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Recent advancements in computational methodologies, particularly density functional theory 
(DFT) and materials informatics, have revolutionized catalyst design for oxygen reduction 
reactions (ORR). DFT, in conjunction with descriptor-based analysis and computational hydrogen 
electrode (CHE), not only aids in the rational design of catalysts but also offers insights into the 
influence of external factors such as solvent, field and pH effects on ORR activity. By enabling 
rational design strategies and accelerating the discovery of alternative materials, these approaches 
hold promise for overcoming limitations associated with traditional catalysts like platinum. 
Moreover, the integration of machine learning techniques and high-throughput DFT screening has 
facilitated the efficient generation and analysis of vast datasets, paving the way for the 
development of cost-effective and scalable ORR catalysts. This transformative landscape 
underscores the success of computational analysis in elucidating complex catalytic phenomena, 
offering unprecedented opportunities for the development of efficient and sustainable ORR 
catalysts, thus advancing the frontier of fuel cell technologies.
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Abstract
Computational approaches, such as density functional theory (DFT) in conjunction with 
descriptor-based analysis and computational hydrogen electrode, have enabled exploring the 
intricate interactions between catalyst surfaces and oxygen species allowing for the rational 
design of materials with optimized electronic structure and reactivity for oxygen reduction 
reaction (ORR). The identification of active sites and the tuning of catalyst compositions at the 
atomic scale have been facilitated by computational simulations, accelerating the discovery of 
promising ORR catalysts. In this contribution, the insights provided by the computational analysis 
to understand the fundamental reasons behind inherent ORR overpotentials in the experimental 
reported catalysts are discussed. Various strategies to overcome the limitations in ORR catalysis 
using computational design are discussed. Several alternative earth-abundant and cost-effective 
materials suggested by computational guidance to replace platinum-based catalysts are 
reviewed. The accuracy of DFT and the role of solvent and electrolyte pH are outlined based on 
the understanding provided by the computational insight. Finally, an overview of recent 
achievements in employing materials informatics to accelerate catalyst material discovery for 
ORR is provided. These computational advancements hold great promise for the development of 
efficient and cost-effective ORR catalysts, bringing us closer to realizing the full potential of fuel 
cells as efficient electrochemical energy conversion technologies. 
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1. Introduction
There is a growing interest in creating renewable energy conversion technologies for 

automobile applications, such as fuel cells and metal-air batteries. Because of their remarkable 
prospects and ability to solve several complicated challenges that have long persisted, fuel cells 
stand out as the most promising future energy technology. In most fuel cells, the anode and 
cathode are separated by a membrane/electrolyte. At the cathode, oxygen is reduced to water, 
while a fuel, such as hydrogen, methanol, ethanol, or formic acid, is oxidized at the anode, 
releasing electrons and protons that pass through the external circuit and membrane to reach 
the cathode. Thus, fuel combines with oxygen without burning via a moderate electrochemical 
mechanism, with an optimal turnover frequency of H2-O2 of about 83% at 25oC.1 In practice, 
however, low-temperature fuel cells do not achieve such efficiency, owing to the sluggish oxygen 
reduction process (ORR) at the cathode which results in a significant voltage loss. Platinum (Pt) 
has long been utilized as the most efficient ORR catalyst. However, there are several downsides 
to the extensive use of Pt-based catalysts in fuel cells. One of the most significant concerns is Pt 
scarcity and high cost, which causes scalability issues. Furthermore, even with the costly Pt 
catalyst, there is a significant overpotential associated with ORR (Figure 1a).2,3 Furthermore, Pt-
based catalysts have a low tolerance to methanol, which produces CO and blocks the active sites. 
As a result, the rational design of catalysts with even higher ORR activity than pure Pt is central 
to fuel-cell research. Various types of Pt-based catalysts have been largely examined over the 
past two decades. To boost the inherent activity of Pt-based catalysts, both alloying and 
morphological designs have been used. 4–6 The timeline in Figure 1b illustrates how Pt-based 
catalysts ORR performance has improved. As can be seen, the intrinsic activity of the catalysts 
has not changed, and there is still a 0.3 V overpotential that exists across these various Pt-based 
catalysts. 

Figure 1. (a) Fuel cell electrochemical performance using Pt as catalyst. Copyright with permission from 
Ref. [7] (b) Timeline showing that the intrinsic activity of Pt-based catalysts has not been improved. 
Copyright with permission from Ref. [8].

(a) (b)
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Computational approaches, such as density functional theory (DFT), in conjunction with 
descriptor-based analysis and computational hydrogen electrode (CHE) model suggested by 
Nørskov et al.9, have played a pivotal role in elucidating the underlying mechanisms of ORR, 
understanding experimental results, and predicting novel catalyst materials with enhanced 
activity and stability. Herein, we first overview how descriptor-based analysis in conjunction with 
the CHE model can be leveraged to understand the fundamentals behind the ORR catalysis. Then, 
we show how this understanding can help to explain the large ORR overpotential for the studied 
classes of materials and guide the design of novel materials. Lastly, we show how these tools can 
be used to understand the ORR activity and stability of cost-effective and earth abundant 
materials such as transition metal nitrides and transition metal oxides. We should highlight that 
the examples mentioned in this contribution only focus on computational advances in ORR 
catalysis, and that they are only a sample of the vast array of literature on this subject. 10–12 Thus, 
this contribution is not intended to be exhaustive.

2. Fundamentals Behind ORR Catalysis
The past decade has witnessed significant progress in the computational understanding 

and design of catalysts for the ORR. Computational frameworks based on the surface science 
approach9 and DFT calculations have played a pivotal role in elucidating the underlying 
mechanisms of ORR and predicting novel catalyst materials with enhanced activity and stability. 
These approaches have enabled direct theoretical investigations of reaction mechanisms on 
various model systems. Two-electron or four-electron oxygen reduction pathways could occur, 
depending on the catalyst properties. The two-electron pathway is known as partial reduction 
resulting in hydrogen peroxide (eq. 1) with OOH* as the only intermediate (eq. 2). The full 
reduction of oxygen allows the four-electron reduction, resulting in water (eq. 3). Herein, we only 
focus on the four-electron ORR which is of interest for emerging renewable energy technologies 
such as fuel cells, and rechargeable metal-air batteries. As mentioned above, currently, the 
sluggish oxygen reduction process hinders the efficiency of these technologies. Platinum (Pt) has 
long been utilized as the most efficient ORR catalyst, but it faces problems regarding scarcity and 
high-cost leading to scalability issues. Furthermore, even with the costly Pt catalyst, there is a 
significant overpotential associated with ORR (Figure 1a). To establish computational 
understanding for ORR catalysis, we need to simulate the reaction mechanism. Associative and 
dissociative mechanisms have been proposed for the four-electron ORR. The associative 
mechanism (eq. 4) involves three different intermediates, namely OOH*, O*, and OH* while 
dissociative one involves O*, and OH* (eq. 5). 

Two-electron ORR:
𝑂2 +2(𝐻+ + 𝑒―)→𝐻2𝑂2 𝐸° = 0.70 𝑉 (1)
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𝑂2 + (𝐻+ + 𝑒―)→𝑂𝑂𝐻∗ + (𝐻+ + 𝑒―)→𝐻2𝑂2 (2)

Four-electron ORR:
𝑂2 +4(𝐻+ + 𝑒―)→2𝐻2𝑂 𝐸° = 1.23 𝑉 (3)

Associative mechanism:
𝑂2 + (𝐻+ + 𝑒―)→𝑂𝑂𝐻∗ + (𝐻+ + 𝑒―)→𝑂∗ + (𝐻+ + 𝑒―)→𝑂𝐻∗ + (𝐻+ + 𝑒―)→ 2𝐻2𝑂

(4)
Dissociative mechanism: 
1/2𝑂2 + (𝐻+ + 𝑒―)→𝑂∗ + (𝐻+ + 𝑒―)→𝑂𝐻∗ + (𝐻+ + 𝑒―)→𝐻2𝑂 (5)

The associative mechanism is the commonly accepted mechanism for four-electron ORR. Taking 
this mechanism, the overall ORR catalytic activity is determined by the adsorption free energies 
of the reaction intermediates (OH*, O* and OOH*) to the catalyst surface. These adsorption free 
energies can be calculated using DFT calculations in conjunction with the CHE model, water 
stabilization13, electric field effects,14 and entropic corrections.6 The CHE assumes the chemical 
potential of proton-electron pair is equal to the gas-phase H2. The electrode potential is 
considered by shifting the electron energy by –eU where e and U are the elementary charge and 
the electrode potential, respectively.9 These calculations can be used to build free energy 
diagrams along the reaction pathway (Figure 2a-b). Figure 2a displays the free energy diagrams 
for both the two- and the four-electron oxygen reduction reactions on ideal catalysts15 at U= 0 V. 
This demonstrates a hypothetical case where the reaction is running by short-circuiting the cell 
and all the steps are strongly exothermic. The maximum potential allowed by thermodynamics is 
obtained by shifting the chemical potential of the electrons at the equilibrium potential of U= 
0.70 V and U= 1.23 V for the two- and the four-electron ORR mechanisms, respectively.9 In the 
ideal catalyst, all the steps in the free energy diagram are equivalent and take exactly as much as 
the equilibrium potential; hence they become thermoneutral at the equilibrium potential (green 
and magenta for four- and two-electron in Figure 2a). In practice, as in the case of the Pt surface, 
however, these steps are not equivalent to the equilibrium potential, and the potential at which 
the electrochemical reaction occurs is less than the thermodynamic limit (Figure 2b). This 
potential termed as thermodynamic limiting potential (UL) can be extracted from the free energy 
diagram and is defined as the highest potential at which all the reaction steps are downhill in free 
energy. The overpotential is determined by the difference between the UL and the equilibrium 
potential.15 The calculated UL for Pt (111) is 0.75 V, resulting in an overpotential of 0.48 V (Figure 
2b). 
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Figure 2. (a) Free energy diagram for oxygen reduction on ideal catalyst for two- and four-
electron oxygen reduction. (b) Free energy diagram for oxygen reduction on Pt(111) associative 
mechanism. Data for Pt(111) are adapted from Ref. [15].

Figure 3 displays the scaling relationship for the adsorption energies of the OH* and OOH* on a 
wide variety of catalysts structures. Based on this analysis, it has been demonstrated that the 
correlations between binding energies of different intermediates are observed on any catalyst 
surface (black dashed line in Figure 3a).16–21 It has been shown that these correlations limit tuning 
the binding energy of one intermediate without affecting the binding energy of the other on any 
given catalyst surfaces. The green dashed line in Figure 3a displays the ideal correlation between 
OH* and OOH*. The star point displays the sweet spot for ORR catalyst, with four equal steps in 
the free energy diagram from O2 to H2O (Figure 3a). The fact that the variety of known and 
examined materials are far from the ideal line causes a large negative impact on the activity by 
fixing the energy difference between OH* and OOH* around 3.2 ± 0.2 eV.17–19 Because it takes 
two proton-coupled electron transfer steps to go from OOH* to OH* (reactions 2 and 3), a 
potential of at least 3.2 eV/2e = 1.6 V is needed to complete these reaction steps. However, the 
thermodynamic limit is 1.23 V, which means that even the best catalyst surfaces will have an 
overpotential of about 1.6 – 1.2 V = 0.4 V. 17–19 Taking Pt(111) surface for comparison, an ideal 
ORR catalyst should have an OH* binding energy approximately 0.4 eV weaker.21 
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Figure 3. (a) Scaling relationship for the chemisorption energies of OH* and OOH* for various 2D 
materials. Pt(111) data shown for comparison in purple. The adsorption energies of OH and OOH are 
reported relative to liquid water and gas phase hydrogen using H2O(l) + *  OH* + 1/2H2(g) and 2H2O(l) 
+ *  OOH* + 3/2H2(g), respectively. Color code: C (gray), N (blue), O (red), H (white), B (pink), S (yellow), 
Mo (cyan), Cu (brown), Ni (green), Au (orange), and Pt (silver). (b) Ideal and conventional four-electron 
volcano plots in green and black solid lines, respectively. The magenta solid line displays the two-electron 
volcano plot. Green and magenta dashed lines display the equilibrium potentials for four- and two-
electron processes, respectively.

Using the Sabatier principle, the activity of the catalyst surface can be related to the binding 
energies of the adsorbates as descriptors. This leads to a volcano shape plot, with the optimal 
catalyst marked a balance between not too weak, nor too strong binding of the adsorbates 
(Figure 3b).19,22 Although any of the three adsorbates in the ORR can be selected as a descriptor 
of the activity since all of them scale with each other, typically, O* or OH* are used as descriptors. 
Taking OH* as an example, Figure 3b displays the ideal four-electron ORR activity volcano in 
green and the conventional four-electron volcano in black, which is different from the ideal 
volcano due to the scaling relations between OH* and OOH*. The negative impact of the scaling 
relation on the activity is clearly seen on the activity volcano, where the peak of the ideal four-
electron volcano crosses the equilibrium potential as opposed to the conventional one. This 
indicates zero and ~0.4 V overpotentials for the ideal and conventional volcano plots, 
respectively. Therefore, the scaling relation limitation imposed by thermodynamics sets an upper 
limit to the maximum activity that can be obtained using the known classes of two-dimensional 
materials. On the plus side, the scaling relations have proved quite useful in explaining trends in 
oxygen reduction activity across various classes of catalyst materials.9,22 It has also been 
successful in promoting the identification of new active catalysts for both two-19,23 and four-
electron oxygen19 reduction reactions. 

Figure 3b also displays the two-electron ORR activity volcano for reduction of oxygen to 
hydrogen peroxide in magenta. Since this reaction has only one intermediate (OOH*) the peak 
of the volcano crosses the equilibrium potential at 0.70 V. This in principle indicates that it is 

NiO/Au(111)

MoS2

N-doped 55-77

h-BN/Cu(111)

Pt(111)

PtHg4

FeN4

NiO/Au(111)

MoS2

N-doped 55-77

h-BN/Cu(111)

Pt(111)

PtHg4

FeN4

(a) (b)
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possible to find a catalyst with maximum activity if it binds that single intermediate with optimal 
strength, not too weak, nor too strong.

Platinum has long been used as the most efficient catalyst for ORR. Based on the above-
mentioned thermodynamic analysis, it has been demonstrated that the thermodynamic sink for 
the oxygen reduction reaction on Pt(111) is the last step in the free energy diagram, the reduction 
of OH* to water (Figure 2b). In this thermodynamic picture, the ORR catalytic activity, relative to 
Pt(111), can be enhanced by weakening the binding energy of O* or OH*.9,19 However, due to 
the scaling relationship between the binding energies of OH* and OOH*, beyond a certain 
weakening, it becomes thermodynamically uphill to activate O2 and form OOH*. It has also been 
demonstrated that decreasing the binding energy of O* or OH* in the order of 0.1-0.2 eV weaker 
than Pt enhances the activity.9,19 This key understanding based on purely thermodynamic analysis 
paved the road for discovering new catalysts with enhanced ORR activity.19 Using DFT 
calculations, a wide range of Pt alloys have been studied for identifying the best composition with 
0.1-0.2 eV weaker binding energy than Pt.19  Alloys of Pt and transition metals such as Co, Ni, Y 
and Sc were found to bind OH* weaker and showed enhanced ORR activity relative to pure Pt.19 
Both electronic and geometric effects play roles in tailoring the surface binding energy towards 
the favored regime. During past years, enormous efforts have been made to experimentally 
synthesize different Pt alloys and benchmark their activities.6,12,21,24–29 Different design strategies 
have been investigated to control the structural composition and maximize the efficiency of the 
Pt alloy catalysts.24,30,31 In line with the computational efforts, Xin et al.30 proposed a model that 
relates the adsorption energies to the accessible physical properties of the metal element that 
forms alloy such as electronegativity, atomic radius, and spatial extent of valence orbitals.30 
Based on this model, the chemical environment of the Pt atom sites can be related to the local 
chemical reactivity.  The accuracy of this model was further verified by DFT calculations.30 

In addition to Pt alloy catalysts, a wide range of the other bimetallic alloys have also been 
studied to identify catalysts with enhanced ORR activity.32,33 DFT calculations have also been used 
for mapping out the ORR activity of transition metal oxides,34–36 carbon-based materials35 and to 
less extent on transition metal nitrides37 and sulfides.38 We will delve into some of these findings 
in the forthcoming Section 4.

The DFT calculations have also been valuable in understanding the important role of the 
electrochemically most stable coverage of the ORR intermediates on the catalyst surface, as 
function of pH and potential.39 This is particularly important for the catalyst surfaces with strong 
oxygen binding energy such as Ni where it has been shown that the activity drastically changes 
by including oxygen covered surface.39 Using DFT calculations it has also been demonstrated that 
at low ORR potentials, the Pt surface is covered by the half-dissociated water layer and the O-O 
bond dissociation is clearly related to the local chemical environment.13 Based on DFT and 
atomistic model for the charged solid–electrolyte interface40, the barriers for proton transfer to 
the adsorbates on the Pt surface and barriers for proton transport within the water layer have 
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been estimated to be negligible.13 This, in turn, has enabled the modeling ORR through 
thermodynamic analysis alone, as a valid premise. 

3. Guiding the Design of Next Generation ORR Catalysts
As mentioned previously, the activity of various examined catalyst surfaces is limited due to the 
scaling relation imposed by the OH* and OOH* correlations. Taking the associated ORR 
mechanism, the activity volcano is limited by two steps: OH* removal and OOH* formation on 
the surface. To deviate from the known scaling line and approach the ideal case, weaker OH* and 
stronger OOH* binding to the surface is desirable. Yet, achieving this goal has proven exceedingly 
challenging due to the scaling relation between OH* and OOH*, which renders it difficult to 
stabilize one oxygen intermediate while simultaneously destabilizing the other on a single 
catalyst surface.

In the past years, several strategies have been devised to circumvent the scaling relation 
and hence increase the ORR activity.17,19,20,39–50 One strategy proposed by Siahrostami et al.,37  is 
to divide the four-electron oxygen reduction reaction into two separate two-electron reduction 
reactions, i.e., 1) two-electron reduction of O2 to H2O2 and 2) two-electron reduction of H2O2 to 
H2O. They suggested that these reactions should be facilitated by separate catalyst materials: 
one highly active and selective for the partial reduction of O2 to H2O2, and the other effective at 
converting H2O2 to H2O with both high activity and selectivity. Including a proton donor/acceptor 
site and the right combination of binding sites has been computationally analyzed and proven to 
improve the scaling relation. This idea was explored for several functional groups such as -COOH, 
-OH, and -NH2 as proton-donor sites near proton-acceptor sites constructed of different 
transition metals coordinated with four nitrogen atoms (MN4). The combination of a nearby 
functional group such as -COOH and manganese metal coordinated with four nitrogen atoms 
(MnN4) was shown to make an ideal case for both ORR and OER.17 Alternatively, it has been 
shown that molecular configurations like diporphyrin, which feature two metal sites, can 
effectively stabilize the OOH* intermediate in a dissociated state across both active sites, 
resembling an O* + OH* intermediate. Through systematic DFT calculations, the ORR activity of 
such molecular catalysts has been extensively examined, revealing a notable reliance on factors 
such as the intermetallic distance and the type of metals involved.51 

Single atom catalysts (SACs) have also proven to be interesting for circumventing the ORR 
scaling relation due to their distinct properties surpassing those of traditional metal catalysts.41  
A comprehensive DFT investigation by considering more than 50 combinations of various metal 
single atoms embedded in various 2D substrates has unveiled distinctive electronic structure and 
geometric properties within SACs (Figure 4a-b).41 These properties led to preferential 
stabilization of OOH* (inset in Figure 4b), consequently disrupting the scaling relationship 
between OOH* and OH* (Figure 4a), thereby enhancing ORR catalytic activity significantly via 
shifting the peak of activity volcano (Figure 4b). 
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Figure 4: (a) Scaling relationship for the chemisorption energies of OH* and OOH* for various SACs. (b) 
Activity volcano plots for SACs (solid black), metal (111) (dashed black) and ideal catalyst (dashed red). 
Inset shows the bidentate adsorption stabilizes OOH* intermediate and results in overall improved 
activity. Copyright with permission from Ref. [41].

One of the interesting aspects of single-atom catalysts is their ability to interact with 
neighboring single-atom sites, which is crucial for fine-tuning their catalytic activity. It has been 
shown that adjacent single-atom catalysts, such as FeN3 embedded in a graphene structure, 
exhibit communicative behavior upon the adsorption of small molecules like CO and O2.49 This 
behavior is attributed to long-range spin coupling. The O-O bond in O2 is slightly more stretched 
when adsorbed on the second Fe site, and the adsorption energy changes by 0.18 eV. 
Interestingly, the Fe magnetic ordering shifts from ferromagnetic to antiferromagnetic in 
response to molecule adsorption.49

Dual-atom catalysts have also been recently investigated for the ORR. Xie, et al.52 studied 
144 different dual-atom configurations with M1-N4 and M2-N4 moieties embedded in graphene 
structures (where M1 and M2 are Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, or Au) using DFT 
calculations and machine learning techniques. They identified 13 dual-atom catalysts that lie at 
the peak of the ORR activity volcano, offering comparable performance to Pt but with the benefit 
of being composed of significantly cheaper and more abundant non-noble metals.

Another proposed strategy for overcoming the scaling relation in ORR is through 
confinement. Porous materials such as metal-organic frameworks (MOFs) have gained significant 
attention as potential ORR catalysts due to their unique properties in providing confined 
space.51,53–56 MOFs are composed of metal ions or clusters coordinated to organic ligands, 
forming a three-dimensional porous structure. The combination of metal nodes and organic 
linkers results in a highly ordered and tunable framework (Figure 5). MOF structure provides 
numerous opportunities for confined spaces, potentially serving as an attractive platform for 
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enhancing the ORR activity by altering the binding of OOH* and OH*. Figure 5a and b show an 
example of Al2(OH)2TCPP-Co which is composed of cobalt porphyrin catalytic metal center, 
aluminum hydroxide inorganic backbone and carboxylate phenyl benzene linker. Controlling the 
linker length allows adjusting the spacing between porphyrin centers. MOF structure, in 
particular Al2(OH)2TCPP-Co, has a lot of similarities with the structure of cytochrome C oxidase 
enzyme (CcO) (Figure 5c) which effectively oxidizes the catalytic cycle in respiration chain.57 The 
enzyme design consists of separated Fe and Cu metals coordinated with N atoms in a porphyrin 
type structure.57 This suggests that maximizing the efficiency of oxygen reduction reactions (ORR) 
could involve utilizing a metal-organic framework (MOF) structure featuring diverse metal 
catalytic centers within the cofacial porphyrin units. By employing a bimetallic model structure 
with an optimal distance between metal sites, illustrated schematically in Figure 5d, a strategy 
can be devised to target specific metal combinations that bind oxygenated species differently, 
thus maximizing ORR activity. In such a model, if one metal site exhibits oxophilic properties, it 
can readily bind oxygen species during the initial ORR cycle. These oxygen species, while acting 
as spectators, block the oxophilic site from participating in the ORR reaction but interact 
favorably with ORR intermediates forming on the active site (the other metal site). The most 
favorable outcome of this model structure is the interaction of spectators with the OOH* 
intermediate, stabilizing it via hydrogen bonding. Due to the size disparity between OOH* and 
OH* adsorbates, there is no hydrogen bonding stabilization from the interaction of spectators 
with OH* absorbed on the active site.
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Figure 5. (a) and (b) Coordination entity for constructing Al2(OH)2TCPP-Co MOF. Adapted from Ref. [54] 
with permission. (c) Cytochrome-C oxidase enzyme. Adapted from Ref. [57] with permission. (d) Illustration 
of the bio-mimic prototype catalyst capable of circumventing the scaling relations. 

This hypothesis was examined in a recent computational study, affirming its effectiveness in 
controlling the scaling relations by varying the metal catalytic centers in Al2(OH)2TCPP-Co.58 A 
bimetallic model structure of Al2(OH)2TCPP-Co-M, where M represents an oxophilic element, was 
scrutinized in this study as a platform to explore the effect of a third dimension in circumventing 
the scaling between OH* and OOH* and enhancing ORR activity. The bimetallic Al2(OH)2TCPP-Co-
M, featuring metal centers approximately 7 Å apart within the cofacial porphyrin units (Figure 
6a), was found to be optimal for the interaction of spectators with the OOH* intermediate. This 
study demonstrated that Al2(OH)2TCPP-Co-M, where M represents Fe, Cr, and Mn, effectively 
stabilizes the OOH* intermediate (Figure 6b), consequently altering the scaling relation (Figure 
6c) and enhancing the ORR activity volcano relation (Figure 6d). Particularly notable is the 
combination of Fe-OH as a spectator and Cr as an active site, which provided the most effective 
confined local chemical environment for ORR, exhibiting the lowest calculated overpotential of 
0.3 V (Figure 6e-f).  58

Figure 6. (a) Bimetallic model structure of Al2(OH)2TCPP-Co-M with an OH spectator siting on the oxophilic 
metal site. (b) Free energy diagram for ORR showing OOH* adsorbate free energy is most impacted by the 
spectator metal. (c) Scaling relations for the chemisorption energies of OOH* vs. OH* for various 
bimetallic MOFs. (d) ORR activity volcano plot showing a significant improvement using the confinement 
effect in bimetallic MOF (e) and (f) Calculated limiting potentials and overpotentials for different 
combination of the bimetallic MOFs. Adapted from Ref. [58] with permission. 
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So far, we covered three strategies for circumventing the scaling relation between OOH* and 
OH*, including introducing oxophilic groups or proton-donor sites, using single atom catalysis, 
and fine-tuning the coordination environment through the third dimension. However, it is 
important to highlight additional strategies that have been suggested, which are well-covered in 
other review articles.43,45  These include introducing p-block elements via heteroatom doping,43,59 
external field-assisted catalysis,45 using ligand-modified catalysts,43–45 strain effects induced by 
alloying including high entropy alloys,59 spectator or co-adsorbed species,44,54,58 geometry effects 
such as strain and surface curvature,46,47 and dual-sites catalysts.47,50,60 It is worth noting that 
geometry plays a major role in circumventing the scaling relationship among all the above 
strategies. One emerging approach is the concept of geometry-adaptive electrocatalysis, which 
holds significant potential in advancing catalytic performance. In a recent computational study 
by Cepitis et al.44, the concept of geometry-adaptive electrocatalysis was examined to assess its 
ability to overcome the scaling relationship between OH* and OOH* Geometry-adaptive 
electrocatalysis represents a significant advancement in catalyst design. By allowing catalysts to 
dynamically adjust their geometry during reactions, this approach can potentially overcome 
limitations imposed by traditional scaling relations. This could lead to more efficient and effective 
ORR catalysts, where overpotential has been a persistent issue. 44 If experimentally validated, this 
concept could pave the way for developing next generation electrocatalysts with unprecedented 
performance, accelerating progress in energy conversion and storage technologies. The authors 
in demonstrated this concept using a model system of metal–nitrogen–carbon (M–N–C) 
catalysts, specifically the dual-atom site 2Co–N4 with variable curvature. Using DFT calculations, 
they demonstrated that altering the curvature of the catalyst can circumvent scaling through a 
dissociative mechanism, replacing the OOH* intermediate with O* on one site and OH* on 
another. This concept suggests the potential for discovering the ideal oxygen electrocatalyst.

Finally, we would like to emphasize that it is not merely about breaking scaling relationships; 
it is about breaking the right relationships in the right way to enhance the desired reactions 
without compromising catalytic efficiency.61,62 This nuanced understanding underscores the need 
for targeted strategies that carefully consider the geometric and coordination environment 
factors influencing catalysis. 

4. Earth-abundant ORR Catalysts
In addition to exploring novel chemistry and coordination environments to increase the 

intrinsic activity of the ORR catalyst, an interesting direction has emerged in the quest to identify 
catalysts that are both abundant on Earth and cost-effective. This endeavor aims to supersede 
Pt-based catalysts, paving the way for more scalable fuel cell technologies. Extensive research 
has been devoted to investigating various material classes.19,63–66 Here, we focus on two notable 
categories: transition metal nitrides and transition metal oxides. However, the exploration does 

Page 13 of 41 EES Catalysis

E
E

S
C

at
al

ys
is

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
ju

lio
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

5/
07

/2
02

4 
23

:2
8:

00
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D4EY00104D

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ey00104d


13

not end here; readers are encouraged to delve into additional review articles for a 
comprehensive understanding of alternative materials. 11,67–69

4.1. Transition metal Nitrides (TMNs) – TMNs have lately received scholarly attention for their 
ability to selectively and efficiently catalyze the ORR.63,70,71 These materials are sometimes 
referred to as “interstitial alloys”, since the nitrogen atoms are incorporated into the interstitial 
sites of their parent metals.72 An interesting characteristic of TMNs is their dependence on the 
ratio of the radii of the metal atom to that of nitrogen. Lattice expansion due to a radii mismatch 
can cause a metal d-band contraction and a higher density of states around the Fermi level, 
resulting in different catalytic characteristics than those observed in the parent metal. 
Furthermore, multiple stoichiometries can be produced from the same metal, allowing for an 
even broader range of catalytic characteristics and potential applications. 72 Herein we use DFT 
calculations in combination with descriptor-based analysis and CHE model to navigate through 
the vast chemical space of TMNs and identify promising ORR catalysts. We utilize the data 
published in Ref. [73] that employs high-throughput screening of 800 different TMNs from 22 
metals listed in the Materials Project database (Figure 7a-b). This study shows that among the 
800 TMNs, only 60 are thermodynamically stable with E above Hull (EHull) < 0.1 eV, indicating high 
stability with respect to decomposition at the same, fixed composition. Those 60 stable TMNs 
were considered for further investigation of CO2 reduction reaction and an extensive database 
of 10,300 DFT calculations was reported. Among them, 6,430 data belong to unique OH* (3,220) 
and H* (3,210) adsorption energy calculations. We leverage this data to search for bifunctional 
catalysts for ORR and hydrogen oxidation reaction (HOR) for the cathode and anode of the fuel 
cell, respectively. Figure 7c illustrates the selection criteria employed to search for bifunctional 
ORR/HOR catalysts from the original dataset, taking Pt as the benchmark for both reactions. 
Using this screening scheme, 18 promising TMN candidates, composed of Fe, Co, Cr, Mn, Nb, and 
Ni, were obtained (Figure 7d). These 18 shortlisted candidates are earth-abundant and low-cost 
elements making them highly suitable catalysts to replace rare-earth and expensive Pt-based 
catalysts. Interestingly, Co, Cr, Fe, and Mn nitrides have already been reported as active catalysts 
for the ORR in fuel cells.74,75  Co3N has been reported to show the best ORR performance, 
indicated by a mass activity of ~170 A g−1 and an E1/2 of 0.862 V vs. RHE, which is within 30 mV 
from the commercial benchmark Pt/C.74 Computational modeling of CoN suggest a high activity 
with calculated limiting potential of 0.85 V.70 Nb4N5, is a new promising ORR catalysts we 
identified using the theoretical data analysis in Figure 7d, which also finds applications as a 
superconductor material,76 and  a high-performance electrode material for supercapacitors77 as 
well as for Li-S batteries.78 
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Figure 7. (a) Selected metals as base composition for TMNs from the Materials Project database. (b) 
examples of different bulk crystalline structures of TMNs studied in Ref. [73] with high thermodynamic 
stability. (c) Our selection criteria for identifying promising bifunctional TMNs for HOR/ORR. (d) Final 
promising list of bifunctional TMN candidates with low predicted overpotential for HOR/ORR.

It is interesting to note that, among this dataset, there are many promising candidates to 
promote ORR or HOR individually, as it is shown in a histogram distribution of the original data 
presented in Figure 8a and b. Namely, more than 600 TMN unique active sites can promote the 
HOR and more than 380 can promote the ORR  taking *H and *OH  as the HOR and ORR activity 
descriptors, respectively.  Figure 8c and d, shows the free energy diagrams on several shortlisted 
bifunctional TMNs in Figure 7d that belong to first-row transition metals, and second/third row 
transition metals, respectively. We find that even though the obtained *OH adsorption energies 
for most surfaces agree with the data reported in, Ref. [73], the potential determining step does 
not come from the *OH formation in the examined catalysts. Instead, it arises from either the *O 
strong interaction with the surfaces, as in the case of CoN, MnN, and Nb4N5, with significantly 
negative Gibbs free energy values, or from the *OOH intermediate O-O bond scission, forming 
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*O and *OH adsorbed in separate surface sites, as in the case of Cr3N2, Fe3N, Ni3N, ReN2, and 
Ta4N5. These observations highlight the importance of considering the complete reaction 
mechanism to assertively determine the catalytic activity. 

Figure 8: (a) and (b) Distribution of *H and*OH adsorption free energies across different TMNs studied in 
Ref. [73], respectively. (c) Calculated free energy diagram for ORR on different first row (d) and 
second/third row TMN surfaces. The corresponding data and structures can be found in the 
supplementary information.

The fact that oxygen binds strongly to the TMNs is in line with the previous DFT calculations 70 
and experimental evidence79,80, demonstrating the possibility of formation of oxide layer under 
ORR conditions. Although this can be taken as a negative characteristic, potentially indicating 
that TMNs are not stable under operating potentials for fuel cell applications,81 Abroshan. H. et 
al.70 demonstrated that the cobalt oxide layer formed on cobalt nitrides results in improving the 
ORR activity of TMN. Similarly, the formation of an oxide layer on nickel nitride79 and 
molybdenum nitride71 has been reported to improve not only its ORR activity, but also its 
stability.71 A DFT calculated and precisely tailored Pourbaix diagram for Ni3N, and Ni4N (as 
depicted in Figure 9), has revealed an insights into the expansion of oxide phases, such as NiOOH 
during the relevant pH and potentials of ORR compared to bulk Ni.79 This analysis sheds further 
light on the intricate interplay between catalyst composition, electrochemical conditions, and 
oxide formation, crucial for understanding and optimizing catalyst performance in oxygen 
reduction reactions. This promoting effect of an oxide (or hydroxide) layer has also been 
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experimentally observed in bimetallic nitrides, such as NiFeN and NiMoN,82 vanadium nitrides,83 
and even for SACs/TMNs; where the hydroxyl coordination can improve the activity of the 
catalytic site by modulating the otherwise strong interaction with ORR intermediates. 84 

Figure 9. (a) Atomic structures showing formation of oxide (NiOOH and NiO) layers on Ni3N and 
Ni4N nitride surfaces. (b), (c) and (d) Constructed Pourbiax diagrams for Bulk Ni, Ni3N and Ni4N, 
respectively. The extension of NiOOH phase is evident in (b) and (c) compared to bulk Ni, 
highlighting the propensity of nitride surfaces to develop oxide films under the relevant pH and 
potentials of ORR. Adapted from Ref. [79] with permission.

Similar results have been observed when transition metal sulfides are considered as ORR 
catalysts. Zhao, W. et al. 85 conducted comprehensive DFT calculations to investigate the oxygen 
reduction reaction (ORR) activity on CoS2 catalyst.85 Their findings suggest that sulfur is unlikely 
to serve as an active site for ORR. Additionally, they discovered that the undercoordinated Co 
metal site within CoS2 demonstrates lower activity compared to the highly active 
undercoordinated Co metal sites within Co oxide films. This indicates that the ORR active sites 
are likely the oxide films formed atop CoS2.

The sample studies mentioned above on ORR activity of transition metal nitrides and 
sulfides underscore the significance of accounting for the dynamic behaviors of readily available 
catalysts under ORR operating conditions and acknowledging the potential for oxide formation 
when constructing model structures. This relates to the importance of considering stability and 
the likelihood of catalyst surface restructuring during reaction conditions. To gain a deeper 
understanding of these effects, employing rigorous experimental techniques such as in-situ and 
operando measurements offers valuable means for exploring such phenomena.67 Combined 
computational-experimental insights not only enhance the fundamental understanding of ORR 
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mechanisms on earth-abundant catalysts but also hold promise for optimizing electronic 
structure of the catalysts to improve the efficiency of fuel cells and metal-air batteries.

4.2. Transition metal oxides – Transition metal oxides have garnered considerable interest 
recently owing to their abundance and low cost. These materials represent another class of 
compounds poised to revolutionize ORR catalysis, offering potential advantages in terms of both 
availability and durability compared to traditional Pt-based catalysts. One of the concerns, 
however, is their stability under ORR conditions in acidic media. A recent study by Wang et al.86 
utilizes a large library of oxides reported in Materials Project database to screen the oxides that 
are stable under acidic pH values and relevant ORR potentials. This study suggests that the oxides 
of Sb, Ti, Sn, W, Mo, and Ge are acid stable presenting an opportunity to explore new classes of 
materials for ORR. Beyond stability, it is important to determine the catalytic activity of these 
materials to achieve a high ORR performance. 86

A follow-up computational study,87 examined antimonate (SbO)-based oxides 
functionalized with first-row transition metals (MSb2O6, M = Mn, Fe, Co, and Ni), considering 
different crystalline surfaces, to tune their activity and selectivity towards the four-electron ORR. 
The results indicated that catalytic activity was dependent on surface orientation, with the lowest 
theoretical overpotentials observed for (110) planes in most cases, and (100) for MnSb2O6. 
MnSb2O6 demonstrated the highest theoretical activity, which was corroborated by 
electrochemical experiments.  These antimonates outperformed their pure oxide equivalents, 
Mn2O3(110), Fe2O3(001), Co3O4(100), and NiO(100), demonstrating the possibility for mixing and 
integrating different metals to modify catalytic activity. Experimental results on MnSb2O6 showed 
high selectivity towards the two-electron ORR can be achieved with further functionalization with 
Cr, Fe, and Ni. This study highlights the importance of combining different elements to achieve 
optimal performance on oxides. 

Another particularly interesting oxide listed among the shortlisted candidates in Ref. [86], 
is oxides containing Sn. A common example is SnO2 which is known to have  a low ORR catalytic 
activity on its own.88 Different strategies can be employed to improve its activity, such as 
different nanostructuring,88 introducing oxygen vacancies89 or heteroatom doping.90 Herein, we 
investigate the effect of 18 different metal single atoms as potential dopants to improve the 
SnO2(110) ORR activity, utilizing the DFT data reported in Ref. [91]. Figure 10a shows the stability 
analysis for these structures, calculated in terms of formation energy vs. dissolution potential. 
The formation energy indicates how favorable it is for a given element to occupy a vacant Sn site, 
taking the pristine oxide and the crystalline metal as references, with negative values (below 0 
eV) indicating energetically favorable formation energy. Furthermore, the dissolution potential 
determines if the SnO2-supported SACs will remain stable under ORR operating conditions.91 All 
of the investigated SACs have greater dissolution potentials than 1.23 V, i.e., the standard redox 
potential for four-electron ORR, indicating their stability against dissolution. On the other hand, 
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they all have negative formation energies when doped into SnO2 substrate, meaning that they 
are thermodynamically stable single atoms. Figure 10b depicts the theoretical overpotential on 
both the Sn site and the doped site, offering a means to track the influence of each metal dopant 
on the ORR overpotential adjacent to the Sn site. Figure 10c shows the linear scaling5 relationship 
between *OH and *OOH binding energies. This analysis reveals that most SACs have an improved 
ORR performance compared to pristine SnO2, with the exceptions of Ca, Fe, and Ti. Sb, Nb, and 
Ta can significantly improve the ORR activity by lowering the overpotential even on the adjacent 
Sn site, which is highly desirable to reduce the required metal loading. The most promising SACs 
considering the doped metal as the active site are Ru and Pt, with low theoretical overpotentials 
around 0.35 and 0.45 V, respectively, placing them close to the top of the activity volcano plot 
(Figure 10d). 

A similar approach has been reported by Mostaghimi et al. to tune the ORR catalytic 
activity of tantalum pentoxide (Ta2O5). 38 DFT calculations in conjunction with CHE and descriptor-
based analysis was used to systematically investigated 22 transition metal atoms doped in 
Ta2O5(120). Their study revealed Pt, Rh, and Ir single atoms as the most promising catalytic active 
site, displaying improved ORR activity coupled with high stability. 38

Figure 10. (a) Stability of single metal atoms in SnO2 in terms of dissolution potential vs. formation 
energies, (b) theoretical overpotentials for the ORR with different doped-metals in SnO2, (c) scaling 
relationship between ORR intermediates, and (d) activity volcano plot for the 4e-ORR. Data adapted from 
Ref. [91] with permission.
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4.3. High Entropy Alloys (HEA) and High Entropy Oxides (HEO) – High entropy alloys (HEAs) are 
metallic compositions that include at least five primary elements in about equal quantities. Unlike 
standard alloys, which often include one or two dominating elements and a small number of 
secondary elements, HEAs are designed to have numerous major elements with similar atomic 
sizes, resulting in a significant degree of disorder in the atomic structure, stabilizing the alloy as 
the entropic term dominates over the enthalpic one. Of note, not all HEAs are stabilized by 
entropy alone, and understanding their stability is an active research area. This unusual 
composition opens millions of new materials to be explored in the phase-space92 with unique 
composition and electronic structure properties, and promising catalytic properties, making 
them increasingly interesting in ORR applications.93 Löffler et al.93 synthesized highly ordered 
Pt4FeCoCuNi nanoparticles with outstanding performance for both HER and ORR. The authors 
highlight the role of the structure ordering as a key parameter to tune the catalytic activity, as it 
was the case for another high entropy metallic catalyst, PtFeCoNiCuZn.94 One of the other specific 
examples of high entropy alloys with high ORR activity is PdCuPtNiCo as reported experimentally 
by Chen et al.95 Their synthesized nanoparticles had an average size of (10.4 ± 0.4) nm and were 
selective for the 4e-ORR, as indicated by the electron transfer of 3.95-3.97 observed in their 
experiments, and a half-wave potential (E1/2) of 0.83 V, very close to commercial Pt/C. Their 
stability tests showed a very small increase in E1/2 after 10,000 cycles.

Since the variety of binding sites of the different elements present in a HEA hinders 
computational modeling, it is crucial to have single-phase materials. Pittkowski et al.96 
investigated the PdCuPtNiCo using DFT calculations and demonstrated that the formation of HEA 
nanoparticles is governed by stochastic principles, meaning that their behavior and formation 
are influenced by random variables and probabilistic events rather than being entirely 
deterministic. They also showed that the inhibition of precursor mobility during the synthesis 
process favors the formation of a single phase in PdCuPtNiCo. 96

The high entropy materials for ORR catalysis can go beyond metallic alloys and branch 
through other structures, such as perovskites, antiperovskites, oxides, and nitrides. Li, W. et al. 
97 investigated lanthanum-based transition metal oxides (LaTMO3) by substituting the B site with 
different transition metals (TM = Cr, Mn, Fe, Co, Ni) to form high-entropy oxides (HEOs) that tailor 
the eg occupancy by combining elements with different d-orbital electrons. 
La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 was reported as the HEO with the best ORR performance, 
exhibiting an overpotential of 493 mV and a 1.7% decline in half-wave potential after 10,000 
cycles. Despite these remarkable experimental results, the field still requires extensive 
exploration and development to utilize computational calculations as predictive models for such 
materials.

Currently, a lot of progress in the high entropy materials domain has been driven by 
experiments, and DFT calculations provide complementary analyses, often investigating limited 
combinations at a time. For instance, recent computational studies on the LaMO₃ structure 
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employed DFT calculations to address the role of changing only the M site, tuning oxygen 
vacancies, or exploring different phases. 98–100 However, these efforts combined are still 
insufficient to predict the specific properties of an HEO such as the experimentally obtained 
La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 

97 with acceptable accuracy. This concept was further elaborated in 
a recent work by Mints et al. 101 where a machine learning model was first trained using Gaussian 
Process (GP) regression using data from 350 synthesized nanoparticles via microwave 
solvothermal synthesis. After initial training and evaluation, the chemical space was reduced to 
IrOsPdPtRhRu. Each of these pure elements’ oxides in the rutile structure and (110) surface was 
taken as references for incorporating the remaining atoms. At this step, ML techniques were 
again employed to reduce the number of DFT calculations required. The authors highlight the 
trade-offs from each part of this analysis and how computation and experiment complement 
each other. They show how information from experimental data is crucial but insufficient to 
determine whether the best performances arise from intrinsic activity or structural modification 
induced by the different elements in HEOs. ML models yield apparent correlations that might 
stem from data artifacts, necessitating careful analysis and filtering to ensure the maximum 
catalytic activity is not wrongly inflated. These models serve as necessary tools since DFT 
calculations cannot be performed for the entire sample space with all possible combinations of 
compositions and non-equivalent adsorption sites. Finally, DFT calculations do not address 
structural change effects but can predict intrinsic activity, and discrepancies among all three 
methods might occur.

In another example, Svane and Rossmeisl.102 combined DFT calculations with other 
computational methods to investigate HEOs with rutile structures composed of Ru, Ti, Ir, Os, and 
Rh. Initially, 450 adsorption calculations were performed with DFT, and this dataset was used to 
train a linear fit model that considered different adsorption sites, summing up to 10,000 
possibilities. This framework enabled the computational prediction of the optimal composition 
of an HEO to achieve the lowest overpotentials. Apart from HEA and HEO, antiperovskite nitrides 
such as (InNCo2.7Mn0.3) have been studied in combination with Pt nanoparticles as a bifunctional 
catalyst for OER and ORR.103  This provide the opportunity to further explore high entropy TMNs 
where element modulation can be a very promising strategy to fine-tune different properties of 
these materials for ORR.104 

In summary, modeling HEAs and HEOs with DFT poses a significant challenge, as obtaining 
any property in the HE materials requires numerous combinations of atomic distributions to 
accurately capture the random nature of these alloys. Trying to achieve that by brute force is 
unfeasible, as the number of simulations is too high, hence, methods to decrease the number of 
needed calculations, with some degree of approximation have been employed, such as virtual 
crystal approximation,105 coherent potential approximation,106 and alchemical potentials.107 
Machine learning algorithms, can be used to explore phase diagrams more efficiently, reducing 
the computational cost.108 Pedersen, et al.109 performed a Bayesian optimization of HEA 
compositions for ORR. Using DFT simulations, they estimated that approximately 50 experiments 
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would be required to discover the optimal composition for quinary HEAs. Further details 
regarding this methodology will be provided in Section 7, where we delve into materials 
informatics for accelerating catalyst discovery for ORR.

5. Accuracy and Limitations of the DFT Analysis
5.1. Choice of the exchange-correlation functional – The accuracy of DFT calculations for 
predicting catalytic activities heavily depends on the choice of the exchange-correlation 
functional. The recent advancements in generalized gradient approximation (GGA)-based DFT 
functionals such as PBE, RPBE and BEEF-vdW allows accurate estimate of binding energy, with 
estimated errors ranging from 20 to 30 kJ/mol.110 However, these functionals tend to 
overestimate the electronic and thermodynamic properties of bulk metal oxides. This 
overestimation primarily arises from a self-interaction error present in localized d- and f-
electrons. To tackle this issue, the Hubbard U correction is commonly employed to address the 
strong onsite Coulomb interaction within oxides. However, determining suitable Hubbard U 
values is not straightforward and often requires benchmarking against experimental data. 
Cococcioni and Gironcoli111,112 proposed a method to calculate Hubbard U values using a linear-
response approach, providing a potential solution to this challenge. Other approaches can also 
be adopted, such as hybrid functionals113 or Koopmans-compliant functionals.114 Hybrid 
functionals combine local density approximation (LDA) and GGA functionals with part of the 
exchange from Hartree-Fock, to improve the description of exchange-correlation contribution 
and improve the accuracy. There are many types of hybrid functionals (e.g. Heyd-Scuseria-
Ernzerhof (HSE) and Strongly Constrained and Appropriately Normed (SCAN)). Some have been 
shown to have a good performance for calculating binding energies. For instance, PBE0 and 
HSE06,115 when compared to CCSD(T) benchmarks, show errors around 0.1 eV for calulating 
binding energies, where non-hybrid DFT methods such as PBE and RPBE  have errors around 0.6 
eV in some cases.113 Koopmans-compliant functionals have also shown improvement in 
describing binding energies by eliminating single and many-particle self-interactions, known to 
adversely affect adsorption energies.113,115 The main drawback of hybrid and Koopmans-
compliant functionals is their computational cost, which are much higher than standard DFT or 
DFT+U approaches. Although, there are recent developments such as orbital-resolved DFT+U116 
could be an alternative to getting close to piecewise linearity without demanding much 
computational power. 

Among the hybrid functionals, HSE functionals are popular because they can increase the 
accuracy of traditional DFT functionals such as PBE, especially for calculating band gaps in 
semiconductors. HSE incorporates a fraction of the exact Hartree-Fock exchange energy, which 
improves the description of electronic properties compared to standard DFT functionals. Apart 
from band gaps, HSE functionals are known to provide more accurate predictions of electronic 
structures and other properties of molecules, solids, and surfaces. For instance, Patel, A. M. et 
al.92 reported that among 6 different functionals, the hybrid functional HSE06 with inclusion of 
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dispersion corrections (D3)(BJ) provides the most accurate description of binding energies of ORR 
intermediates on a copper-modified covalent triazine framework. 113 In another report, double 
atom catalysts (M2N6) have been investigated for the ORR with HSE06 and PBE functionals.117 The 
authors observed a similar trend with both, but employing HSE yielded a slightly better fit for the 
linear scaling relationships for reaction intermediates, and a shift in the spin magnetic moments 
of the adsorption site in respect to the peak of the volcano. Of note, HSE functionals are also 
computationally more expensive than standard DFT functionals, but slowly gaining more 
attention from the community, because they can yield more reliable results for systems such as 
metal oxides with strong magnetic properties, where the standard functionals fail to accurately 
describe the electronic structure.

 The SCAN semi local density functional is another hybrid functional that was invented by 
Sun, J. et al.118 It has been demonstrated to outperform GGA-PBE notably for a collection of 22 
weak binding interaction energies, encompassing hydrogen bonds and van der Waals forces, with 
equilibrium values spanning from 0 to 20 kcal/mol. Similarly, it exhibits superior performance for 
lattice constants across a range of 46 hydrocarbons.118 Additional enhancements to stability and 
performance have been achieved with rSCAN119, which mitigates divergent behavior at low 
electron densities by regularizing SCAN’s orbital indication function. Furthermore, the latest 
iteration, r2SCAN, combines both approaches, incorporating previous adjustments to the 
isoorbital functions while reinstating certain original constraints. Kothakonda, M. et al.120 showed 
that r2SCAN provide more accurate enthalpies of formation closely aligning with experimental 
values, particularly when compared to PBE, for weakly bound solids. However, the authors 
acknowledge that PBE and PBEsol still offer greater accuracy for compounds containing transition 
metal elements in terms of formation enthalpy values. Nonetheless, challenges persist for hybrid 
functionals. Notably, it has been recently observed that r2SCAN and r2SCAN+U (with Hubbard U 
corrections) do not correctly predict the ground state electronic configurations of narrow band 
gap transition metal oxides.121 Fundamental properties such as formation enthalpies, lattice 
parameters, band gaps and so on are still being tested to benchmark new hybrid functionals for 
different classes of materials. Of note, there is still considerable ground to cover in assessing 
whether these new functionals can offer improved descriptions of catalytic surfaces, along with 
their corresponding adsorption and reaction Gibbs free energy values, compared to those 
previously established in the literature. 

5.2. Accuracy of activity volcano plots – Another crucial consideration when selecting functionals 
is to acknowledge that the accuracy of the volcano plot may be impacted by the choice of 
functional. Sargeant, et al. showed the importance of accounting for gas-phase deviations that 
depend on the exchange-correlation functional.42 The authors note that the experimental value 
for the oxygen molecule is often taken as the reference to calculate the Gibbs free energy 
variations (ΔGexp (O2) = 4.92 eV), while the energy of this molecule calculated with a commonly 
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used functional (GGA-PBE), would be, in fact, ΔGPBE (O2) = 4.46 eV. The difference between those 
values (4.46 − 4.92 = − 0.46 eV, in this case) is significant enough to shift the peaks of the volcano 
plots and yield different theoretical overpotential values. More specifically, the overpotentials 
will be overestimated, while the *OH adsorption energies will be underestimated. The mismatch 
was also observed for other functionals, such as RPBE, BEEF-vdW, and PW91.42 This work shows 
the importance of semi-empirical corrections as a means of improving the accuracy of volcano 
plot predictions for ORR and OER catalysts. However, it is worth noting that when analyzing ORR 
trends, the potential concern about shifting the volcano plot may not be highly consequential. 
This is because, even if there's a systematic error affecting all the points, the trends in ORR activity 
can still be reliably captured.

6. Solvent, Field and pH effects
 It is important to note that DFT calculations for calculating the adsorption energies of 
intermediates are performed in the gas phase. However, electrochemical reactions such as ORR 
deal with solvents and electrolytes. Thus, it is crucial to precisely consider the influence of water 
as well as the role of pH and cations in the electrolyte on the adsorption energies of reaction 
intermediates. Herein, we overview some of the computational efforts that have been conducted 
in the literature towards including such effects for ORR. 

6.1. Solvent effect – Describing solvent effects to accurately represent solid-water interfaces 
using computational methods poses significant challenges for computational modeling due to 
the differences in bonding characteristics between water molecules as opposed to their 
interaction with the surface. Various computational approaches have been taken. Classical 
molecular dynamics, based on force fields, have been shown to effectively capture the statistical 
nature of liquid water but cannot address bond cleavage and formation.122 While these 
simulations accurately reproduce the properties of water, they are unsuitable for investigating 
electrochemical processes, where new species form during reactions. Moreover, parameterizing 
force fields for each element and compound is a daunting task, especially when dealing with 
complex systems that include a catalyst surface (usually a metal, metal oxide, nitrides, or carbon-
based solid), liquid water as the solvent, and various reaction intermediates (*O, *OH, *OOH). 
On the other hand, ab-initio molecular dynamics (AIMD) can describe both the trajectory of liquid 
water molecules and the formation of reaction intermediates.122 However, AIMD is 
computationally demanding, making it impractical for significant surface models and high-
throughput studies.122 

Describing water-solid interfaces using explicit water molecules and DFT calculations is 
limited by the number of atoms in a simulation cell and periodic boundary conditions, which 
hinder accurate liquid water descriptions. Consequently, periodic models with very few explicit 
water molecules are used. For close-packed metals, metal oxides, and carbon-based materials, 
hexagonal monolayers or bilayers are typically studied. These models study the impact of water 
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structure on the adsorption energies of ORR reaction intermediates on several close-packed 
metal surfaces, using hexagonal water bilayer structures.13 These studies have revealed a sizable 
solvent stabilization (~ 0.3 eV) on the energetics of the ORR intermediates such as OH* and 
OOH*, but little to no effect on O*. Modeling the solvent effects on transition metal oxides and 
nitrides has been less extensively studied and reported using explicit water molecules. Thus, the 
influence of water molecules on ORR intermediates adsorbed on oxides remains unclear, 
primarily due to the challenge of obtaining accurate models of explicit water structures on 
various crystal structures and composition of oxides owing to the dynamic behavior of water 
molecules near the catalyst surfaces. Siahrostami, et al. 123,  investigated the explicit water 
structure on three rutile oxide structures including TiO2, RuO2 and IrO2. The goal was to describe 
the solvent effect on the oxygen evolution reaction (OER) intermediates. Their results show that 
the solvent has little impact on adsorption energies of the oxygen intermediates such as *O and 
*OH, except for the *OOH intermediate, where the solvent effect accounted for 0.4 eV of 
additional stabilization.  Similarly, Gauthier, J. A. et al.124 investigated the water structure on IrO2 
(110) surfaces by combining DFT calculations with global optimization (minima hopping) and 
explicitly modeling 1-3 ice-like water bilayers. The most stable water structures were composed 
of octagonal rings in this metallic oxide, which can be regarded as analogous to the hexagonal 
water structure formed on metallic surfaces, given the larger interatomic distances on IrO2 (110) 
surfaces. When multiple water layers were stacked, pentagonal and heptagonal rings appeared 
between them, coordinated by hydrogen bonds. These two studies examining the impact of 
water structure on OER on the 110 surface of rutile oxides, bear significant resemblance to the 
ORR owing to analogous oxygen intermediates and can be used to estimate the solvent effect on 
other oxide surfaces.

For other classes of catalysts, such as transition metal nitrides, it is a common practice to 
use implicit solvent models to describe the solvent effect on the energetics of reaction 
intermediates as reported in the ORR study on CoN by Abroshan et al.70 Implicit solvent models 
in which liquid water is modeled as a polarizable dielectric medium has been recently 
implemented in periodic DFT codes to describe solid-water interfaces.122,125 These models are 
less computationally demanding and do not require exhaustive sampling of water molecules. 
However, as reported by Heenen et al.126, the accuracy of the implicit solvent models in 
describing solvation effects at the solid-liquid interface remains unclear. This is because implicit 
solvent models usually do not account for the directional and steric interactions present with 
explicit solvent molecules. Thus, further research needs to be established to benchmark the 
implicit solvation models on the new classes of solid surfaces beyond metals.126

6.2. Electrolyte and pH Effects - Gaining computational insights into the pH effect on ORR activity 
and selectivity has been challenging, largely due to the disparity between the bulk property 
nature of pH and the surface properties addressed in DFT calculations, resulting in limited 
success. In a study by Kelly, S. et al.127, pH was related to the field effect, with the argument that 
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cations in an alkaline environment can induce a local field effect on adsorbed intermediates on 
the catalyst surface. For example, an alkaline environment (0.1 M KOH) has a high concentration 
of cations (K+), in the electric double layer (EDL, region near the charged electrode surface where 
ions are present in solution). Hence, a local positive field is expected to be induced on the ORR 
intermediates adsorbed on the electrode surface in alkaline environment. They investigated the 
field effect on adsorbed oxygen species using sawtooth potential (Figure 11a) and showed that 
it is stronger for weak binding surfaces such as metallic gold. Then, they conducted a microkinetic 
modeling (Figure 11b) and concluded that for weak binding surfaces, kinetic barriers of the ORR 
depend on the electrolyte pH, with theoretically predicted overall barrier heights decreasing as 
pH values increase. 127

Figure 11. (a) Field effects on different oxygen reduction reaction intermediates and (b) activity 
volcano plot for the overall reaction at 0.9 V vs RHE under different fields. Adapted from Ref. [127] 
with permission. 

The CHE model falls short in describing the field effect and consequently the pH effect, 
largely because the ORR intermediates binding energies are obtained from a zero-charge system 
and depend solely on the reversible hydrogen electrode (RHE) scale. The field effects, varies 
significantly with the pH, because of the equation below:

𝑈𝑆𝐻E =  𝑈𝑅𝐻E  +  𝑘𝐵𝑇 ln(10)  ×  𝑝𝐻              (6) 

This relationship shows that for URHE fixed at 1.00 V, USHE varies within a range of 1.00 V 
to 0.17 V from pH = 0 to pH = 14, respectively, leading to different electric field strengths in the 
electric double layer.127 The double layer contribution can be pivotal in an electrochemical 
process as it has recently been shown in the literature,128 and it is not accounted for in standard 
DFT calculations. In addition to the electric double layer, variations in behavior under different 
pH levels and/or field strengths can also be affected by changes in the catalyst surface’s potential 
of zero charge (PZC), resulting from its interaction with reaction intermediates.129 These 
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alterations can only be identified through explicit consideration of field effects in geometry 
optimization calculations of the adsorbed species. Furthermore, by uncoupling the contribution 
of the proton-electron pair, an evident dependency of the catalytic surface work function 
potential arises. This accounts for the observed magnitude difference in the additional 
stabilization obtained when field effects are considered between pure metal,127 metallic 
oxides,130 and carbon-based66 surfaces, for example. A previous work from Duan and 
Henkelman129 also treated the Au (100) surface as a case study using the double-reference 
method.131 In this case, the solvent/metal interface is modeled by varying the number of 
electrons of the system. In order to compensate for the supercell charge difference, a uniform 
background counter charge is applied. Generally, by explicitly considering the field effects, the 
adsorption Gibbs free energy variation will fit a second order polynomial relationship, (Figure 
11a), where GADS is the adsorption Gibbs free energy at a given applied field (E), and the fitted 
coefficients α and µ are the intrinsic dipole moment and polarizability, respectively, as follows:

𝐺𝐴𝐷𝑆  =  𝐺 𝑃𝑍𝐶
𝐴𝐷𝑆   + 𝜇 𝐸  ―  

𝛼
2𝐸       (7)

Taking pH and field effects into account has proven to be determinant to fill in the gaps between 
experimental observations and DFT calculations. For instance, only by modelling field effects it is 
possible to rationalize the difference in catalytic activity of low and high index transition metal 
oxides surfaces in acid and basic medium.130 A recent study by Mao, X. et al.132 incorporates the 
pH dependency and solvent contributions to provide a comprehensive screening through 
different Pd- and Pt-based alloys functionalized with a 1/3 monolayer of 30 different elements. 
The authors show that different alloys will have high catalytic performance under acidic (Ge/Pt, 
Hg/Pd, and Hg/Pt) and alkaline conditions (As/Pd, Cd/Pd, and Cu/Pd). Additionally, the generated 
database was employed to train a new theoretical predictive model that is mostly dependent on 
different surface parameters, with a cross-validation accuracy of 0.064 ± 0.007 eV on the test 
sets. 

7. Materials Informatics for Expediting Catalyst Discovery for ORR
High throughput computational screening allows semi-automated simulations, where thousands 
of materials can be simulated and analyzed with little human intervention, allowing the creation 
of large databases.133–135 With the large number of simulated materials, organized in databases, 
machine learning algorithms can be employed, for either classifications or prediction of materials 
properties.73,136 This synergy has led to the emergence of a new area, materials informatics,136–

138 which is changing the paradigm on computational methodologies for materials science, with 
the catalysts design also being impacted by this new methodology. In addition, natural language 
processing techniques139–141 are also being incorporated into the materials informatics 
frameworks, initially for data extraction from the literature by using regular expressions, then 
language models started to be employed for new applications of existing materials.142
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High-throughput DFT calculations have become a widespread practice to screen catalyst 
materials and generate datasets to train machine learning (ML) models. This approach has shown 
great promise for discovering highly active catalysts for ORR. Wang, Y. et al.,64 conducted a high-
throughput computational screening study on carbon-supported single metal atom catalysts. 
They carried out 180 simulations with various metals supported by different carbon structures 
and discovered that GOH serves as a reliable descriptor for ORR catalytic activity. They narrowed 
down the candidate catalysts to just five, which showed potential to outperform platinum. Sun, 
et al. 143 conducted a high-throughput screening for M-NC single-atom catalysts, encompassing 
various central metal atoms and environmental atoms. Their initial calculations produced 1,344 
structures, of which they subjected 448 structures to DFT calculations using uniform distribution 
sampling. Utilizing this dataset, they trained an ML model to predict the overpotential, employing 
GOH as a descriptor for ORR catalytic activity. The authors employed 35 features independent 
of DFT results to train the ML model. They used feature importance methods to evaluate which 
factors contributed most to describing the target properties. For both the overpotential and the 
fourth step ΔG, the metal-related features accounted for approximately 88% of the contribution. 
These features included atomic radius, electronegativity, first ionization potential, electron 
affinity, the number of d electrons, the number of electrons in the outer shell, and the element's 
period in the periodic table. Other features related to atoms in layers 1 to 4 were also evaluated 
but contributed significantly less to the model. This led to the conclusion that if the central atom 
is not suitable for ORR, changing the surrounding atoms will have little effect on improving the 
catalytic process. 

Of note, a model reliant on DFT calculations would not be suitable for predicting 
properties already obtained from DFT results. Their most effective model yielded an RMSE of 
0.37 eV for GOH and 0.25 V for the overpotential, enabling them to infer these properties for the 
remaining 896 systems within the observed accuracy. To validate the accuracy of the ML-
predicted results, the optimal candidates underwent further optimization using simulated DFT 
calculations to confirm their viability. To optimize their prediction, the authors trained another 
model, including a geometric feature (the sum of the bond lengths in the first layer) and the 
Bader charge. Performing all the DFT calculations to obtain these properties would negate the 
need for a model, as the targets would already be available. Therefore, the authors trained a 
model using the previous 35 features to predict these two new features, then inferred their ΔG 
and overpotentials. This model improved the RMSE by 0.02 eV.143 They ended up reporting 30 
highly active structures for ORR. Similarly, Chen, Y. et al.144, applied ML algorithms trained with 
DFT results, for M-N4-Gr/MXene heterojunction nanosheets. To accelerate their screening 
process, they applied regression algorithms to predict the overpotential, and their best model 
reached an RMSE of 0.10 eV. The authors also reached four suggestions of catalysts with low 
overpotentials.
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While the fusion of high-throughput DFT screening and ML algorithms presents significant 
opportunities for novel catalyst design, it is not devoid of limitations. High-throughput DFT 
calculations demand significant computational resources, which are not accessible to all 
researchers. On the other hand, the ML methods do not offer the same precision as DFT, and 
they are still not able to achieve the chemical accuracy of 1 kcal/mol. A major concern when 
applying ML techniques to aid catalyst discovery is that these often result in “black box” models, 
making it impossible to understand the underlying chemical and physical properties that 
contribute to good catalytic activity purely from ML selection. To address this challenge, 
explainable AI145 has emerged as an alternative to combine the low cost and extensive data 
screening capability of ML models with the incorporation of theoretical and physical principles, 
particularly in material discovery. Coupling both high-throughput and machine learning (ML) in 
active learning process has proven to be a key. 146  Active learning algorithms can be implemented 
in ORR catalyst design to enhance the efficiency and effectiveness of discovering new catalysts. 
This approach involves iteratively training machine learning models on an initial dataset of known 
ORR catalysts, using strategies like uncertainty sampling to select the most informative samples 
from a pool of unlabeled data. These selected samples are then experimentally tested, and the 
results are added to the training set to refine the model. This cycle continues until the model 
achieves a satisfactory performance or the available resources are exhausted. Active learning 
helps prioritize experiments that provide the most value in terms of information gain, thereby 
speeding up the discovery process. The implementation of active learning for ORR seems to be 
in its early phase, with limited literature currently available on the topic.  Zhang X. et al.147, 
studied platinum-based alloys, and identified five promising candidates for ORR with low 
overpotentials after just three iterations of the active learning process. Of note, none of the 
features used for the ML model involved DFT simulation. Another active learning study, by 
Omidvar N. et al.145, investigated Pt monolayer core-shell catalysts. A recent study by Omidvar N. 
et al. 145 employs active learning to investigate Pt monolayer core-shell catalysts using theory-
infused neural network (TinNet) algorithms.148 The authors explored approximately 17,000 
candidates generated from roughly 1,500 thermodynamically stable bulk structures sourced 
from databases. They performed 8 iterations and successfully identified previously known ORR 
catalysts with high activity, thereby validating their methodology. A theory module based on the 
Newns-Anderson model Hamiltonians, which models chemisorption processes, was incorporated 
into the neural networks to provide model interpretability. By factoring in material costs within 
their selection process, they steered away from precious metals and identified 17 candidate 
materials that offer both cost-effectiveness and high ORR performance. These examples indicate 
the great potential of active learning methods in expediting catalyst discovery for ORR. However, 
the main challenge is to develop machine learning models that can provide reasonable 
performance with few calculations. These models do not need to be very precise since they are 
primarily used to suggest promising candidates, with precise results obtained through 
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subsequent calculations. Nevertheless, the models must reliably estimate whether a catalyst will 
perform well or poorly. Additionally, there is a trade-off between exploring and exploiting the 
phase space. Focusing solely on simulation suggestions for the best-performing catalysts 
predicted by the model might lead to missing optimal regions in the phase space where better 
catalysts could be discovered. Therefore, when performing calculations for new suggestions, it is 
crucial to maintain a balance between evaluating both good and poor-performing catalysts to 
ensure comprehensive exploration of the phase space.

 Current methodologies clearly result in a significant volume of data being generated in 
literature. Some of this data is organized into databases, however, most findings are dispersed 
across published papers, in PDF format, with XML format emerging more recently. To address 
this challenge, natural language processing (NLP) methods hold significant promise. They can 
leverage the wealth of existing data, derived from both experimental and theoretical studies. 
Surprisingly, NLP methodologies seem underutilized in the literature for the ORR studies, with 
most works focusing on CO2RR. In the study by Suvarna, M. et al.149 data collecting has been 
performed for ORR, OER, HER, and CO2RR. They reported the most used metals precursors, 
carrier materials, and solvents, with Fe being the most investigated metal for ORR. For example, 
ZIF-8 frameworks were commonly used as precursors in preparing ORR catalysts. Hence, NLP 
methods are a powerful tool for obtaining data from literature, although its main limitation is a 
method to extract data from published literature. Accessing papers collectively is challenging, as 
not all journals permit such access or may impose additional fees, on top of the standard access 
fees paid by research institutions. Furthermore, the usual brute-force techniques are poor and 
demanding to obtain context-based information, hence, the large language models (LLMs) are 
playing a transformative role, as they are particularly good at capturing the context with long 
term relations. Another limitation is the cost to perform API queries with the best performing 
LLMs, although running LLMs locally is becoming feasible, as the performance of open weight 
models is improving fast.

Currently, there are only a few works that broadly apply NLP to include ORR results. Here, 
we discuss two insightful examples from the literature that contribute to advancements in ORR 
catalyst design. Qin, et al.150 employed NLP for insights into the development of electrocatalysts. 
They gathered 604,933 abstracts from the literature and trained a named entity recognition 
(NER) model. The authors identified electrocatalysts and their performance, extracting 22,000 
records of catalysts from their corpus. Although the data obtained was limited for ORR, they 
found that platinum remains the preferred material for ORR, despite many alternative materials 
being studied. These results differ from our findings, where we show a trend toward metal 
nitrides for ORR, as discussed in the next paragraph. Another NLP study by Muthukkumaran et 
al.151 focused on discovering perovskite-based electrocatalysts. The authors retrained a SciBERT 
model with 1.74 million abstracts, using it to generate new perovskite compositions with 
synthetic embedding. To evaluate the proposed compositions, they applied various cosine 
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similarity measures, including the similarity to “electrocatalyst” and comparisons between word 
embeddings obtained from the language model and those generated by the algorithms. The 
authors concluded that nickel-based perovskites are promising candidates for catalysts.

To illustrate the potential of the NLP techniques for ORR, we mined 34,515 abstracts from 
the Web of Science query “oxygen reduction reaction”, encompassing all relevant studies on this 
topic (Figure 12). We further filtered the results, by keeping the abstracts that did not have 
expressions related to other catalytic processes, leading to the final number of literatures down 
to 20,237. This allowed us to narrow down to papers that are more focused on the ORR. Research 
on ORR began in the early 1990s, experiencing a growing trend since then. However, it was not 
until 2006 that there were more than 100 works, and the milestone of 1,000 papers was 
surpassed in 2014. By 2022, the number of works had reached 2,000. With the collected and 
filtered abstracts, we employed the large language model Llama 3 70b,152 to extract which 
materials were used as catalysts in each work. The analysis was performed since 2006, as the 
previous years did not have enough papers to provide good statistics. Figure 12a plots all the 
materials mentioned in the abstracts as catalysts that had at least 0.6% of the total mentions for 
at least four years. Platinum prevails in publications as a state-of-the-art catalyst material. 
However, its mentions have been steadily decreasing over time, even when accounting for its 
potential inclusion as a catalyst benchmark, which could increase its occurrences. Examining the 
lower portion of Figure 12a reveals the trends of other materials. For instance, there is a declining 
trend in the share of works utilizing Pd, Au, Ag, Pt-Co, Cu, Pt-Ni, Ru, and others. For Fe, Co, and 
particularly Fe-N, the share of works is on the rise. To highlight emerging trends in materials, we 
have plotted those with increasing trends over the last four years and at least 0.08% of mentions 
in 2023, as depicted in Figure 12b. Many materials containing nitrogen are experiencing growth, 
notably Fe-N, as mentioned earlier, along with Co-N, Fe-NC, M-N (metal-nitrogen), g-C3N4 
(graphitic carbon nitride), Mn-N, and Cu-N. Transition metals like Co and Fe are also experiencing 
an upward trajectory, albeit not as significantly compared to the initial years of analysis, given 
their already similar shares. Fe3C and Mn are also witnessing increases, albeit with lower total 
shares. There is a diversification in the materials under study, with platinum losing shares while 
others gain prominence. Thus, it is evident that NLP techniques can offer valuable insights from 
the analysis of entire literature sets, even when focusing solely on abstracts, which are readily 
accessible without paywalls. A more comprehensive study could delve into this dataset, offering 
a detailed examination of rising and declining trends in research for each material, given that 
many materials were excluded due to the applied filters. Furthermore, properties such as 
overpotentials, limiting potentials, or Faradaic efficiencies could be extracted, associated with 
materials, facilitated by recent advancements in LLMs, representing a promising avenue for 
future research. Access to full texts via mass paper download tools from publishers could 
significantly expand the scope of NLP work, although such tools are not readily and affordably 
accessible.
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Figure 12. (a) Number of publications per year for all reported materials for ORR. (b) Number of 
publications per year for rising trends over the last four years.

8. Summary and Perspectives
Computational methodologies, including DFT in conjunction with descriptor-based analysis and 
CHE, have revolutionized the study of catalyst surfaces and their interactions with oxygen 
species. This approach enabled rational design of materials with optimized electronic structure 
and reactivity for ORR. By identifying active sites and fine-tuning catalyst compositions at the 
atomic level, computational simulations have expedited the discovery of promising ORR 
catalysts. The insights gained from computational analyses have shed light on the fundamental 
causes of ORR overpotentials observed in experimental catalysts. Various strategies have been 
explored to overcome limitations in ORR catalysis through computational design. Alternative 
earth-abundant and cost-effective materials such as transition metal nitrides and oxides have 
been recommended by computational guidance, providing opportunities for replacing costly 
platinum-based catalysts and solving the scalability issue of fuel cell technology. The accuracy of 
DFT calculations and the influence of solvent and electrolyte pH remain ongoing challenges to 
tackle using computational methodologies.
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In addition to unraveling atomistic-level information that contributes to understanding 
the origin of catalytic performance, computational methods also serve as predictive tools to 
guide experimental synthesis. Numerous examples in the literature demonstrate the 
effectiveness of computational screening in identifying novel ORR catalysts. These include the 
discovery of various Pt-alloys,4,6,7,19  oxides67 such as antimonates (MSb2O6, M = Mn, Fe, Co, and 
Ni),87 and high-entropy alloys like Pt4FeCoCuNi.93 Recently Ir alloys (Ir₃M, where M represents 3d, 
4d, and 5d transition metals) predicted as active ORR catalysts using DFT calculations, which were 
subsequently synthesized and verified through experimental testing.60

Recent advancements in employing materials informatics, including machine learning 
approaches like NLP, provide opportunities to accelerate catalyst material discovery for ORR. 
Furthermore, the application of high-throughput DFT screening techniques has enhanced this 
process. These methods enable the efficient analysis of vast datasets, facilitating the 
identification of trends and patterns that inform the design of novel ORR catalyst materials. 
Computational advancements in machine learning models, coupled with high-throughput DFT 
screening, hold immense promise for developing efficient and cost-effective ORR catalysts. 
Ultimately, these efforts aim to advance fuel cells as highly efficient electrochemical energy 
conversion technologies, bringing us closer to realizing their full potential. 

As more data is generated with high-throughput screenings, the importance of databases 
to store these calculations cannot be overstated. These databases ensure that the results of 
calculations are accessible across different fields, particularly in experimental research and 
development. This is crucial not only to ensure the reproducibility of DFT calculations and to 
reduce unnecessary computational time and resources being employed for redundant analysis 
but, most importantly, to accelerate catalyst design. A recent milestone in this regard is the 
creation of Catalysis-Hub135, a comprehensive database of reaction energies obtained from 
electronic structure calculations, with a user-friendly web interface, to which more than 130,000 
calculations have been uploaded since its announcement.
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The data supporting this article have been included as part of the Supplementary Information. 
This file contains all original data for the DFT calculations presented in the main manuscript 
Figure 8.
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