
as a suitable preparation method of solvent-free electrodes
using a hot roll-pressing process or electrostatic spinning
process, which have the potential to match current large-
scale manufacturing. Yao et al. prepared an LNMO cathode
with PTFE and carbon fiber for solvent-free manufacturing.78

The highest thickness of dry electrodes prepared by this
method reached 240 μm, and the corresponding mass
loading was up to ∼68 mg cm−2, and the areal capacity was
up to ∼9.5 mA h cm−2. In sharp contrast, when the areal
capacity of slurry-based electrodes reached 6 mA h cm−2, the
thick electrode developed cracks due to the migration of the
binder to the surface during drying and the lack of sufficient
adhesion. Dry electrodes showed a higher thickness and even
better adhesion than the slurry-based electrodes (Fig. 8g). It
is inspiring that the cycling performance showed the capacity
retention of the dry-coated LNMO full cell was 80% after 300
cycles, while the capacity retention of the slurry-based cell
was 67% (Fig. 8h).

In all-solid-state batteries employing sulfide solid
electrolytes, weakly polar or nonpolar solvents are often used in
the electrode preparation to avoid side reactions with
chemically active sulfide electrolyte. However, PVDF cannot be
dissolved in nonpolar solvents, which requires binders with
reduced polarity to match the solid-electrolyte/electrode
preparation process. The decrease of polarity generally leads to
insufficient adhesion. Therefore, how to balance the solubility
in nonpolar solvents and the adequate adhesion with
electrodes needs to be carefully considered (Fig. 8i).109 SBS
polymer, whose polarity was regulated by grafting carboxyl
groups through a thiol–ene click reaction (Fig. 8j),58 exhibited
the compatibility of different binders (Fig. 8k, horizontal axis,
the polarity increased from left to right) and different organic
solvents (Fig. 8k, vertical axis, the dielectric constant increases
from bottom to top). It is worth noting that the 2022 Nobel
Prize for Chemistry was awarded to click chemistry. The yellow
area at the top represents solvents that were too polar to be
compatible with the sulfide electrolyte (including NMP,
tetrahydrofuran), and the blue area at the bottom represents
the solvents that were compatible with the sulfide electrolyte
(including dichloromethane, p-xylene, isopropyl ether and
heptane). C40 (molar ratios of SBS and carboxyl groups at 100 :
4) was not soluble in p-xylene and not used in electrode
preparation, but lower SBS contents (C4 and C10) were
suitable. The aforementioned trade-off in sulfide solid
electrolyte can also be overcome by the in situ deprotection
method proposed by Lee et al.96 A block copolymer of
butadiene rubber (BR) with tri-butyl acrylate was synthesized
(named as TBA-b-BR). The weakly polar ester bond in TBA-b-
BR, which was beneficial to dissolution in the nonpolar solvent
(i.e., butyl butyrate), could be decomposed into a carboxyl

group with stronger polarity by heating at 160 °C. The adhesion
was thus enhanced as shown in the peeling-off tests, which
demonstrated that deprotected TBA-b-BR delivered the highest
peeling strength compared to deprotected TBA, TBA-b-BR, TBA
and BR (Fig. 8l). It clearly demonstrated that this deprotecting
strategy enhanced the adhesion of the binders effectively
(Fig. 8m). Electrochemical cycling tests showed that batteries
with deprotected TBA-b-BR delivered superior cyclability in
NCM/lithium–indium all-solid-state cells with a capacity
retention of 80% for deprotected TBA-b-BR, which was higher
than for the deprotected TBA and BR with values of 55.7% and
24%, respectively.

3 Summary and outlook

Although the binder makes up a rather small proportion of
the electrode (∼5 wt%), it plays a nontrivial role in the battery
performance. The fundamental properties of various binders
(alkane-based, polysaccharide-based and inorganic classes),
including mechanical and thermal properties, are collected in
Tables 1, 2, 3 and 4. Typically, the inorganic components of
electrodes (active electrode materials, conductive agents, etc.)
are assembled into a system with structural integrity through
the use of flexible polymers (i.e., binders) and maintain a
close contact with the current collector. Even though
conventional PVDF binders possess decent comprehensive
properties in commercial batteries (e.g., LCO/graphite), PVDF
is probably no longer suitable for certain high-specific-energy
battery systems, such as high-voltage cathodes, silicon anodes,
and solid-state-electrolytes (especially sulfide electrolytes). To
conclude, the design strategies of functional binders are
delineated from the molecular point of view, hopefully to
establish the corresponding relationship between binders and
special functions of different systems. The corresponding
issues and strategies are summarized in Fig. 9. Specifically,
(1) binders with high adhesive and mechanical strength are
designed to realize the high mass loading of electrode
materials via stronger interfacial interaction and physical (or
chemical) cross-linking; (2) binders with high elasticity or self-
healing properties are designed to accommodate volume
changes of the electrode through according strategies, such as
sacrificial bonds or reversible dynamic bonds; (3) binders are
employed to suppress the decomposition of electrolyte on the
electrode surface, and construct a stable electrode–electrolyte
interface through introducing polar and electron-rich
functional groups; (4) the electronic or (5) ionic conductivity
of electrodes is improved by designing electronically or
ionically conductive binders to realize high-rate charge and
discharge utilizing the conjugate polymeric backbone or
grafting of flexible fragments; (6) by improving the thermal
properties of binders through, for example, using inorganic
binders or polyimide-based binders, the thermal safety and
wide-temperature operability are enhanced; and (7) the
development of binders that provide compatibility with special
processes, including aqueous binders, sulfide solid state
electrodes and solvent-free electrodes.
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Common molecular synthesis strategies for binders
include grafting, cross-linking, copolymerization, and
blending, which are used to alter the molecular structure of
the binders and to endow the binders with different

functions. There is no single binder that realizes all functions
and fulfils all requirements, while the most fundamental
function is always the adhesion, which means sufficient
adhesive and mechanical strength. Another basic function is

Fig. 9 The seven primary issues and corresponding strategies for functional binders.
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the ability of binders to accommodate volume variations,
which is particularly important in the system with repeated
volume variations. These two functions in the electrodes can
only be achieved by binders and are therefore very important.
Subsequently, the stability of the binders (chemical,
electrochemical and thermal stability) needs to be
considered, such as whether it reacts with chemically active
species in the electrolytes (e.g., active oxygen, sulfide solid-
state electrolyte) or active materials, whether it is
electrochemically unstable in the extreme voltage conditions
(high voltage or low voltage), and whether the binder fails or
is decomposed at extreme temperatures. Finally, certain
specialized features brought by the binder are worthy of
consideration, such as interface protection, electronic and
ionic conductivity, thermal safety and wide temperature
operation capability, and improvements in the homogeneity
of each component. Because there are other components that
are mainly responsible for these features, they are the last to
be implemented in a binder. Anyhow, such featured binders
can synergistically improve these properties and have a
significant effect on the battery performance. Herein, the
electrochemical performance results of various binders used
in cathodes and anodes are listed in Tables 5 and 6.

Despite the remarkable achievements made in binder
design, there are still many challenges to overcome in terms of
the following well-recognized rationale:8,133,188–190 (1) new
perspectives and methods for binder molecular design. The
correspondences between binder molecular structures and
battery performance are still complex. How binder molecular
structures affect the binders' properties and further affect the
electrodes' properties, as well as finally change the batteries'
performance, is far from clear.62,191 In fact, ‘Artificial
Intelligence for Science’, a recently developed concept, is
accelerating the exploration for the material science that utilizes
advanced machine learning and deep learning technology, to
shed light on the complicated structure–property
relationships.192–195 For example, Zahrt et al. recognized the
agnostic structural patterns of a chiral catalyst through large
datasets and predicted the asymmetric selectivity

quantitatively.195 We believe the same strategy and workflow
can be migrated into binder molecular design. (2) The
mechanistic study of binders including characterizations and
simulations. The in situ characterization and analysis of binders
inside the electrodes is extremely difficult due to the low
content, the small size and the light elements of the binders.196

The lack of characterization of the binder distribution in the
electrodes as well as the change of binders during battery
processing and operation actually impede our understanding of
the aging and failure mechanisms from the view of the
binders.175,197,198 Fortunately, several advanced characterization
techniques have been employed in the studies of binders, such
as acoustic measurements,199 electrochemical quartz-crystal
microbalance,200 Raman spectrometry,201 X-ray computed
tomography,197 and so on. For example, scanning transmission
electron microscopy and valence energy-loss spectroscopy
technologies can be utilized to visualize the distribution of
binders on the silicon particle surface.202 At the same time,
simulation methods towards the binder-containing composite
electrodes are also developed to reflect the influence of the
binder on the batteries.203 Lombardo et al. developed a physics-
based three-dimensional model to mimic binder migration
during drying and unlock the origin of heterogeneous electrode
mesostructures.204 (3) The functional binders suitable for
specific electrode systems. As we mentioned above, based on
the requirements of high energy density (e.g., high mass loading
and high discharge voltage), high power density (e.g., charge
and discharge rate) and high safety (e.g., flame retardants),
novel functional binders are needed to replace PVDF. Taking
the high-specific-energy electrode systems (the cathodes with
LRMO or NCM811 and the anodes with silicon or lithium) as an
example, determining whether there is a binder better than
PVDF in the aspects of electrochemical performance, economy,
and compatibility with manufacturing needs further
exploration. (4) Functional binders suitable for new
manufacturing. For example, the development of solvent-free
manufacturing for electrode fabrication can eliminate the
processes of solvent evaporation and recycling, which is
beneficial to reduce the cost and improve the efficiency.205,206

Table 5 The electrochemical performance of the binders used in cathodes

Binders
Cathode
materials

Maximal
voltage (V)

Maximal mass
loading (mg cm−2) Maximal rate (C) Cycles Capacity retention (%) Reference

CMC–CNT LCO 4.3 86 ∼2 350 93 84
DSL LCO 4.6 5 0.5 100 93.4 22
Si-based binder LCO 4.5 8 6 100 92 184
Anti-aging binder LCO 4.5 5 10 160 97 72
DPGP–PEI/PVDF NCM811 4.5 2 5 1000 80 51
Anti-aging binder NCM811 4.5 15 10 100 95 72
PANI LiNi0.94Co0.06O2 4.4 8 10 1000 81 132
PNB-g-PAA NCM811 4.2 27 3 240 80 19
SA-PProDOT LFP 4.2 — 2 400 86.6 185
Lignin LNMO 5 1.8 1 1000 94.1 186
LiPAA LNMO 5 — 20 80 90 25
Anti-aging binder LRMO 4.7 4 10 100 92 72
PANI LRMO 4.8 — 3.3 300 93 23
FPI LRMO 4.7 3 0.2 100 89 24
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Meanwhile, this process that is free of NMP is environmentally
friendly and decreases carbon emissions. However, the
compatibility of the binders with the hot-press process needs
further investigation and the manufacturing conditions need to
be optimized.86,159 To sum up, further efforts are needed to
understand and develop novel functional binders for the next-
generation of high-specific-energy batteries. It is believed that,
by means of binder design engineering, a bright future will be
witnessed for high-specific-energy LIBs.

Acronyms and abbreviations

PVDF Polyvinylidene difluoride
CMC/Na-CMC Sodium carboxymethylcellulose
PAA Poly(acrylic acid)
SBR Styrene-butadiene rubber
XG Xanthan gum
GG Guar gum
TG Tragacanth gum
TM Transition metal
CEI Cathode electrolyte interphase
SEI Solid electrolyte interphase
PANI Polyaniline
PEI Polyethylenimine
LRMO Li-rich Mn-based oxide (xLi2MnO3·(1

− x)LiMO2 (M = Mn, Ni, Co))
LCO Lithium cobalt oxide (LiCoO2)
NCM811 Ni-rich layered oxide cathode

(LiNi0.8Co0.1Mn0.1O2)
LFP Lithium iron phosphate (LiFePO4)
LNMO LiNi0.5Mn1.5O4

LMO LiMn2O4

PAN Polyacrylonitrile
LUMO Lower unoccupied molecular orbital
m-SiOx Microparticle SiOx

SiMP Microparticle silicon
SiNP Nanoparticle silicon
PEDOT:PSS Poly(3,4-ethylene dioxythiophene)

doped with poly(styrene sulfonate)

FA Formic acid
PPy Polypyrrole
Tg Glass transition temperature
Tf Viscous flow temperature
Td Decomposition temperature
CB Carbon black
SEM Scanning electron microscope
LIB Lithium-ion battery
CNT Carbon nanotube
SOC State of charge
DEMS Differential electrochemical mass

spectrometry
HAADF-STEM High-angle annular dark-field

scanning transmission electron
microscopy

XPS X-ray photoelectron spectroscopy
EIS Electrochemical impedance

spectroscopy
DSC Differential scanning calorimetry
TOF-SIMS Time-of-flight secondary ion mass

spectrometry
Ph Phenyl
SHP Self-healing polymer
N-P-LiPN Partially lithiated polyacrylic acid

and Nafion
P-LiPAA Partially lithiated polyacrylic acid
P-LiNF Partially lithiated Nafion
PAA-P (HEA-co-DMA) poly(acrylic acid)-poly(2-hydroxyethyl

acrylate-co-dopamine methacrylate)
DPGP Catechol grafted poly(glycidyl

methacrylate-co-pentafluorophenyl
acrylate-co-poly(ethylene glycol)
methyl ether methacrylate)

PR–PAA Polyrotaxane–poly(acrylic acid)
UCFR Ultrahigh-capacity, fire-resistant

binders
HOS Hierarchically ordered structures
HPF Poly(9,9-dioctylfluorene-co-(9H-

fluorene))

Table 6 The electrochemical performance of the binders used in anodes

Binders
Anode
materials

Maximal mass
loading (mg cm−2) Maximal rate (C)

Initial coulombic
efficiency (%) Cycles

Capacity
retention (%) Reference

Native-XG SiNP 1 12 76 200 72.2 82
3F1V SiNP 4.9 0.2 79.9 100 66.7 87
N-P-LiPN SiNP 28.88 2 90.76 100 59 28
GG-g-PAM SiNP 2.3 ∼2 87.6 100 83.9 75
PTBR SiMP 5.07 0.7 89.45 200 92 114
PR–PAA SiMP 1 0.4 91.22 150 91 26
SHP-PEG2000(40) SiMP 0.7 2 83 150 80 123
PAA-P(HEA-co-DMA) SiMP 1 ∼1.2 89.3 220 93.8 30
PSEA Si/C 5 2 85.1 120 92 100
PAHT Si/C 6 0.1 90 100 89 187
PR–PAA Si/C 2.5 2 75.52 250 92.6 31
PN-4 SiO 14 0.3 84 500 81.5 38
HOS-PFM SiO 2.45 2 69.9 300 86.3 32
PAA-P(HEA-co-DMA) SiO 6 10 70 300 ∼100 30

Industrial Chemistry & MaterialsReview

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


Ind. Chem. Mater., 2024, 2, 191–225 | 217© 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

PF Poly(9,9dioctylfluorene-co-fluorenone)
PFM Poly(9,9-dioctylfluorene-co-

fluorenone-co-methylbenzoic ester)
PEFM Poly(9,9-di(oxy-2,5,8-trioxadecane)

fluorene-co-(9,9-dioctylfluorene)-co-
methylbenzoic ester)

Mn-COP Mn-covalent-bonding organic
polymer

xFyV x poly (furfuryl alcohol) : y polyvinyl
alcohol (x, y = 1, 2, 3)

PFA Poly (furfuryl alcohol)
PVA Polyvinyl alcohol
PAM Polyacrylamide
Cx Molar ratios of SBS and carboxyl

groups at 100 : x in binders (x = 4,
10, 40)

APP Ammonium polyphosphate
TrFE Trifluoroethylene
SPS Sulfonated poly(styrene)
BR Butadiene rubber
TBA Tri-butyl acrylate
ECH Epichlorohydrin
PG Peach gum
Alg-C Catechol-grafted alginate
PAA-C Catechol-grafted PAA
XNBR Carboxyl nitrile rubber
TA Tannic acid
PTBR PAA-TA-XNBR
β-CDp β-Cyclodextrin polymers
PEG Polyethylene glycol
AD Adamantane
GA Gallol
HA Hyaluronic acid
PS Photostabilizer
DSL Dextran sulfate lithium
PVAm Poly(vinylamine)
TEGDA Tetra(ethylene glycol) diacrylate
BBP Bottlebrush polymer
PI-FTD Fluorinated polyimide
EP Eugenol phosphazene
HAP Hydroxyapatite nanowires
reDNA Renatured DNA
PNB Polynorbornene
SA-PProDOT Sodium alginate-poly(3,4-

propylenedioxythiophene-2,5-
dicarboxylic acid)

FPI Fluorinated polyimide
PSEA Triblock binders composed of

polystyrene (S), poly(2-(2-
methoxyethoxy) ethyl acrylate) (E),
and poly(acrylic acid) (A) segments

PAHT Binders incorporating tannic acid to
poly(acrylic acid-co-2-hydroxyethyl
acrylate)

PN-4 Positively and negatively charged
binders

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors are grateful for funding support from National
Natural Science Foundation of China (grant no. 52325207,
22239003) and CAS Project for Young Scientists in Basic
Research (Grant No. YSBR-058).

References

1 Y. Liu, Y. Zhu and Y. Cui, Challenges and opportunities
towards fast-charging battery materials, Nat. Energy,
2019, 4, 540–550.

2 J. M. Tarascon and M. Armand, Issues and challenges facing
rechargeable lithium batteries, Nature, 2001, 414, 359–367.

3 M. Armand and J. M. Tarascon, Building better batteries,
Nature, 2008, 451, 652–657.

4 C. Wang, C. Yang and Z. Zheng, Toward practical high-
energy and high-power lithium battery anodes: Present and
future, Adv. Sci., 2022, 9, 2105213.

5 Q. Cheng, Z.-X. Chen, X.-Y. Li, L.-P. Hou, C.-X. Bi, X.-Q.
Zhang, J.-Q. Huang and B.-Q. Li, Constructing a 700 Wh kg
− 1-level rechargeable lithium-sulfur pouch cell, J. Energy
Chem., 2023, 76, 181–186.

6 Q. Li, Y. Yang, X. Yu and H. Li, A 700 W·h·kg−1
rechargeable pouch type lithium battery, Chin. Phys. Lett.,
2023, 40, 048201.

7 X. Ma, J. Yu, Y. Hu, J. Texter and F. Yan, Ionic liquid/
poly(ionic liquid)-based electrolytes for lithium batteries,
Ind. Chem. Mater., 2023, 1, 39–59.

8 H. Chen, M. Ling, L. Hencz, H. Y. Ling, G. R. Li, Z. Lin, G.
Liu and S. Q. Zhang, Exploring chemical, mechanical, and
electrical functionalities of binders for advanced energy-
storage devices, Chem. Rev., 2018, 118, 8936–8982.

9 T. W. Kwon, J. W. Choi and A. Coskun, The emerging era of
supramolecular polymeric binders in silicon anodes, Chem.
Soc. Rev., 2018, 47, 2145–2164.

10 T.-w. Kwon, J. W. Choi and A. Coskun, Prospect for
supramolecular chemistry in high-energy-density
rechargeable batteries, Joule, 2019, 3, 662–682.

11 Y. Zhao, Z. Liang, Y. Kang, Y. Zhou, Y. Li, X. He, L. Wang,
W. Mai, X. Wang, G. Zhou, J. Wang, J. Li, N. Tavajohi and
B. Li, Rational design of functional binder systems for
high-energy lithium-based rechargeable batteries, Energy
Storage Mater., 2021, 35, 353–377.

12 Y. Ma, J. Ma and G. Cui, Small things make big deal:
Powerful binders of lithium batteries and post-lithium
batteries, Energy Storage Mater., 2019, 20, 146–175.

13 F. Zou and A. Manthiram, A review of the design of
advanced binders for high-performance batteries, Adv.
Energy Mater., 2020, 10, 2002508.

14 W. Xia and Z. Zhang, PVDF-based dielectric polymers and
their applications in electronic materials, IET
Nanodielectrics, 2018, 1, 17–31.

Industrial Chemistry & Materials Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


218 | Ind. Chem. Mater., 2024, 2, 191–225 © 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

15 Q. Jia, Q. Li, M. Luo and H.-B. Li, Understanding the effects
of vicinal carbon substituents and configuration on
organofluorine hydrogen-bonding interaction, RSC Adv.,
2018, 8, 38980–38986.

16 Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen and M. Chen,
Advances and prospects of PVDF based polymer
electrolytes, J. Energy Chem., 2022, 64, 62–84.

17 V. F. Cardoso, D. M. Correia, C. Ribeiro, M. M. Fernandes
and S. Lanceros-Méndez, Fluorinated polymers as smart
materials for advanced biomedical applications, Polymers,
2018, 10, 161.

18 J. E. Marshall, A. Zhenova, S. Roberts, T. Petchey, P. Zhu,
C. E. J. Dancer, C. R. McElroy, E. Kendrick and V.
Goodship, On the solubility and stability of polyvinylidene
fluoride, Polymers, 2021, 13, 1354.

19 N.-Y. Kim, J. Moon, M.-H. Ryou, S.-H. Kim, J.-H. Kim, J.-M.
Kim, J. Bang and S.-Y. Lee, Amphiphilic bottlebrush
polymeric binders for high-mass-loading cathodes in
lithium-ion batteries, Adv. Energy Mater., 2022, 12, 2102109.

20 Y. H. Kwon, K. Minnici, M. M. Huie, K. J. Takeuchi, E. S.
Takeuchi, A. C. Marschilok and E. Reichmanis, Electron/
Ion transport enhancer in high capacity li-ion battery
anodes, Chem. Mater., 2016, 28, 6689–6697.

21 S. Radloff, R. G. Scurtu, M. Hölzle and M. Wohlfahrt-
Mehrens, Water-based LiNi0.83Co0.12Mn0.05O2 electrodes
with excellent cycling stability fabricated using
unconventional binders, J. Electrochem. Soc., 2022, 169,
040514.

22 H. Huang, Z. Li, S. Gu, J. Bian, Y. Li, J. Chen, K. Liao, Q.
Gan, Y. Wang, S. Wu, Z. Wang, W. Luo, R. Hao, Z. Wang, G.
Wang and Z. Lu, Dextran sulfate lithium as versatile binder
to stabilize high-voltage LiCoO2 to 4.6 V, Adv. Energy Mater.,
2021, 11, 2101864.

23 Z. Xu, X. Guo, J. Wang, Y. Yuan, Q. Sun, R. Tian, H. Yang
and J. Lu, Restraining the octahedron collapse in lithium
and manganese rich NCM cathode toward suppressing
structure transformation, Adv. Energy Mater., 2022, 12,
2201323.

24 H. Q. Pham, G. Kim, H. M. Jung and S.-W. Song,
Fluorinated polyimide as a novel high-voltage binder for
high-capacity cathode of lithium-ion batteries, Adv. Funct.
Mater., 2018, 28, 1704690.

25 N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D.
Aurbach, J.-H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy,
G. R. Goward, I. Halalay, B. R. Powell and A. Manthiram,
Lithium polyacrylate (LiPAA) as an advanced binder and a
passivating agent for high-voltage Li-ion batteries, Adv.
Energy Mater., 2015, 5, 1501008.

26 S. Choi, T. W. Kwon, A. Coskun and J. W. Choi, Highly
elastic binders integrating polyrotaxanes for silicon
microparticle anodes in lithium ion batteries, Science,
2017, 357, 279–283.

27 T.-w. Kwon, Y. K. Jeong, E. Deniz, S. Y. AlQaradawi, J. W.
Choi and A. Coskun, Dynamic cross-linking of polymeric
binders based on host–guest interactions for silicon anodes
in lithium ion batteries, ACS Nano, 2015, 9, 11317–11324.

28 Z. H. Li, Y. P. Zhang, T. F. Liu, X. H. Gao, S. Y. Li, M. Ling,
C. D. Liang, J. C. Zheng and Z. Lin, Silicon anode with high
initial Coulombic Efficiency by modulated trifunctional
binder for high-areal-capacity lithium-ion batteries, Adv.
Energy Mater., 2020, 10, 1903110.

29 M. H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong,
J. H. Ryu, T. S. Kim, J. K. Park, H. Lee and J. W. Choi,
Mussel-inspired adhesive binders for high-performance
silicon nanoparticle anodes in lithium-ion batteries, Adv.
Mater., 2013, 25, 1571–1576.

30 Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang and S.-i. Hirano,
Silicon microparticle anodes with self-healing multiple
network binder, Joule, 2018, 2, 950–961.

31 Y. Cho, J. Kim, A. Elabd, S. Choi, K. Park, T.-w. Kwon, J.
Lee, K. Char, A. Coskun and J. W. Choi, A pyrene-
poly(acrylic acid)- polyrotaxane supramolecular binder
network for high-performance silicon negative electrodes,
Adv. Mater., 2019, 31, 1905048.

32 T. Zhu, H. Sternlicht, Y. Ha, C. Fang, D. Liu, B. H. H.
Savitzky, X. Zhao, Y. Lu, Y. Fu, C. Ophus, C. Zhu, W. Yang,
A. M. M. Minor and G. Liu, Formation of hierarchically
ordered structures in conductive polymers to enhance the
performances of lithium-ion batteries, Nat. Energy, 2023, 8,
129–137.

33 G. Jiang, K. Li, F. Yu, X. Li, J. Mao, W. Jiang, F. Sun, B. Dai
and Y. Li, Robust artificial solid-electrolyte interfaces with
biomimetic ionic channels for dendrite-free Li metal
anodes, Adv. Energy Mater., 2021, 11, 2003496.

34 Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt
and Y. Cui, An artificial solid electrolyte interphase with
high Li-ion conductivity, mechanical strength, and
flexibility for stable lithium metal anodes, Adv. Mater.,
2017, 29, 1605531.

35 Y. Ren, Z. Cui, A. Bhargav, J. He and A. Manthiram, A self-
healable sulfide/polymer composite electrolyte for long-life,
low- lithium-excess lithium-metal batteries, Adv. Funct.
Mater., 2022, 32, 2106680.

36 W. Ji, H. Qu, X. Zhang, D. Zheng and D. Qu, Electrode
architecture design to promote charge-transport kinetics in
high- loading and high-energy lithium-based batteries,
Small Methods, 2021, 5, 2100518.

37 Y. Z. Lai, H. Y. Li, Q. Yang, H. D. Li, Y. X. Liu, Y. Song, Y. J.
Zhong, B. H. Zhong, Z. G. Wu and X. D. Guo, Revisit the
progress of binders for a silicon-based anode from the
perspective of designed binder structure and special sized
silicon nanoparticles, Ind. Eng. Chem. Res., 2022, 61,
6246–6268.

38 D.-Y. Han, I. K. Han, H. B. Son, Y. S. Kim, J. Ryu and S.
Park, Layering charged polymers enable highly integrated
high-capacity battery anodes, Adv. Funct. Mater., 2023, 33,
2370102.

39 J.-M. Kim, J. A. Kim, S.-H. Kim, I. S. Uhm, S. J. Kang, G.
Kim, S.-Y. Lee, S.-H. Yeon and S.-Y. Lee, All-nanomat
lithium-ion batteries: A new cell architecture platform for
ultrahigh energy density and mechanical flexibility, Adv.
Energy Mater., 2017, 7, 1701099.

Industrial Chemistry & MaterialsReview

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


Ind. Chem. Mater., 2024, 2, 191–225 | 219© 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

40 J.-M. Kim, C.-H. Park, Q. Wu and S.-Y. Lee, 1D building
blocks-intermingled heteronanomats as a platform
architecture for high-performance ultrahigh-capacity
lithium-ion battery cathodes, Adv. Energy Mater., 2016, 6,
1501594.

41 C. Li, Q. Sun, Q. Zhang, C. Xu, S. Wang, Y. Ma, X. Shi, H.
Zhang, D. Song and L. Zhang, Multifunctional binder
capable of promoting the reaction dynamics of wide
temperature operable lithium-sulfur battery, Chem. Eng. J.,
2023, 455, 140706.

42 S. Jiao, Q. Li, X. Xiong, X. Yu, H. Li, L. Chen and X. Huang,
Achieving high-energy-density lithium-ion batteries through
oxygen redox of cathode: From fundamentals to
applications, Appl. Phys. Lett., 2022, 121, 070501.

43 J. Oh, S. H. Choi, B. Chang, J. Lee, T. Lee, N. Lee, H. Kim,
Y. Kim, G. Im, S. Lee and J. W. Choi, Elastic binder for
high- performance sulfide-based all-solid-state batteries,
ACS Energy Lett., 2022, 7, 1374–1382.

44 X. Yao, C. Guo, C. Song, M. Lu, Y. Zhang, J. Zhou, H.-M.
Ding, Y. Chen, S.-L. Li and Y.-Q. Lan, In situ interweaved
high sulfur loading Li–S cathode by catalytically active
metalloporphyrin based organic polymer binders, Adv.
Mater., 2023, 35, 2208846.

45 Y. Zhang, A. Hu, D. Xia, S. Hwang, S. Sainio, D. Nordlund,
F. M. Michel, R. B. Moore, L. Li and F. Lin, Operando
characterization and regulation of metal dissolution and
redeposition dynamics near battery electrode surface, Nat.
Nanotechnol., 2023, 18, 790–797.

46 J. Wandt, A. T. S. Freiberg, A. Ogrodnik and H. A. Gasteiger,
Singlet oxygen evolution from layered transition metal
oxide cathode materials and its implications for lithium-
ion batteries, Mater. Today, 2018, 21, 825–833.

47 T. T. Dong, P. Z. Mu, S. Zhang, H. R. Zhang, W. Liu and
G. L. Cui, How do polymer binders assist transition metal
oxide cathodes to address the challenge of high-voltage
lithium battery applications?, Electrochem. Energy Rev.,
2021, 4, 545–565.

48 J. Yang, P. Li, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, D.
Xia and Y. Cao, Suppressing voltage fading of Li-rich oxide
cathode via building a well-protected and partially-
protonated surface by polyacrylic acid binder for cycle-
stable Li-ion batteries, Adv. Energy Mater., 2020, 10,
1904264.

49 A. Guéguen, D. Streich, M. He, M. Mendez, F. F. Chesneau,
P. Novák and E. J. Berg, Decomposition of LiPF6 in high
energy lithium-ion batteries studied with online
electrochemical mass spectrometry, J. Electrochem. Soc.,
2016, 163, A1095.

50 C. C. Nguyen, T. Yoon, D. M. Seo, P. Guduru and B. L.
Lucht, Systematic investigation of binders for silicon
anodes: Interactions of binder with silicon particles and
electrolytes and effects of binders on solid electrolyte
interphase formation, ACS Appl. Mater. Interfaces, 2016, 8,
12211–12220.

51 B. Jin, Z. Cui and A. Manthiram, In situ interweaved binder
framework mitigating the structural and interphasial

degradations of high-nickel cathodes in lithium-ion
batteries, Angew. Chem., Int. Ed., 2023, 62, e202301241.

52 L. Gan, R. Chen, X. Yu and H. Li, Understanding the
battery safety improvement enabled by a quasi-solid-state
battery design, Chin. Phys. B, 2022, 31, 118202.

53 R. Chen, Q. Li, X. Yu, L. Chen and H. Li, Approaching
practically accessible solid-state batteries: stability issues
related to solid electrolytes and interfaces, Chem. Rev.,
2020, 120, 6820–6877.

54 L. Trahey, F. R. Brushett, N. P. Balsara, G. Ceder, L. Cheng,
Y. M. Chiang, N. T. Hahn, B. J. Ingram, S. D. Minteer, J. S.
Moore, K. T. Mueller, L. F. Nazar, K. A. Persson, D. J. Siegel,
K. Xu, K. R. Zavadil, V. Srinivasan and G. W. Crabtree,
Energy storage emerging: A perspective from the Joint
Center for Energy Storage Research, Proc. Natl. Acad. Sci. U.
S. A., 2020, 117, 12550–12557.

55 D. A. Gribble, E. McCulfor, Z. Li, M. Parekh and V. G. Pol,
Enhanced capacity and thermal safety of lithium-ion battery
graphite anodes with conductive binder, J. Power Sources,
2023, 553, 232204.

56 B. Koo, H. Kim, Y. Cho, K. T. Lee, N. S. Choi and J. Cho, A
highly cross-linked polymeric binder for high-performance
silicon negative electrodes in lithium ion batteries, Angew.
Chem., Int. Ed., 2012, 51, 8762–8767.

57 Y. Nikodimos, C.-J. Huang, B. W. Taklu, W.-N. Su and B. J.
Hwang, Chemical stability of sulfide solid-state electrolytes:
Stability toward humid air and compatibility with solvents
and binders, Energy Environ. Sci., 2022, 15, 991–1033.

58 K. Lee, J. Lee, S. Choi, K. Char and J. W. Choi, Thiol–Ene
Click Reaction for fine polarity tuning of polymeric binders
in solution-processed all-solid-state batteries, ACS Energy
Lett., 2019, 4, 94–101.

59 J. W. Cho and H. Y. Song, Dehydrofluorination of a
copolymer of vinylidene fluoride and tetrafluoroethylene by
phase transfer catalysis reaction, J. Polym. Sci., Part A:
Polym. Chem., 1995, 33, 2109–2112.

60 C. Bolli, A. Gueguen, M. A. Mendez and E. J. Berg,
Operando monitoring of F- formation in lithium Ion
batteries, Chem. Mater., 2019, 31, 1258–1267.

61 S. S. Zhang, X. Fan and C. Wang, Enhanced electrochemical
performance of Ni-rich layered cathode materials by using
LiPF6 as a cathode additive, ChemElectroChem, 2019, 6,
1536–1541.

62 H. L. Wang, B. Z. Wu, X. K. Wu, Q. Q. Zhuang, T. Liu, Y.
Pan, G. J. Shi, H. M. Yi, P. Xu, Z. N. Xiong, S. L. Chou and
B. F. Wang, Key factors for binders to enhance the
electrochemical performance of silicon anodes through
molecular design, Small, 2022, 18, 2101680.

63 A. Oishi, R. Tatara, E. Togo, H. Inoue, S. Yasuno and S.
Komaba, Sulfated alginate as an effective polymer binder
for high- voltage LiNi0.5Mn1.5O4 electrodes in lithium-ion
batteries, ACS Appl. Mater. Interfaces, 2022, 14, 51808–51818.

64 L. Wei, C. Chen, Z. Hou and H. Wei, Poly (acrylic acid
sodium) grafted carboxymethyl cellulose as a high
performance polymer binder for silicon anode in lithium
ion batteries, Sci. Rep., 2016, 6, 19583.

Industrial Chemistry & Materials Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


220 | Ind. Chem. Mater., 2024, 2, 191–225 © 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

65 G. L. Gregory, H. Gao, B. Liu, X. Gao, G. J. Rees, M. Pasta,
P. G. Bruce and C. K. Williams, Buffering volume change in
solid- state battery composite cathodes with CO2-derived
block polycarbonate ethers, J. Am. Chem. Soc., 2022, 144,
17477–17486.

66 J. Liu, D. G. D. Galpaya, L. J. Yan, M. H. Sun, Z. Lin, C. Yan,
C. D. Liang and S. Q. Zhang, Exploiting a robust
biopolymer network binder for an ultrahigh-areal-capacity
Li-S battery, Energy Environ. Sci., 2017, 10, 750–755.

67 I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z.
Milicev, R. Burtovyy, I. Luzinov and G. Yushin, A major
constituent of brown algae for use in high-capacity Li-ion
batteries, Science, 2011, 334, 75–79.

68 P. Parikh, M. Sina, A. Banerjee, X. Wang, M. S. D'Souza,
J.-M. Doux, E. A. Wu, O. Y. Trieu, Y. Gong, Q. Zhou, K.
Snyder and Y. S. Meng, Role of polyacrylic acid (PAA) binder
on the solid electrolyte interphase in silicon anodes, Chem.
Mater., 2019, 31, 2535–2544.

69 I. Dueramae, M. Okhawilai, P. Kasemsiri, H. Uyama and R.
Kita, Properties enhancement of carboxymethyl cellulose
with thermo-responsive polymer as solid polymer
electrolyte for zinc ion battery, Sci. Rep., 2020, 10, 12587.

70 A. Abdel-Hakim, T. M. El-Basheer and A. Abdelkhalik,
Mechanical, acoustical and flammability properties of SBR
and SBR-PU foam layered structure, Polym. Test., 2020, 88,
106536.

71 S. Gao, F. Sun, N. Liu, H. Yang and P.-F. Cao, Ionic
conductive polymers as artificial solid electrolyte interphase
films in Li metal batteries – A review, Mater. Today,
2020, 40, 140–159.

72 P. Mu, H. Zhang, H. Jiang, T. Dong, S. Zhang, C. Wang, J.
Li, Y. Ma, S. Dong and G. Cui, Bioinspired antiaging binder
additive addressing the challenge of chemical degradation
of electrolyte at cathode/electrolyte interphase, J. Am. Chem.
Soc., 2021, 143, 18041–18051.

73 J. Xia, Z. Wang, N. D. Rodrig, B. Nan, J. Zhang, W. Zhang,
B. L. Lucht, C. Yang and C. Wang, Super-reversible CuF2
cathodes enabled by Cu2+-coordinated alginate, Adv. Mater.,
2022, 34, 2205229.

74 C. Senthil, S.-S. Kim and H. Y. Jung, Flame retardant high-
power Li-S flexible batteries enabled by bio-macromolecular
binder integrating conformal fractions, Nat. Commun.,
2022, 13, 145.

75 Z. Li, G. Wu, Y. Yang, Z. Wan, X. Zeng, L. Yan, S. Wu, M.
Ling, C. Liang, K. N. Hui and Z. Lin, An ion-conductive
grafted polymeric binder with practical loading for silicon
anode with high interfacial stability in lithium-ion
batteries, Adv. Energy Mater., 2022, 12, 2201197.

76 N. Xue, W. Wang, Z. Chen, Y. Heng, Z. Yuan, R. Xu and C.
Lei, Electrochemically stable poly (vinylidene fluoride)-
polyurethane polymer gel electrolytes with polar β-phase
in lithium batteries, J. Electroanal. Chem., 2022, 907,
116026.

77 F. Chen, M.-x. Jing, H. Yang, W.-y. Yuan, M.-q. Liu, Y.-s. Ji,
S. Hussain and X.-q. Shen, Improved ionic conductivity and
Li dendrite suppression of PVDF-based solid electrolyte

membrane by LLZO incorporation and mechanical
reinforcement, Ionics, 2021, 27, 1101–1111.

78 W. Yao, M. Chouchane, W. Li, S. Bai, Z. Liu, L. Li, A. X.
Chen, B. Sayahpour, R. Shimizu, G. Raghavendran, M. A.
Schroeder, Y.-T. Chen, D. H. S. Tan, B. Sreenarayanan, C. K.
Waters, A. Sichler, B. Gould, D. J. Kountz, D. J. Lipomi, M.
Zhang and Y. S. Meng, A 5 V-class cobalt-free battery
cathode with high loading enabled by dry coating, Energy
Environ. Sci., 2023, 16, 1620–1630.

79 J. Kim, J. Choi, K. Park, S. Kim, K. W. Nam, K. Char and
J. W. Choi, Host-guest interlocked complex binder for
silicon-graphite composite electrodes in lithium ion
batteries, Adv. Energy Mater., 2022, 12, 2103718.

80 Y. Hu, D. Shao, Y. Chen, J. Peng, S. Dai, M. Huang, Z.-H.
Guo, X. Luo and K. Yue, A physically cross-linked hydrogen-
bonded polymeric composite binder for high-performance
silicon anodes, ACS Appl. Energy Mater., 2021, 4,
10886–10895.

81 C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui and Z.
Bao, Self-healing chemistry enables the stable operation of
silicon microparticle anodes for high-energy lithium-ion
batteries, Nat. Chem., 2013, 5, 1042–1048.

82 Y. K. Jeong, T.-w. Kwon, I. Lee, T.-S. Kim, A. Coskun and
J. W. Choi, Millipede-inspired structural design principle
for high performance polysaccharide binders in silicon
anodes, Energy Environ. Sci., 2015, 8, 1224–1230.

83 A. Strand, J. Kouko, A. Oksanen, K. Salminen, A. Ketola, E.
Retulainen and A. Sundberg, Enhanced strength, stiffness
and elongation potential of paper by spray addition of
polysaccharides, Cellulose, 2019, 26, 3473–3487.

84 H. Wang, J. Fu, C. Wang, R. Zhang, Y. Yang, Y. Li, C. Li, Q.
Sun, H. Li and T. Zhai, A universal aqueous conductive
binder for flexible electrodes, Adv. Funct. Mater., 2021, 31,
2102284.

85 H. Li, L. Peng, D. Wu, J. Wu, Y.-J. Zhu and X. Hu,
Ultrahigh-capacity and fire-resistant LiFePO4-based
composite cathodes for advanced lithium-ion batteries, Adv.
Energy Mater., 2019, 9, 1802930.

86 Y. Li, Y. Wu, T. Ma, Z. Wang, Q. Gao, J. Xu, L. Chen, H. Li
and F. Wu, Long-life sulfide all-solid-state battery enabled
by substrate-modulated dry-process binder, Adv. Energy
Mater., 2022, 12, 2201732.

87 T. Liu, Q. Chu, C. Yan, S. Zhang, Z. Lin and J. Lu,
Interweaving 3D network binder for high-areal-capacity Si
anode through combined hard and soft polymers, Adv.
Energy Mater., 2019, 9, 1802645.

88 D. G. Mackanic, X. Yan, Q. Zhang, N. Matsuhisa, Z. Yu, Y.
Jiang, T. Manika, J. Lopez, H. Yan, K. Liu, X. Chen, Y. Cui
and Z. Bao, Decoupling of mechanical properties and ionic
conductivity in supramolecular lithium ion conductors,
Nat. Commun., 2019, 10, 5384.

89 T. Dong, H. Zhang, R. Hu, P. Mu, Z. Liu, X. Du, C. Lu, G.
Lu, W. Liu and G. Cui, A rigid-flexible coupling
poly(vinylene carbonate) based cross-linked network: A
versatile polymer platform for solid-state polymer lithium
batteries, Energy Storage Mater., 2022, 50, 525–532.

Industrial Chemistry & MaterialsReview

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


Ind. Chem. Mater., 2024, 2, 191–225 | 221© 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

90 J. Park, N. Willenbacher and K. H. Ahn, How the
interaction between styrene-butadiene-rubber (SBR) binder
and a secondary fluid affects the rheology, microstructure
and adhesive properties of capillary-suspension-type
graphite slurries used for Li-ion battery anodes, Colloids
Surf., A, 2019, 579, 123692.

91 H. Isozumi, T. Horiba, K. Kubota, K. Hida, T. Matsuyama,
S. Yasuno and S. Komaba, Application of modified styrene-
butadiene- rubber-based latex binder to high-voltage
operating LiCoO2 composite electrodes for lithium-ion
batteries, J. Power Sources, 2020, 468, 228332.

92 G. M. Zhou, K. Liu, Y. C. Fan, M. Q. Yuan, B. F. Liu, W. Liu,
F. F. Shi, Y. Y. Liu, W. Chen, J. Lopez, D. Zhuo, J. Zhao,
Y. C. Tsao, X. Y. Huang, Q. F. Zhang and Y. Cui, An aqueous
inorganic polymer binder for high performance lithium-
sulfur batteries with flame-retardant properties, ACS Cent.
Sci., 2018, 4, 260–267.

93 J.-Y. Eom and L. Cao, Effect of anode binders on low-
temperature performance of automotive lithium-ion
batteries, J. Power Sources, 2019, 441, 227178.

94 W. Zeng, L. Wang, X. Peng, T. Liu, Y. Jiang, F. Qin, L. Hu,
P. K. Chu, K. Huo and Y. Zhou, Enhanced ion conductivity
in conducting polymer binder for high-performance silicon
anodes in advanced lithium-ion batteries, Adv. Energy
Mater., 2018, 8, 1702314.

95 C. Park, Y. H. Kim, H. Lee, H. S. Kang, T. Kim, S. W. Lee, K.
Lee, K.-B. Kim and C. Park, Conductor-free anode of
transition metal dichalcogenide nanosheets self-assembled
with graft polymer Li-ion channels, Adv. Energy Mater.,
2021, 11, 2003243.

96 J. Lee, K. Lee, T. Lee, H. Kim, K. Kim, W. Cho, A. Coskun,
K. Char and J. W. Choi, In situ deprotection of polymeric
binders for solution-processible sulfide-based all-solid-state
batteries, Adv. Mater., 2020, 32, 2001702.

97 I. D. Seymour, E. Quérel, R. H. Brugge, F. M. Pesci and A.
Aguadero, Understanding and engineering interfacial
adhesion in solid-state batteries with metallic anodes,
ChemSusChem, 2023, 16, e202202215.

98 G. Raos and B. Zappone, Polymer adhesion: Seeking new
solutions for an old problem, Macromolecules, 2021, 54,
10617–10644.

99 P. Mu, S. Zhang, H. Zhang, J. Li, Z. Liu, S. Dong and G. Cui,
Spidroin-inspired hierarchical structure binder achieves
highly integrated silicon-based electrodes, Adv. Mater.,
2023, 2303312.

100 L. Hu, M. Jin, Z. Zhang, H. Chen, F. B. Ajdari and J. Song,
Interface-adaptive binder enabled by supramolecular
interactions for high-capacity Si/C composite anodes in
lithium-ion batteries, Adv. Funct. Mater., 2022, 32,
2111560.

101 Z. Z. Chen, M. J. Lu, Y. Qian, Y. Yang, J. Liu, Z. Lin, D. J.
Yang, J. Lu and X. Q. Qiu, Ultra-low dosage lignin binder
for practical lithium-sulfur batteries, Adv. Energy Mater.,
2023, 13, 2300092.

102 Z. Song, T. Zhang, L. Wang, Y. Zhao, Z. Li, M. Zhang, K.
Wang, S. Xue, J. Fang, Y. Ji, F. Pan and L. Yang, Bio-

inspired binder design for a robust conductive network in
silicon-based anodes, Small Methods, 2022, 6, 2101591.

103 B. Jin, L. Yang, J. Zhang, Y. Cai, J. Zhu, J. Lu, Y. Hou, Q. He,
H. Xing, X. Zhan, F. Chen and Q. Zhang, Bioinspired
binders actively controlling ion migration and
accommodating volume change in high sulfur loading
lithium-sulfur batteries, Adv. Energy Mater., 2019, 9,
1902938.

104 S. Kim, Y. K. Jeong, Y. Wang, H. Lee and J. W. Choi, A
“sticky” mucin-inspired DNA-polysaccharide binder for
silicon and silicon–graphite blended anodes in lithium-ion
batteries, Adv. Mater., 2018, 30, 1707594.

105 Y. Liu, Z. Tai, T. Zhou, V. Sencadas, J. Zhang, L. Zhang, K.
Konstantinov, Z. Guo and H. K. Liu, An all-integrated anode
via interlinked chemical bonding between double-shelled–
yolk-structured silicon and binder for lithium-ion batteries,
Adv. Mater., 2017, 29, 1703028.

106 J. X. Song, M. J. Zhou, R. Yi, T. Xu, M. L. Gordin, D. H.
Tang, Z. X. Yu, M. Regula and D. H. Wang, Interpenetrated
gel polymer binder for high-performance silicon anodes in
lithium-ion batteries, Adv. Funct. Mater., 2014, 24,
5904–5910.

107 Z.-Y. Wu, L. Deng, J.-T. Li, Q.-S. Huang, Y.-Q. Lu, J. Liu, T.
Zhang, L. Huang and S.-G. Sun, Multiple hydrogel alginate
binders for Si anodes of lithium-ion battery, Electrochim.
Acta, 2017, 245, 371–378.

108 Z. H. Li, Z. W. Wan, X. Q. Zeng, S. M. Zhang, L. J. Yan,
J. P. Ji, H. X. Wang, Q. X. Ma, T. F. Liu, Z. Lin, M. Ling
and C. D. Liang, A robust network binder via localized
linking by small molecules for high-areal-capacity silicon
anodes in lithium-ion batteries, Nano Energy, 2021, 79,
105430.

109 D. X. Cao, Q. Li, X. Sun, Y. Wang, X. H. Zhao, E. Cakmak,
W. T. Liang, A. Anderson, S. Ozcan and H. L. Zhu,
Amphipathic binder integrating ultrathin and highly ion-
conductive sulfide membrane for cell-level high-energy-
density all-solid-state batteries, Adv. Mater., 2021, 33,
2105505.

110 F. Klein, B. Jache, A. Bhide and P. Adelhelm, Conversion
reactions for sodium-ion batteries, Phys. Chem. Chem. Phys.,
2013, 15, 15876–15887.

111 H. Yuan, J. Q. Huang, H. J. Peng, M. M. Titirici, R. Xiang,
R. J. Chen, Q. B. Liu and Q. Zhang, A review of functional
binders in lithium-sulfur batteries, Adv. Energy Mater.,
2018, 8, 1802107.

112 G. Bucci, B. Talamini, A. Renuka Balakrishna, Y.-M. Chiang
and W. C. Carter, Mechanical instability of electrode-
electrolyte interfaces in solid-state batteries, Phys. Rev.
Mater., 2018, 2, 105407.

113 L. Yu, Q. Yang, G. Zhu and R. Che, Preparationof yolk–shell
urchin-like porous Co3O4/NiO@C microspheres with
excellent lithium storage performance, Ind. Chem. Mater.,
2023, 1, 247–253.

114 B. Zhang, Y. Dong, J. Han, Y. Zhen, C. Hu and D. Liu,
Physicochemical dual crosslinking conductive polymeric
networks combining high strength and high toughness

Industrial Chemistry & Materials Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


222 | Ind. Chem. Mater., 2024, 2, 191–225 © 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

enable stable operation of silicon microparticles anodes,
Adv. Mater., 2023, 35, 2301320.

115 F. Zeng, W. Wang, A. Wang, K. Yuan, Z. Jin and Y.-s. Yang,
Multidimensional polycation beta-cyclodextrin polymer as
an effective aqueous binder for high sulfur loading cathode
in lithium-sulfur batteries, ACS Appl. Mater. Interfaces,
2015, 7, 26257–26265.

116 J. Wang, Z. Yao, C. W. Monroe, J. Yang and Y. Nuli,
Carbonyl-beta-cyclodextrin as a novel binder for sulfur
composite cathodes in rechargeable lithium batteries, Adv.
Funct. Mater., 2013, 23, 1194–1201.

117 Y. K. Jeong, T.-w. Kwon, I. Lee, T.-S. Kim, A. Coskun and
J. W. Choi, Hyperbranched beta-cyclodextrin polymer as an
effective multidimensional binder for silicon anodes in
lithium rechargeable batteries, Nano Lett., 2014, 14,
864–870.

118 D.-J. Yoo, A. Elabd, S. Choi, Y. Cho, J. Kim, S. J. Lee, S. H.
Choi, T.-w. Kwon, K. Char, K. J. Kim, A. Coskun and J. W.
Choi, Highly elastic polyrotaxane binders for mechanically
stable lithium hosts in lithium-metal batteries, Adv. Mater.,
2019, 31, 1901645.

119 Y.-H. Lee, J. Min, K. Lee, S. Kim, S. H. Park and J. W. Choi,
Low molecular weight spandex as a promising polymeric
binder for LiFePO4 electrodes, Adv. Energy Mater., 2017, 7,
1602147.

120 B. Chang, J. Kim, Y. Cho, I. Hwang, M. S. Jung, K. Char,
K. T. Lee, K. J. Kim and J. W. Choi, Highly elastic binder for
improved cyclability of nickel-rich layered cathode
materials in lithium-ion batteries, Adv. Energy Mater.,
2020, 10, 2001069.

121 T. Y. Kwon, K. T. Kim, D. Y. Oh, Y. B. Song, S. Jun and Y. S.
Jung, Three-dimensional networking binders prepared in
situ during wet-slurry process for all-solid-state batteries
operating under low external pressure, Energy Storage
Mater., 2022, 49, 219–226.

122 H. Chen, Z. Z. Wu, Z. Su, S. Chen, C. Yan, M. Al-Mamun,
Y. B. Tang and S. Q. Zhang, A mechanically robust self-
healing binder for silicon anode in lithium ion batteries,
Nano Energy, 2021, 81, 105654.

123 T. Munaoka, X. Yan, J. Lopez, J. W. F. To, J. Park, J. B. H.
Tok, Y. Cui and Z. Bao, Ionically conductive self-healing
binder for low cost Si microparticles anodes in Li-ion
batteries, Adv. Energy Mater., 2018, 8, 1703138.

124 Z. Chen, C. Wang, J. Lopez, Z. Lu, Y. Cui and Z. Bao, High-
areal-capacity silicon electrodes with low-cost silicon
particles based on spatial control of self-healing binder,
Adv. Energy Mater., 2015, 5, 1401826.

125 X. Jiao, J. Yin, X. Xu, J. Wang, Y. Liu, S. Xiong, Q. Zhang
and J. Song, Highly energy-dissipative, fast self-healing
binder for stable Si anode in lithium-ion batteries, Adv.
Funct. Mater., 2021, 31, 2005699.

126 B. Jin, D. Wang, J. Zhu, H. Guo, Y. Hou, X. Gao, J. Lu,
X. Zhan, X. He and Q. Zhang, A self-healable
polyelectrolyte binder for highly stabilized sulfur, silicon,
and silicon oxides electrodes, Adv. Funct. Mater.,
2021, 31, 2104433.

127 H. A. Lee, M. Shin, J. Kim, J. W. Choi and H. Lee, Designing
adaptive binders for microenvironment settings of silicon
anode particles, Adv. Mater., 2021, 33, 2007460.

128 B. L. D. Rinkel, D. S. Hall, I. Temprano and C. P. Grey,
Electrolyte oxidation pathways in lithium-ion batteries,
J. Am. Chem. Soc., 2020, 142, 15058–15074.

129 T. T. Dong, H. R. Zhang, Y. Ma, J. J. Zhang, X. F. Du, C. L.
Lu, X. H. Shangguan, J. D. Li, M. Zhang, J. F. Yang, X. H.
Zhou and G. L. Cui, A well-designed water-soluble binder
enlightening the 5 V-class LiNi0.5Mn1.5O4 cathodes, J. Mater.
Chem. A, 2019, 7, 24594–24601.

130 B. Chang, D. H. Yun, I. Hwang, J. K. Seo, J. Kang, G. Noh, S.
Choi and J. W. Choi, Carrageenan as a sacrificial binder for
5 V LiNi0.5Mn1.5O4 cathodes in lithium-ion batteries, Adv.
Mater., 2023, 2303787.

131 S.-J. Zhang, Y.-P. Deng, Q.-H. Wu, Y. Zhou, J.-T. Li, Z.-Y. Wu,
Z.-W. Yin, Y.-Q. Lu, C.-H. Shen, L. Huang and S.-G. Sun,
Sodium- alginate-based binders for lithium-rich cathode
materials in lithium-ion batteries to suppress voltage and
capacity fading, ChemElectroChem, 2018, 5, 1321–1329.

132 J. Li, C.-H. Chang and A. Manthiram, Toward long-life,
ultrahigh-nickel layered oxide cathodes for lithium-ion
batteries: Optimizing the interphase chemistry with a dual-
functional polymer, Chem. Mater., 2020, 32, 759–768.

133 L. Han, T. F. Liu, O. W. Sheng, Y. J. Liu, Y. Wang, J. W. Nai,
L. Zhang and X. Y. Tao, Undervalued roles of binder in
modulating solid electrolyte interphase formation of
silicon-based anode materials, ACS Appl. Mater. Interfaces,
2021, 13, 45139–45148.

134 K. L. Browning, R. L. Sacci, M. Doucet, J. F. Browning, J. R.
Kim and G. M. Veith, The study of the binder poly(acrylic
acid) and its role in concomitant solid–electrolyte
interphase formation on Si anodes, ACS Appl. Mater.
Interfaces, 2020, 12, 10018–10030.

135 K. L. Browning, J. F. Browning, M. Doucet, N. L. Yamada, G.
Liu and G. M. Veith, Role of conductive binder to direct
solid– electrolyte interphase formation over silicon anodes,
Phys. Chem. Chem. Phys., 2019, 21, 17356–17365.

136 A. Pradhan, R. Badam, R. Miyairi, N. Takamori and N.
Matsumi, Extreme fast charging capability in graphite anode
via a lithium borate type biobased polymer as aqueous
polyelectrolyte binder, ACS Mater. Lett., 2023, 5, 413–420.

137 Y. Wang, X. Yang, Y. Yuan, Z. Wang, H. Zhang and X. Li, N-
rich solid electrolyte interface constructed in situ via a
binder strategy for highly stable silicon anode, Adv. Funct.
Mater., 2023, 2301716.

138 H. Zhao, Y. Wei, C. Wang, R. Qiao, W. Yang, P. B.
Messersmith and G. Liu, Mussel-inspired conductive
polymer binder for Si- alloy anode in lithium-ion batteries,
ACS Appl. Mater. Interfaces, 2018, 10, 5440–5446.

139 Y. Wang, Y. Shi, L. Pan, Y. Ding, Y. Zhao, Y. Li, Y. Shi and
G. Yu, Dopant-enabled supramolecular approach for
controlled synthesis of nanostructured conductive polymer
hydrogels, Nano Lett., 2015, 15, 7736–7741.

140 D. Liu, Y. Zhao, R. Tan, L.-L. Tian, Y. Liu, H. Chen and F.
Pan, Novel conductive binder for high-performance silicon

Industrial Chemistry & MaterialsReview

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


Ind. Chem. Mater., 2024, 2, 191–225 | 223© 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

anodes in lithium ion batteries, Nano Energy, 2017, 36,
206–212.

141 G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde-Velasco,
H. Zheng, V. S. Battaglia, L. Wang and W. Yang, Polymers
with tailored electronic structure for high capacity lithium
battery electrodes, Adv. Mater., 2011, 23, 4679–4683.

142 M. Y. Wu, X. C. Xiao, N. Vukmirovic, S. D. Xun, P. K. Das,
X. Y. Song, P. Olalde-Velasco, D. D. Wang, A. Z. Weber,
L. W. Wang, V. S. Battaglia, W. L. Yang and G. Liu, Toward
an ideal polymer binder design for high-capacity battery
anodes, J. Am. Chem. Soc., 2013, 135, 12048–12056.

143 G. Ai, Y. Dai, Y. Ye, W. Mao, Z. Wang, H. Zhao, Y. Chen, J.
Zhu, Y. Fu, V. Battaglia, J. Guo, V. Srinivasan and G. Liu,
Investigation of surface effects through the application of
the functional binders in lithium sulfur batteries, Nano
Energy, 2015, 16, 28–37.

144 H. An, X. Li, C. Chalker, M. Stracke, R. Verduzco and J. L.
Lutkenhaus, Conducting block copolymer binders for
carbon-free hybrid vanadium pentoxide cathodes with
enhanced performance, ACS Appl. Mater. Interfaces, 2016, 8,
28585–28591.

145 A. E. Javier, S. N. Patel, D. T. Hallinan Jr, V. Srinivasan and
N. P. Balsara, Simultaneous electronic and ionic conduction
in a block copolymer: Application in lithium battery
electrodes, Angew. Chem., Int. Ed., 2011, 50, 9848–9851.

146 H. An, J. Mike, K. A. Smith, L. Swank, Y.-H. Lin, S. L. Pesek,
R. Verduzco and J. L. Lutkenhaus, Highly flexible self-
assembled V2O5 cathodes enabled by conducting diblock
copolymers, Sci. Rep., 2015, 5, 14166.

147 N. Salem, M. Lavrisa and Y. Abu-Lebdeh, Ionically-
functionalized poly(thiophene) conductive polymers as
binders for silicon and graphite anodes for Li-ion batteries,
Energy Technol., 2016, 4, 331–340.

148 T. M. Higgins, S.-H. Park, P. J. King, C. Zhang, N. McEvoy,
N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V.
Nicolosi and J. N. Coleman, A commercial conducting
polymer as both binder and conductive additive for silicon
nanoparticle-based lithium-ion battery negative electrodes,
ACS Nano, 2016, 10, 3702–3713.

149 T. Liu, C.-J. Tong, B. Wang, L.-M. Liu, S. Zhang, Z. Lin, D.
Wang and J. Lu, Trifunctional electrode additive for high
active material content and volumetric lithium-ion
electrode densities, Adv. Energy Mater., 2019, 9, 1803390.

150 H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao and Y.
Cui, Stable Li-ion battery anodes by in-situ polymerization
of conducting hydrogel to conformally coat silicon
nanoparticles, Nat. Commun., 2013, 4, 1943.

151 Y. Shi, J. Zhang, A. M. Bruck, Y. Zhang, J. Li, E. A. Stach,
K. J. Takeuchi, A. C. Marschilok, E. S. Takeuchi and G. Yu,
A tunable 3D nanostructured conductive gel framework
electrode for high-performance lithium ion batteries, Adv.
Mater., 2017, 29, 1603922.

152 B. Liu, P. Soares, C. Checkles, Y. Zhao and G. Yu, Three-
dimensional hierarchical ternary nanostructures for high-
performance Li-ion battery anodes, Nano Lett., 2013, 13,
3414–3419.

153 S.-J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V. S.
Battaglia, W. Yang and G. Liu, Side-chain conducting and
phase- separated polymeric binders for high-performance
silicon anodes in lithium-ion batteries, J. Am. Chem. Soc.,
2015, 137, 2565–2571.

154 P. Sengodu and A. D. Deshmukh, Conducting polymers and
their inorganic composites for advanced Li-ion batteries: A
review, RSC Adv., 2015, 5, 42109–42130.

155 D. Y. Oh, K. T. Kim, S. H. Jung, D. H. Kim, S. Jun, S.
Jeoung, H. R. Moon and Y. S. Jung, Tactical hybrids of Li+-
conductive dry polymer electrolytes with sulfide solid
electrolytes: Toward practical all-solid-state batteries with
wider temperature operability, Mater. Today, 2022, 53, 7–15.

156 D. Y. Oh, Y. J. Nam, K. H. Park, S. H. Jung, K. T. Kim, A. R.
Ha and Y. S. Jung, Slurry-fabricable Li+-conductive
polymeric binders for practical all-solid-state lithium-ion
batteries enabled by solvate ionic liquids, Adv. Energy
Mater., 2019, 9, 1802927.

157 J. Gao, C. Wang, D.-W. Han and D.-M. Shin, Single-ion
conducting polymer electrolytes as a key jigsaw piece for
next- generation battery applications, Chem. Sci., 2021, 12,
13248–13272.

158 L. Li, T. A. Pascal, J. G. Connell, F. Y. Fan, S. M. Meckler, L.
Ma, Y.-M. Chiang, D. Prendergast and B. A. Helms,
Molecular understanding of polyelectrolyte binders that
actively regulate ion transport in sulfur cathodes, Nat.
Commun., 2017, 8, 2277.

159 S. B. Hong, Y. J. Lee, U. H. Kim, C. Bak, Y. M. Lee, W. Cho,
H. J. Hah, Y. K. Sun and D. W. Kim, All-solid-state lithium
batteries: Li+-conducting ionomer binder for dry-processed
composite cathodes, ACS Energy Lett., 2022, 7, 1092–1100.

160 S. Jiang, B. Hu, Z. Shi, W. Chen, Z. Zhang and L. Zhang, Re-
engineering poly(acrylic acid) binder toward optimized
electrochemical performance for silicon lithium-ion
batteries: Branching architecture leads to balanced
properties of polymeric binders, Adv. Funct. Mater.,
2020, 30, 1908558.

161 X. Wan, C. Kang, T. Mu, J. Zhu, P. Zuo, C. Du and G. Yin, A
multilevel buffered binder network for high-performance
silicon anodes, ACS Energy Lett., 2022, 7, 3572–3580.

162 D. O. Shin, H. Kim, J. Choi, M. P. Kim, J. Y. Kim, S. H.
Kang, Y. S. Park, S. Y. Hong, M. Cho, Y. G. Lee, K. Y. J. Cho
and Y. M. Lee, Electrolyte-free graphite electrode with
enhanced interfacial conduction using Li+-conductive
binder for high-performance all- solid-state batteries, Energy
Storage Mater., 2022, 49, 481–492.

163 D. O. Shin, H. Kim, J. Choi, J. Y. Kim, S. H. Kang, Y.-S. Park,
M. Cho, Y. M. Lee, K. Cho and Y.-G. Lee, Effect of Lithium
Substitution Ratio of Polymeric Binders on Interfacial
Conduction within All-Solid-State Battery Anodes, ACS Appl.
Mater. Interfaces, 2023, 15, 13131–13143.

164 Y. Wang, N. Dong, B. Liu, K. Qi, G. Tian, S. Qi and D. Wu,
Enhanced electrochemical performance of the
LiNi0.8Co0.1Mn0.1O2 cathode via in-situ nanoscale surface
modification with poly(imide-siloxane) binder, Chem. Eng.
J., 2022, 450, 137959.

Industrial Chemistry & Materials Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


224 | Ind. Chem. Mater., 2024, 2, 191–225 © 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

165 A. Ramgobin, G. Fontaine and S. Bourbigot, Thermal
degradation and fire behavior of high performance
polymers, Polym. Rev., 2019, 59, 55–123.

166 F. Safdari, P. J. Carreau, M. C. Heuzey, M. R. Kamal and
M. M. Sain, Enhanced properties of poly(ethylene oxide)/
cellulose nanofiber biocomposites, Cellulose, 2017, 24,
755–767.

167 D. A. Gribble, Z. Li, B. Ozdogru, E. McCulfor, O. O. Capraz
and V. G. Pol, Mechanistic elucidation of electronically
conductive PEDOT:PSS tailored binder for a potassium-ion
battery graphite anode: Electrochemical, mechanical, and
thermal safety aspects, Adv. Energy Mater., 2022, 12,
2103439.

168 H. Q. Pham, J. Lee, H. M. Jung and S.-W. Song, Non-
flammable LiNi0.8Co0.1Mn0.1O2 cathode via functional
binder; stabilizing high-voltage interface and performance
for safer and high-energy lithium rechargeable batteries,
Electrochim. Acta, 2019, 317, 711–721.

169 G. Qian, L. Wang, Y. Shang, X. He, S. Tang, M. Liu, T. Li, G.
Zhang and J. Wang, Polyimide binder: A facile way to
improve safety of lithium ion batteries, Electrochim. Acta,
2016, 187, 113–118.

170 M. Monisha, P. Permude, A. Ghosh, A. Kumar, S. Zafar, S.
Mitra and B. Lochab, Halogen-free flame-retardant sulfur
copolymers with stable Li–S battery performance, Energy
Storage Mater., 2020, 29, 350–360.

171 M. Liu, P. Chen, X. Pan, S. Pan, X. Zhang, Y. Zhou, M. Bi, J.
Sun, S. Yang, A. L. Vasiliev, P. J. Kulesza, X. Ouyang, J. Xu,
X. Wang, J. Zhu and Y. Fu, Synergism of flame-retardant,
self-healing, high-conductive and polar to a multi-
functional binder for lithium-sulfur batteries, Adv. Funct.
Mater., 2022, 32, 2205031.

172 K. Chen, S. Shinjo, A. Sakuda, K. Yamamoto, T. Uchiyama,
K. Kuratani, T. Takeuchi, Y. Orikasa, A. Hayashi, M.
Tatsumisago, Y. Kimura, T. Nakamura, K. Amezawa and Y.
Uchimoto, Morphological effect on reaction distribution
influenced by binder materials in composite electrodes for
sheet-type all-solid-state lithium-ion batteries with the
sulfide-based solid electrolyte, J. Phys. Chem. C, 2019, 123,
3292–3298.

173 K. T. Kim, D. Y. Oh, S. Jun, Y. B. Song, T. Y. Kwon, Y. Han
and Y. S. Jung, Tailoring slurries using cosolvents and Li
salt targeting practical all-solid-state batteries employing
sulfide solid electrolytes, Adv. Energy Mater., 2021, 11,
2003766.

174 J. M. Kim, Y. Cho, V. Guccini, M. Hahn, B. Y. Yan, G.
Salazar-Alvarez and Y. Piao, TEMPO-oxidized cellulose
nanofibers as versatile additives for highly stable silicon
anode in lithium-ion batteries, Electrochim. Acta, 2021, 369,
137708.

175 S. Jaiser, J. Kumberg, J. Klaver, J. L. Urai, W. Schabel, J.
Schmatz and P. Scharfer, Microstructure formation of
lithium-ion battery electrodes during drying – An ex-situ
study using cryogenic broad ion beam slope-cutting and
scanning electron microscopy (Cryo-BIB-SEM), J. Power
Sources, 2017, 345, 97–107.

176 A. Bielefeld, D. A. Weber and J. Janek, Modeling effective
ionic conductivity and binder influence in composite
cathodes for all-solid-state batteries, ACS Appl. Mater.
Interfaces, 2020, 12, 12821–12833.

177 C. Guo, M. Liu, G.-K. Gao, X. Tian, J. Zhou, L.-Z. Dong, Q.
Li, Y. Chen, S.-L. Li and Y.-Q. Lan, Anthraquinone covalent
organic framework hollow tubes as binder microadditives
in Li-S batteries, Angew. Chem., Int. Ed., 2022, 61,
e202113315.

178 M. Ryu, Y.-K. Hong, S.-Y. Lee and J. H. Park, Ultrahigh
loading dry-process for solvent-free lithium-ion battery
electrode fabrication, Nat. Commun., 2023, 14, 1316.

179 D. Bresser, D. Buchholz, A. Moretti, A. Varzi and S.
Passerini, Alternative binders for sustainable
electrochemical energy storage - the transition to aqueous
electrode processing and bio-derived polymers, Energy
Environ. Sci., 2018, 11, 3096–3127.

180 G. Li, M. Ling, Y. Ye, Z. Li, J. Guo, Y. Yao, J. Zhu, Z. Lin and
S. Zhang, Acacia senegal-inspired bifunctional binder for
longevity of lithium-sulfur batteries, Adv. Energy Mater.,
2015, 5, 1500878.

181 O. S. Taskin, D. Hubble, T. Zhu and G. Liu, Biomass-
derived polymeric binders in silicon anodes for battery
energy storage applications, Green Chem., 2021, 23,
7890–7901.

182 L. Jing, Y. Ji, L. Feng, X. Fu, X. He, Y. He, Z. Zhu, X. Sun, Z.
Liu, M. Yang, W. Yang and Y. Wang, Faster and better: A
polymeric chaperone binder for microenvironment
management in thick battery electrodes, Energy Storage
Mater., 2022, 45, 828–839.

183 Y. Zou, J. Cao, H. Li, W. Wu, Y. Liang and J. Zhang, Large-
scale direct regeneration of LiFePO4@C based on spray
drying, Ind. Chem. Mater., 2023, 1, 254–261.

184 J. Ahn, H.-G. Im, Y. Lee, D. Lee, H. Jang, Y. Oh, K. Chung,
T. Park, M.-K. Um, J. W. Yi, J. Kim, D. J. Kang and J.-K. Yoo,
A novel organosilicon-type binder for LiCoO2 cathode in Li-
ion batteries, Energy Storage Mater., 2022, 49, 58–66.

185 M. Ling, J. Qiu, S. Li, C. Yan, M. J. Kiefel, G. Liu and S.
Zhang, Multifunctional SA-PProDOT binder for lithium ion
batteries, Nano Lett., 2015, 15, 4440–4447.

186 Y. Ma, K. Chen, J. Ma, G. Xu, S. Dong, B. Chen, J. Li, Z.
Chen, X. Zhou and G. Cui, A biomass based free radical
scavenger binder endowing a compatible cathode interface
for 5 V lithium-ion batteries, Energy Environ. Sci., 2019, 12,
273–280.

187 L. Hu, X. Zhang, P. Zhao, H. Fan, Z. Zhang, J. Deng, G.
Ungar and J. Song, Gradient H-bonding binder enables
stable high- areal-capacity Si-based anodes in pouch cells,
Adv. Mater., 2021, 33, 2104416.

188 S. L. Chou, Y. D. Pan, J. Z. Wang, H. K. Liu and S. X. Dou,
Small things make a big difference: Binder effects on the
performanceof Li and Na batteries, Phys. Chem. Chem.
Phys., 2014, 16, 20347–20359.

189 Y. Shi, X. Y. Zhou and G. H. Yu, Material and structural
design of novel binder systems for high-energy, high-power
lithium- ion batteries, Acc. Chem. Res., 2017, 50, 2642–2652.

Industrial Chemistry & MaterialsReview

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c


Ind. Chem. Mater., 2024, 2, 191–225 | 225© 2024 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

190 S. Chen, Z. Song, L. Wang, H. Chen, S. Zhang, F. Pan and L.
Yang, Establishing a resilient conductive binding network
for Si- based anodes via molecular engineering, Acc. Chem.
Res., 2022, 55, 2088–2102.

191 Y. M. Zhao, F. S. Yue, S. C. Li, Y. Zhang, Z. R. Tian, Q. Xu, S.
Xin and Y. G. Guo, Advances of polymer binders for silicon-
based anodes in high energy density lithium-ion batteries,
InfoMat, 2021, 3, 460–501.

192 L. C. Gallegos, G. Luchini, P. C. St. John, S. Kim and R. S.
Paton, Importance of engineered and learned molecular
representations in predicting organic reactivity, selectivity,
and chemical properties, Acc. Chem. Res., 2021, 54, 827–836.

193 J. P. Reid and M. S. Sigman, Holistic prediction of
enantioselectivity in asymmetric catalysis, Nature,
2019, 571, 343–348.

194 L.-C. Xu, J. Frey, X. Hou, S.-Q. Zhang, Y.-Y. Li, J. C. A.
Oliveira, S.-W. Li, L. Ackermann and X. Hong,
Enantioselectivity prediction of pallada-electrocatalysed
C–H activation using transition state knowledge in machine
learning, Nat. Synth., 2023, 2, 321–330.

195 A. F. Zahrt, J. J. Henle, B. T. Rose, Y. Wang, W. T. Darrow
and S. E. Denmark, Prediction of higher-selectivity catalysts
by computer-driven workflow and machine learning,
Science, 2019, 363, eaau5631.

196 J. H. Lee, J. Kim, M. H. Jeong, K. H. Ahn, H. L. Lee and
H. J. Youn, Visualization of styrene-butadiene rubber (SBR)
latex and large-scale analysis of the microstructure of
lithium-ion battery (LIB) anodes, J. Power Sources,
2023, 557, 232552.

197 S. Mueller, M. Lippuner, M. Verezhak, V. De Andrade, F. De
Carlo and V. Wood, Multimodal nanoscale tomographic
imaging for battery electrodes, Adv. Energy Mater., 2020, 10,
1904119.

198 T.-T. Nguyen, J. Villanova, Z. Su, R. Tucoulou, B. Fleutot, B.
Delobel, C. Delacourt and A. Demortiere, 3D quantification
of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high-

energy density electrodes by X-ray holographic nano-
tomography, Adv. Energy Mater., 2021, 11, 2003529.

199 Y. S. Zhang, A. N. P. Radhakrishnan, J. B. Robinson, R. E.
Owen, T. G. Tranter, E. Kendrick, P. R. Shearing and D. J. L.
Brett, In situ ultrasound acoustic measurement of the
lithium-ion battery electrode drying process, ACS Appl.
Mater. Interfaces, 2021, 13, 36605–36620.

200 N. Shpigel, M. D. Levi, S. Sigalov, O. Girshevitz, D. Aurbach,
L. Daikhin, N. Jaeckel and V. Presser, Non-invasive in situ
dynamic monitoring of elastic properties of composite
battery electrodes by EQCM-D, Angew. Chem., Int. Ed.,
2015, 54, 12353–12356.

201 H. Hagiwara, W. J. Suszynski and L. F. Francis, A Raman
spectroscopic method to find binder distribution in electrodes
during drying, J. Coat. Technol. Res., 2014, 11, 11–17.

202 J. Xiong, N. Dupre, P. Moreau and B. Lestriez, From the
direct observation of a PAA-based binder using STEM-
VEELS to the ageing mechanism of silicon/graphite anode
with high areal capacity cycled in an FEC-rich and EC-free
electrolyte, Adv. Energy Mater., 2022, 12, 2103348.

203 S. Mueller, P. Pietsch, B.-E. Brandt, P. Baade, V. De Andrade,
F. De Carlo and V. Wood, Quantification and modeling of
mechanical degradation in lithium-ion batteries based on
nanoscale imaging, Nat. Commun., 2018, 9, 2340.

204 T. Lombardo, A. C. Ngandjong, A. Belhcen and A. A.
Franco, Carbon-binder migration: A three-dimensional
drying model for lithium-ion battery electrodes, Energy
Storage Mater., 2021, 43, 337–347.

205 Y. Li, Y. Wu, Z. Wang, J. Xu, T. Ma, L. Chen, H. Li and F. Wu,
Progress in solvent-free dry-film technology for batteries
and supercapacitors, Mater. Today, 2022, 55, 92–109.

206 F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki, T.
Shiratsuchi, T. Tsujimura, Y. Aihara and S. Kaskel,
Overcoming binder iimitations of sheet-type solid-state
cathodes using a solvent-free dry-film approach, Energy
Storage Mater., 2019, 21, 390–398.

Industrial Chemistry & Materials Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
se

pt
ie

m
br

e 
20

23
. D

ow
nl

oa
de

d 
on

 2
8/

08
/2

02
4 

0:
05

:4
5.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00089c

	crossmark: 


