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Identification of bacteria in mixed infection from
urinary tract of patient’s samples using Raman
analysis of dried droplets†
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Urinary tract infections (UTI) are among the most frequent nosocomial infections. A fast identification of

the pathogen and assignment of Gram type could help to prescribe most suitable treatments. Raman

spectroscopy holds high potential for fast and reliable bacterial pathogens identification. While most

studies so far have focused on individual pathogens or artificial mixtures, this contribution aims to trans-

late the analysis to primary urine samples from patients with suspected UTIs. For this, we have included

59 primary urine samples out of which 29 were diagnosed as mixed infections. For Raman analysis, we

first trained two classification models based on principal component analysis – linear discriminant analysis

(PCA-LDA) with more than 3500 Raman spectra of 85 clinical isolates from 23 species in order to (1)

identify the Gram type of the bacteria and (2) assign family membership to one of the six most abundant

bacterial families in urinary tract infections (Enterobacteriaceae, Morganellaceae, Pseudomonadaceae,

Enterococcaceae, Staphylococcaceae and Streptococcaceae). The classification models were applied to

artificial mixtures of Gram positive and Gram negative bacteria to correctly predict mixed infections with

an accuracy of 75%. Raman scans of dried droplets did not yet yield optimal classification results on family

level. When translating the method to primary urine samples, we observed a strong bias towards Gram

negative bacteria, on family level towards Morganellaceae, which reduced prediction accuracy. Spectral

differences were observed between isolates grown on standard growth medium and bacteria of the same

strain when characterized directly from the patient. Thus, improvement of the classification accuracy is

expected with a larger data base containing also bacteria measured directly from the urine sample.

Introduction

Urinary tract infections (UTIs) are among the most frequent
nosocomial infections, affecting annually the life of more than
150 million people worldwide, resulting in high health care
costs (approximately 6 billion USD per year).1,2 UTIs have a
high clinical significance in urology. Here they represent up to
40% of all nosocomial infections,3 where 80% of these infec-
tions are catheter-associated. Catheter-associated UTIs are con-
nected with increased morbidity and mortality, and are the
most common cause of secondary bloodstream infections.2,4

In addition, the risk of infection increases with prolonged
catheterization.2,4 Another risk factor for increased prevalence
of UTI is age.5 UTIs are mostly caused by Gram negative bac-
teria, such as Escherichia coli, Proteus spp., Enterobacter spp.,
Klebsiella spp., or Pseudomonas aeruginosa; but also Gram-posi-
tive bacteria like Enterococcus spp. and Staphylococcus spp. can
cause infections in the urinary tract.2 UTIs can be caused by

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d3an00679d
‡Present address of KAD: Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Brehova 7, 11519 Prague, Czech Republic.

aDepartment of Anaesthesiology and Intensive Care Medicine and Center for Sepsis

Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena,

Germany. E-mail: ute.neugebauer@leibniz-ipht.de
bLeibniz Institute of Photonic Technology (Leibniz-IPHT), a member of the Leibniz

Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9,

07745 Jena, Germany
cBiophotonics Diagnostics GmbH, Am Wiesenbach 30, 07751 Jena, Germany
dDepartment of Urology, Jena University Hospital, Am Klinikum 1, 07747 Jena,

Germany
eInstitute of Medical Microbiology, Jena University Hospital, Am Klinikum 1,

07747 Jena, Germany
fInstitute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller

University Jena, Helmholtzweg 4, 07743 Jena, Germany
gInstitute of Computer Science, Faculty of Mathematics, Physics & Computer Science,

University Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

3806 | Analyst, 2023, 148, 3806–3816 This journal is © The Royal Society of Chemistry 2023

Pu
bl

is
he

d 
on

 1
7 

ju
lio

 2
02

3.
 D

ow
nl

oa
de

d 
on

 0
3/

11
/2

02
5 

21
:4

3:
47

. 

View Article Online
View Journal  | View Issue

http://rsc.li/analyst
http://orcid.org/0000-0002-6868-0941
https://doi.org/10.1039/d3an00679d
https://doi.org/10.1039/d3an00679d
https://doi.org/10.1039/d3an00679d
http://crossmark.crossref.org/dialog/?doi=10.1039/d3an00679d&domain=pdf&date_stamp=2023-08-02
https://doi.org/10.1039/d3an00679d
https://pubs.rsc.org/en/journals/journal/AN
https://pubs.rsc.org/en/journals/journal/AN?issueid=AN148016


pathogens of one strain, but also by pathogens of different
species causing a mixed (polymicrobial) infection. Almost all
families and species interact with each other in polymicrobial
infections. However, Morganellaceae are found almost exclu-
sively in polymicrobial infections, presumably because they
depend on other species. Streptococcaceae and
Enterobacteriaceae promote the colonization of other species
by influencing the host immune system. Pseudomonadaceae
often lead to chronic infections through biofilm formation.
Enterococcaceae, Enterobacteriaceae and Pseudomonadaceae
show often multi-drug resistance.6 It is estimated that 3–24%
of UTIs are mixed infections with probably slightly higher
numbers in case of complicated UTIs and high prevalence of
30–86% in catheter associated UTIs. Age is also a risk factor
for polymicrobial infections with 33% of mixed cultures orig-
inating from elderly patients.6–8 Furthermore, women are at
increased risk. However, mixed UTIs in outpatients occur often
due to preanalytic contaminations.9 Another risk factor for
mixed infections is the presence of a catheter: samples
obtained from catheterized patients show a higher probability
for the occurrence of mixed infections,8,10–12 especially in
long-term catheterization.13 Furthermore, polymicrobial infec-
tions are observed more frequently in complicated UTIs that
require treatment, than in uncomplicated UTIs. Both, polymi-
crobial catheter-associated or complicated urinary tract infec-
tions are associated with increased mortality.6,14 It is assumed,
that polymicrobial interactions can promote biomineraliza-
tion, tissue damage, dissemination and modulation of the
host immune system, which can promote diseases like uro-
lithiasis or inflammation of several parts of the genitourinary
tract.6 Finally, treatment failure or development of resistance
of a mixed UTIs can lead to serious and life-threatening com-
plications like renal failure or urosepsis, especially in high-risk
patients.

Despite the increasing interest on the clinical relevance of
mixed UTIs in the last years,8,10–12 question how to deal with
them was not yet addressed. In routine diagnostics, the pres-
ence of further pathogen in the culture is connected with com-
plications. In one hand, if there is insufficient second patho-
gen concentration, such a culture is considered as contami-
nation or colonization, and usually it may not be reported by
laboratories. So, the piece of information relevant for long-
term catheterization, elderly and high-risk patients is lost.12,15

On the other hand, when second pathogen counts are enough,
there is no established routine how to identify responsible
pathogen for particular UTI episode11 resulting in time-con-
suming, expensive, and labour-intensive identification and
susceptibility testing of most present organism. Finally, both
mentioned situations lead to broad-spectrum antibiotic treat-
ment and the risk of bacterial resistance increase11 and may
lead to potential life-threatening complications described
above. Current conventional diagnostic methods, which are
used as gold standard, require at least one cultivation step, so
that the identity of the bacteria is available after 24 hours or
more. In addition, the routine, based on monobacterial growth
with significant count,8 is inherently designed for single

pathogen UTIs. To obtain particular information about sample
until then, some urine screen tests are applied before cultur-
ing, like Gram staining followed by microscopy, or tests on leu-
kocyte esterase or nitrite via dipsticks indirectly indicating
infection.5,7,16 Nevertheless, this approach suffers relatively
low sensitivity and high false positive rate.5 On the other hand,
other precise techniques able to shorten time of diagnosis,
like PCR-based techniques, electrochemical DNA biosensors,
mass spectrometry (MALDI-TOF) are expensive or have special
requirements on preparation or personnel. On research level,
Raman spectroscopy in combination with multivariate data
analysis proved to be a powerful alternative to identify bacteria
at the species level1,15,17 and their resistance pattern18–21 in
real time with high accuracy, in a cultivation-independent
manner and no special requirements on sample preparation.

However, to the best of our knowledge, most work on this
topic focused on laboratory bacterial strains under optimal
growth conditions (medium broth, agar plates) or selected
clinical isolates. When translating the technique to primary
urine samples, additional complexity is introduced as the
exact chemical composition of the patient’s urine is not
known and might even change with disease state, but also
with nutrition. Bacteria are likely to adapt their metabolic state
and thus might be in different states than after cultivation
under defined laboratory conditions.17,22 Furthermore, in case
of real patients’ samples studies, UTIs caused by single patho-
gens were included23 or if the mixture, the attention was
focused only on one pathogen on purpose.17,20,24 Only few
works15,25 were devoted to the Raman spectroscopic analysis of
mixed infections in the form of artificial mixtures, i.e. again
under optimal growth conditions.

The aim of this study is to present the potential of Raman
spectroscopy for cultivation-independent bacteria identifi-
cation directly from patient’s urine samples based on a large
Raman database covering the clinical spectrum of pathogens
and also to shed more light onto spectroscopy-based diagnos-
tic of polymicrobial infections. For this, bacteria are first
classified according to Gram type as this information is valu-
able for selecting preliminary patient treatment. A second
classification model evaluates the potential to also differen-
tiate bacterial families to provide a more detailed picture on
the infection.

Experimental
Patient’s urine samples

The research involving human urine samples has been com-
plied with all relevant national regulations, institutional pol-
icies and in accordance to the tenets of the Helsinki
Declaration. The study was approved by the local ethics com-
mittee (approval number: 2021-2186-Material, ethic commis-
sion of Jena University Hospital). Informed written consent
was given. All samples were fully anonymized. Two monov-
ettes, each containing 10 ml of urine, were collected from the
urine cup (midstream urine) or the urine bag (catheter urine)
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after informed consent by the Department of Urology of the
Jena University Hospital. Sixty-four samples were collected
from a total of 61 patients. Five samples were later excluded
(see below, ESI Table S1†). The remaining 59 urine samples
were collected from 19 catheterized patients and from further
38 patients with UTI suspicion (midstream urine) and from
two patients with navel pouch or ileum-conduit.

One monovette was subjected to routine microbiological
analysis (gold standard), while the other monovette was sub-
jected to Raman measurements at the same time. The
maximal delay between sample collection and Raman sample
preparation was 2 days, meanwhile urine was stored in the
fridge at 4 °C.

Microbiological analysis of patient’s urine samples

Within routine diagnostics, urine samples were streaked onto
Columbia sheep blood agar and Drigalski lactose agar (Oxoid,
Thermo Fisher Scientific, Wesel, Germany) using an BD
Kiestra™ InoqulA automated sample processor (BD,
Heidelberg, Germany). Four-quadrant streaking was applied
with a volume of 20 μl. After overnight cultivation at 37 °C,
plates were examined and grown bacterial colonies were identi-
fied using MALDI-TOF (Vitek MS, bioMérieux, Nürtingen,
Germany). In the case, that no bacterial growth was detected
from a patient’s urine sample after three days, this patient was
excluded from further comparison with Raman prediction
(true for 4 out of 62 patients).

Isolated bacterial cultures on blood or Drigalski agar plates
were included in this study as clinical isolates, see ESI
Table S2.†

Urine sample preparation for Raman measurements

At first, eukaryotic cells were removed from the urine samples
using a 5 µm syringe filter (Filtropur). Bacteria in the remain-
ing suspension were washed twice in 5000 µl of sterile de-
ionized water (Hettich centrifuge with relative centrifugation
force (rcf ) 4190g, 150 rad mm−1 for 10 minutes), the super-
natant was carefully removed with a pipette and the pellet was
resuspend again in 1000 µl of sterile deionized water.

Clinical isolates

Clinical isolates of bacteria from urinary tract infections origi-
nated from the strain collection of the Medical Microbiology at
the Jena University Hospital as well as were directly isolated
from the urine samples in this study. Bacteria were used from
cryostocks or directly from isolation plates and re-cultivated on
Müller Hinton 2 agar plates (Millipure®, Sigma-Aldrich) at
37 °C and 5% CO2. After overnight culture, bacteria were har-
vested and washed 3x times by resuspending them in 1000 µl
of sterile deionized water after centrifugation (rcf 13 500g for
1.5 minutes, Eppendorf microcentrifuge 5418).

It total, 85 bacterial strains belonging to 23 species were
included in this study: 11 Escherichia coli strains, 14 Klebsiella
spp. strains, 13 Pseudomonas spp. strains, 13 Enterococcus spp.
strains, 6 Enterobacter cloacae strains, 7 Proteus mirabilis
strains, 5 Streptococcus spp. strains, 9 Staphylococcus spp.

strains, 2 Providencia rettgeri strains, 2 Citrobacter koseri
strains, 1 Morganella morganii strain, 1 Acinetobacter ursingii
strain, and 1 Corynebacterium amycolatum strain (ESI
Table S2†).

Artificial mixtures

In total, four artificial mixtures were prepared to test the
Raman analysis approach with defined samples under identi-
cal measurement conditions. Bacterial strains were chosen to
fulfil following criteria: 1. To have one Gram negative and one
Gram positive representatives in a mixed sample and 2.
Should be a pathogen encountered in our clinical urine
samples. As Gram negative strain we focussed on E. coli as it is
the most common UTI-causing pathogen and selected four
different isolates to include biological variation. As Gram-posi-
tive pathogen we selected two different E. faecalis strains as
being the most common Gram positive species causing UTI.
Furthermore, two different Staphylococcus species were
chosen to represent both, coagulase-negative and -positive
species. Artificial Mixture 1 was chosen to contain bacteria
from the same patient isolate. The composition of the artificial
mixtures is given in Table 1. Each mixture was measured twice
in at least two independent batches.

Bacteria were cultivated overnight in 20 ml of AT2 medium
in separate flasks. The optical density (OD) at 600 nm of the
overnight culture was adjusted to yield 20 ml suspension with
OD between 0.08–0.1 (cell Density Meter, Fisher Scientific,
Fisherbrand), corresponding to McFarland standard 0.5. After
that, each suspension was centrifugated at 4190 rcf for 10 min,
supernatants were removed, and both pellets were resus-
pended into 1000 µl of diluted Raman medium (AT2 + 0.5
PBS). A total volume of 1000 µl of different artificial mixtures
were created as outlined in Table 1. Different volume ratios
were necessary to ensure that both bacterial strains were
present in sufficient quantities. To verify the presence of
strains in the mixture, 100 µl of the suspension was plated on
MH2 agar plate. Afterwards, cells were washed twice in sterile
deionized water (for 1.5 minutes at rcf 13500g Eppendorf cen-
trifuge 5418), resuspend in 1000 µl of sterile deionized water.

Raman spectroscopic analysis of dried bacterial films

The sample volume of 3–5 µl (slightly varying cell concen-
tration depending on sample and patient) were drop casted
onto a CaF2 slide (Crystal GmbH, Germany) and allowed to dry
in a heating chamber for 30 minutes at 50 °C. So totally, a

Table 1 Overview of composition of artificial mixtures. Composition of
the mixture in CFU ml−1 of each strain in the different batches is given in
ESI Table S3†

Mixture name Strain 1 Strain 2
Volume ratio
strain 1 : strain 2

Mix_1 E. coli urRP41 E. faecalis urRP41 1 : 3
Mix_2 E. coli urRP59 E. faecalis urRP56 1 : 3
Mix_3 E. coli urRP65 S. warneri urRP20 1 : 1
Mix_4 E. coli urRP18 S. aureus urRP022 1 : 3
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rough time to prepare samples for Raman measurements
ranges from 50 minutes (clinical isolates) to 90 minutes
(patient samples). In case of patients’ samples, the delay
between sample preparation and Raman measurement itself
was up to 30 days, meanwhile dried droplets were stored in the
fridge at 4 °C in isolated sterile Petri dish. Typical droplets are
shown in ESI Fig. S1.†

Raman measurement were performed using an upright
CRM 300 WiTec micro-Raman system, equipped with UHTS
spectrometer with 600 lines per mm grating, and air-cooled
back-illuminated CCD camera (DV401 BV, ANDOR, 1024 × 127
pixels, cooled to −60 °C). Raman scattering was excited with
532 nm line of Nd:YAG laser with the power of 15 mW before
passing the objective. The laser light was focused onto the
sample using a 63× objective (Zeiss LD Plan-Neofluar Korr
M27, NA 0.75), allowing a maximum spatial resolution of
355 nm under optimal conditions when using Abbe’s formula
(d = λ/2NA). Back-scattered Raman signal was collected and
forwarded to the spectrograph by a multimode optical fibre
with 50 µm core diameter. Performance and alignment check
of the device was performed using silicon and 4-acetamido-
phenol on each measurement day.

Dried droplets of clinical isolates were measured in at least
3 independent batches per strain resulting in more than 3400
Raman spectra from the 23 different species. For each batch,
at least 10 single spectra from different locations on the
sample were recorded with acquisition time of 10 s.

Dried droplets of artificial mixtures and patient samples
were measured as image scans in automated scanning mode
covering an area of at least 20 µm × 20 µm, with a step size of
0.333 µm in XY directions with 5 s acquisition time per spec-
trum. Thus, at least 3600 spectra per sample were collected.

Data processing and statistical analysis

All computations were performed in programming language R
4.0.2.26 At first, spectra were despiked and wavenumber cali-
brated with available standard data (4-acetamidophenol).27 In
next step, interpolation onto 610–3050 cm−1 range was per-
formed with 2.5 cm−1 wavenumber step. Spectra were further
baseline corrected with statistics-sensitive non-linear Iterative
peak-clipping (SNIP)28,29 algorithm with 40 iterations and
smoothing at 1st iteration, then the silent region
(1750–2750 cm−1) was excluded. Further, vector normalization
and quality check were done. As parameters for quality check
filters, integrated background-to-signal ratio less than 50 and
signal-to-noise ratio (SNR) above 1 were considered. The
spectra with SNR above 50 were also removed because those
were saturated spectra.

After preprocessing and quality check using all spectral
data, classification models were built using only spectra of
clinical isolates. Principal component analysis (PCA) was
carried out to reduce the dimensionality of the dataset, then,
linear discriminant analysis (LDA) was utilized as a binary
(Gram positive vs. Gram negative) classification model and a
6-class (bacterial families) model. In both cases, balanced
model weights were used to get the optimal trade-off between

the sensitivity and specificity. The number of principal com-
ponents used in the LDA was optimized in the leave-one-repli-
cate-out cross-validation.30 In such validation scheme for the
total of N replicates, the model trained on N − 1 replicates is
applied to the replicate excluded from the training. The pro-
cedure is repeated N times to obtain predictions for all repli-
cates but avoids the situation when the spectra from the pre-
dicted replicate are included in training. Nine PCs were used
in the Gram-model and 39 PCs were used in the Family-model.
These two models were then used to predict bacteria identity
in the artificial mixtures as well as the clinical urine samples.

Spectra of artificial mixtures and the patients’ samples were
not utilized in training and were only used for result evalu-
ation. In the case that after quality check, less than 10 spectra
were kept from a patient, this patient was excluded from final
evaluation (true for 1 patient in our set). Within each spectral
scan, the number of spectra assigned by the model to each
class were investigated. The predictions within each scan are
normalized to the maximal value, thus limiting the normal-
ized predictions between 0 and 1. All classes with more than
0.1 normalized predictions were considered present in the
sample. Thus, each scan could be predicted as a member of a
single class or multiple classes. Prediction accuracy was calcu-
lated by comparing with microbiological findings.

Results and discussion

The general idea of proposed approach is that Raman spectra
of mixtures are composed of Raman spectra of each contained
pathogen. Thus, in a first step, a Raman data base of clinical
isolates from urinary tract infection is created and a classifi-
cation model is built to assign Gram type and classify bacteria
on family level based on their Raman spectra. After evaluation
with cross-validation on clinical isolates, the model is applied
to artificial mixtures created from the clinical isolates and
finally translated to fresh patient’s urine samples which are
directly analysed without any additional cultivation step.

Raman analysis of clinical isolates

In total, 3532 Raman spectra of 85 bacterial strains belonging
to 23 species were recorded from clinical isolates: 1173 spectra
of Gram positive bacteria (28 bacterial strains of 11 species)
and 2359 spectra of Gram negative bacteria (57 bacterial
strains of 12 species) (Table 2, ESI Table S2†). This data base
provides a good representative selection of the most common
UTI pathogens.2

Raman mean spectra together with their standard deviation
of Gram negative and positive bacteria included in the study
are depicted in Fig. 1a. Typical spectral features of bacteria can
be identified, e.g., 783 cm−1 (cytosine, thymine ring
breathing31,32), 1005 cm−1 (phenylalanine ring breathing33),
1080 cm−1 (C–N stretch of proteins31), 1097 cm−1 (PO2

−

stretching in DNA33), 1250 cm−1 (amide III32,33), 1340 cm−1

(adenine, guanine, CN-stretching in purine nucleobases33),
1450 cm−1 (deformations of CH2 scissoring31,34), 1578 cm−1
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(ring stretching of guanine, adenine24), 1670 cm−1 (amide I,
lipids31,34), and overlapping bands at 2850 cm−1 and
2935 cm−1 (CH3 and CH2 stretching35). A detailed assignment
of the Raman bands is given in ESI Table S4 and Fig. S2.†
Clear spectral differences are visible between the Raman
spectra of Gram positive and Gram negative bacteria. Fig. 2
shows the computed difference spectrum of the Raman mean
spectra. The most visible difference is found around 748 cm−1

(position 7 in Fig. S2, Table S4†), range 900–1000 cm−1 (bands
14–18, Fig. S2, Table S4†), 1312 cm−1 (position 34) and
1578 cm−1 (position 45, Fig. S2, Table S4†). These differences
can be mainly explained with the different cell wall compo-
sitions of Gram positive and negative bacteria. Similar results
have been reported in previous studies.23

It has to be noted, that the standard deviation of Raman
spectra from Gram negative species is higher than the stan-
dard deviation of Gram positive bacteria. This can be
explained with the large variety of Gram negative bacteria
included in this study (9 different bacterial genera compared
to 4 Gram positive genera, see Table 2 and ESI Table S2†).

PCA-LDA classification model to differentiate Gram type of
clinical isolates

A binary PCA-LDA classification model was trained with the
clinical isolates to differentiate the Gram type of bacteria. A
good differentiation was achieved as can be seen in the LD1
scatter plot (Fig. 3), where each point represents an individual
bacterial Raman spectrum. The PCA-LDA loading of LD1
shows the same spectral features as the computed differences
as can be seen in Fig. 2. The most prominent contribution to
LD1 corresponds to the bands at 2850 cm−1, given by its inten-
sity variance within Gram-type (more pronounced and less var-
iance for Gram positive strains). Further prominent positive
contribution to LD1 are found around 1420 cm−1 and indi-

Table 2 Bacterial families along with representative bacterial genus
used in this study. Further details on species are given in ESI Table S2.†
Background colour codes Gram type: grey: Gram negative, red: Gram
positive. The symbols are used again in Table 4

a Two more families (Moraxellaceae and Corynebacteriaceae) were
included in training the Gram type model, however, they were left out
for training the family model.

Fig. 2 PCA-LDA loading plot of LD1 (pink) along with computed differ-
ence spectrum (Gram positive minus Gram negative) of the Raman
mean spectra (blue).

Fig. 1 (a) Normalized mean Raman spectra of Gram negative (black)
and Gram positive bacteria (red) together with standard deviation
(shown as shadow). Raman band assignment is given in ESI Table S2.†
(b) Mean preprocessed Raman spectra with standard deviations for
families used for training the model (spectra are shifted on y axis for
clarity). Genus and strains included per family are found in Table 2 and
ESI Table S2,† respectively.
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cated a higher abundance of this Raman band in Gram posi-
tive bacteria. It has been assigned to peptidoglycan.23

Quantitative results leave-one-out prediction are summar-
ized in the confusion matrix in Table 3. High sensitivity and
specificity for both classification levels are reached and exceed
90%, giving a balanced accuracy of 93.6%.

PCA-LDA classification model to differentiate clinical isolates
on family level

Fig. 1b depicts the mean preprocessed Raman spectra with
standard deviations of the six different bacterial families. Some
of the families, like Pseudomonadaceae, Staphylococcaceae and
Enterobacteriaceae, demonstrate large intra-family variance. The
former corresponds to observations of Rebrošová et al.31

Variations were explained with varying fluorescence background
and production of exopolysaccharides as well as by different
abundance levels of pigments, especially pyoverdine and fluor-
escein. Mean spectra per isolate of Pseudomonadaceae are pre-
sented in ESI Fig. S3.† Spectral variations have also been reported
to occur within individual Staphylococcus species.36 Thus, a
higher standard deviation within the Staphylococcaceae family is
not surprising. The family of Enterobacteriaceae covers manifold
bacterial species in comparison with another families, as can be

clearly seen in Table 2 and Table S1,† which might introduce
spectral variations due to different chemical compositions of the
family members.

Overall less spectra are included here as spectra of
Moraxellaceae and Corynebacteriaceae were not used.

A six-class PCA-LDA model was trained to predict member-
ship to respective bacterial family. Results of leave-one-repli-
cate cross-validation are summarized in the confusion matrix
(Table 4). An overall balanced accuracy of around 87% was
reached. Best sensitivities are reached for Morganellaceae
(>93%) and Staphylococcaceae (>92%). Lowest sensitivities were
observed for Pseudomonadaceae (>79%) and Enterobacteriaceae
(>82%) families. However, it has to be noted, that most mispre-
dictions occurred within the same Gram type, namely between
Pseudomonadaceae and Enterobacteriaceae as well as between
Enterobacteriaceae and Morganellaceae. High similarity
between Enterobacteriaceae and Morganellaceae is also seen in
Fig. 1b. Both families belong to the order of Enterobacterales.
High similarity of Raman spectra of bacteria from
Enterobacteriaceae and Morganellaceae have been also reported
previously,15 where it was not possible to separate spectra of
E. coli and P. mirabilis using simple PCA clustering. The low
sensitivity for predicting Pseudomonadaceae family might be
due to the fact that within this family, a high standard devi-
ation among individual strains is observed.

Application of the classification model to artificial mixtures

In the next step, artificial mixtures, containing a representative
of Gram negative as well as Gram positive bacteria, were pre-
pared and between 6600 and 21 500 spectra were measured per
mixture. The two-class Gram model as well as the 6-class bac-
terial family model were applied to predict the class member-
ship for each individual spectrum. Predictions in the most
abundant class were normalized to one and a relative predic-
tion of less than 0.1 was not considered. Prediction results for
the Gram model are shown in Table 5. An overall prediction

Fig. 3 LDA score plot showing prediction of Gram type. The index
number labels individual bacterial Raman spectra; colour codes the true
Gram type (black: Gram negative, red: Gram positive). The grey line
divides the graph into positive and negative parts of LD1 axis.

Table 3 Confusion matrix showing identification of Gram negative/
positive strains based on PCA-LDA model

Cross-validation

Prediction

Sensitivity (%)neg. pos.

True neg. 2256 103 95.6
pos. 99 1074 91.6

Table 4 Leave-one-out cross validation for prediction of family mem-
bership along with sensitivity. Abbreviated families correspond to the
notation in Table 2. In the lower part aggregated results for Gram-type
are shown
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accuracy of 75% is reached. Three out of four artificial mix-
tures are correctly predicted to be mixtures of Gram positive
and Gram negative bacteria in all biological independent
batches. For one mixture (Mix_1) very heterogeneous predic-
tion results are observed for different biologically independent
batches. Plating results of the bacterial suspensions indicate a
relatively stable relative ratio of Gram positive and Gram nega-
tive bacteria in the mixture (ESI Table S3†), and therefore,
cannot be the reason for the wrong predictions. Differences in
the predicted ratio between batches (biological replicates)
might originate from an inhomogeneous distribution of the
bacteria within the dried droplet, which would result in a bias
depending on the selected region for measurement.

Prediction results for the artificial mixtures using the
family model trained with the bacterial isolates are listed in

Table 6. Except for artificial mixture 2 (Mix_2) and two batches
of artificial mixture 1 (Mix_1), the truly present bacteria were
always correctly predicted to be present in the mixture.
However, a fully correct prediction was only achieved for batch
5 in artificial mixture 1. In all other cases (except batch 2 of
Mix_1), also other families were predicted to be present in the
mixture. In most cases, these other families contributed only
to a minor proportion. However, in a very few cases they made
up the majority (e.g., batch 2 in Mix_3 and batch 4 in Mix_4).
Thus, it can be concluded that the current model did not
proof yet powerful enough to predict correct family member-
ship in mixed samples. One reason could be that image scans
were recorded of dried droplets. We have chosen the step size
(i.e. the pixel size of one point) with 0.333 µm rather small and
also smaller than the average size of a bacterium (0.5–1 µm in
diameter). However, it cannot be excluded that in a dried
sample more than one bacterium was contributing to the spec-
trum and therefore making precise family assignment
difficult. Nevertheless, as in most cases truly present bacteria
were correctly predicted to be present, we aggregated the
family predictions (Table 6) according to the Gram type and
used this prediction to identify mixtures. The results are
shown in the last column of Table 5. The same overall accuracy
of 75% is reached as for the Gram type model. However,
different batches were wrongly predicted to contain no
mixtures.

The achieved accuracies for mixture predictions with our
PCA-LDA models are comparable to previously reported results
of mixture analysis where prediction accuracies of up to 73
and 89% were achieved with PLS-DA and SVM, respectively.15

Translating the classification models to fresh patients’
samples

For the evaluation of our classification model with real world
primary urine samples, a total of 64 patients’ urine samples
were collected. Five samples had to be excluded, due to
removal of all but one Raman spectrum during quality control
(one patient) and no bacterial growth during microbiological
cultivation (4 patients) (ESI Table S1†). Thus, for the following

Table 5 Results of prediction of Gram type for artificial mixtures con-
taining one Gram-negative (neg.) and Gram-positive (pos.) strain using
the binary Gram model. In the last column, results are compared to the
6-class family model (Table 6) when aggregated according to Gram type.
The order of the batches corresponds to Table S3

Table 6 Predicted proportional representation of families for artificial mixtures with two different bacterial species. Further details on mixture com-
position is given in Table 1 and ESI Table S3.† Families present in the mixtures are high-lighted in green. Family labels correspond to Table 2
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analysis, 59 patients’ urine samples were used. Among those,
21 samples were collected from catheter (incl. pouch) and 38
samples were midstream urine samples. Among the 56
patients, 20 were female (35.7%) and 36 were male (64.3%).
Average age was 69 ± 15.3 years (female: 65.5 ± 17.8 years;
male: 71 ± 13.3 years). One aliquot of the urine was analysed
by the presented Raman algorithm without prior knowledge of
its content. A second aliquot of the same urine sample was
analysed by routine microbiological analysis.

Results of Raman and microbiological analysis are provided
for each of the 59 samples in ESI Table S5.† Microbiological
analysis revealed that ∼50% of samples (29 out of 59 samples)
showed mixed (polymicrobial) infections. In 18 samples with
mixed infections, two pathogens were identified, in 11
samples three or more pathogens were identified (ESI
Table S5†). Mixed infections were slightly more likely from
catheter samples (11 out of 17 samples (∼65%) were mixed
infections) than from midstream urine (18 out of 42 samples
(∼43%) were mixed infections).

These findings are in line with results from other studies,
where 30–86% of UTIs were reported to be true mixed
infections.7,8 With an average age of 69 ± 15.2 years our cohort
includes also a significant portion of elderly patients, which
are more susceptible for mixed infections.12 Higher prevalence
of mixed infections in samples originating from catheterized
patients has also been reported.8,10–12

In very few cases, bacterial species were identified (always
as part of mixed infections) which were not included in the
training data set, e.g., Serratia marcescens in patient 21.
Corynebacterium amycolatum (from patient 27) and
Acinetobacter ursingii (from patient 29) were included in the
Gram model, but not in the family model. In one patient, also
fungi were identified as pathogen in mixed infections.
However, with the currently applied sample preparation proto-
col, fungi are not expected in the Raman sample due to their
size (>5 µm) and the filtration step at the beginning.

Table 7 summarized the results of the PCA-LDA classifi-
cation analysis of the Raman data. At first, we applied the

2-class Gram type model to identify patients’ samples with
mixed infections of Gram positive and Gram negative bacteria
from infections with only Gram positive or Gram negative bac-
teria (Table 7, top). The model achieved an overall balanced
accuracy of 49%, when considering correct predicting to one of
the three options. The achieved accuracy is significantly lower
than for the artificial mixtures where the three options could
be predicted with an accuracy of 75%. When analysing the
wrong predictions, a strong bias towards Gram negative bac-
teria is observed which is reflected in the high sensitivity and
low specificity for this class in Table 7. This means, almost all
Gram negative bacteria were correctly predicted to be Gram
negative, while also many mixtures and Gram positive bacteria
were wrongly predicted to be Gram negative bacteria. High
specificity and low sensitivity were reached for Gram positive
bacteria. This means, that no Gram negative bacteria or mix-
tures were predicted to be Gram positive bacteria.

A similar trend is observed when predicting the family
membership with the 6-class family model and aggregating
the family predictions according to the Gram type (Table 7,
top). Here, an overall balanced accuracy of 44% is achieved. A
similar bias towards predicting the presence of Gram negative
bacteria in the sample as for the Gram model is observed.
Upon closer investigation of the prediction on family level (ESI
Table S5†), it can be seen, that in all, but two patients’
samples (patient 13 and patient 24), Gram negative
Morganellaceae are predicted to be present in the sample.
However, this is correct only for 8 patients’ samples and wrong
for 47 patients’ samples.

For seven patients’ samples, two independent dried dro-
plets were prepared and measured. In the analysis above, the
samples with the most remaining spectra after automated
Raman quality filtration were included. ESI Table S6† shows
the prediction results of both batches for each of the seven
urine samples. In most cases, a good overall agreement is
found between the replicate samples.

It has to be noted that the classification models were
trained with clinical isolates that were cultivated under ideal

Table 7 Confusion matrix showing predictions of patients’ samples to contain only Gram negative or Gram positive bacteria or bacteria of both
Gram types (mixed infection). The top table presents results using the 2-class Gram type model, the bottom table using the 6-class family model.
Detailed assignment per patient and family membership is given in ESI Table S5.† Please note, here, only mixed Gram type is considered as mixture.
Mixed infections with two or more different species of one Gram type are not separated with the current analysis

Bal. acc. 49%

Pred. Gram model

Sensitivity (%) Specificity (%)Neg. mix. Pos.

True Neg. 26 5 0 83.9 28.6
Mixture 12 3 0 20 77.3
Pos. 8 5 0 0.0 100.0

Bal. acc. 44%

Pred. family model

Sensitivity (%) Specificity (%)Neg. mix. Pos.

True Neg. 21 10 0 67.7 39.3
Mixture 11 4 0 26.7 63.6
Pos. 6 6 1 7.7 100.0
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microbiological conditions, i.e. on Müller-Hinton 2 agar
plates, while patients’ urine samples were directly analysed
without any cultivation step. An influence of growth medium
on Raman spectra has been reported in earlier studies22 and
explained with a slightly changed overall chemical compo-
sition due to different nutrients in the medium. Storage of the
samples prepared for Raman measurement might also play a
role, as was shown in ref. 37.

In order to explore, if the growth medium effect could be
relevant for our samples, we performed unsupervised principal
component analysis with the Raman spectra of the pathogens
when measured directly from the urine sample and after iso-
lation and cultivation on Müller-Hinton 2 agar plates. For this,
all 14 pairs of pathogens which were measured directly from
urine and after isolation and cultivated were included in the
analysis. Selected individual scores plots and the combined
scores plot of all samples are presented in ESI Fig. S4.†
Exemplarily, the PCA scores plot is shown for patient’s sample
number 16 in Fig. 4a. Raman spectra of the very same strain of
Klebsiella pneumoniae measured directly from the urine sample
(black dots) and after isolation and cultivation on Müller-Hinton
2 agar plates (red dots) show prominent differences already in
the first principal component which describes 27% of the vari-
ation in the data set. Different measurement parameters of the
isolates, such as single spectra (green dots) vs. image scan (red
dots) do not have an effect on spectral variation as is clearly
visible from coinciding green and red clusters in Fig. 4a.
Differences in growth condition (in urine vs. Mueller-Hinton 2
agar plates) seem to be larger than differences between species
and families as significant separation of growth conditions is
visible already in PC1 in an unsupervised PCA model containing
strains from different families (Fig. 4b and ESI Fig. S4†). The
loading plot of PC1 (Fig. 4b) shows large contributions from the
spectral region of CH-stretching. In addition, changes in bands
corresponding to phenylalanine (1005 cm−1, 1590 cm−1), amide
III (1250 cm−1), guanine (1310 cm−1), CH modes of glucosamines
and proteins (1440 cm−1), and peptidoglycan (1590 cm−1) are
visible in the fingerprint region. For all three selected bacterial
strains, PC1 captures most differences.

In order to avoid medium-induced effects on the classifi-
cation model, it could be recommended to train the classifi-
cation model with Raman spectra of bacteria directly from
urine samples. In our small study we had only 30 urine
samples with single pathogen infections (20 Gram negative
and 10 Gram positive strains). For reliable classification
models it is suggested to expand the data set. This will be
within the scope of future work.

There are further factors that could affect the accuracy of
the classification model to predict mixed infections. One
would be the presence of bacterial species and families that
were not included in the training model. In our case, we found
Lactobacillus jensenii (Gram positive bacilli of family
Lactobacillaceae) or Serratia marcescens (Gram negative rods of
family Yersiniaceae). We assume that if the spectral data base
is sufficiently large, also unknown species are assigned to the
right Gram type or a closely related family.23

Furthermore, in literature, the application of different
classification models has been discussed. In our study, we
have chosen PCA-LDA, which is one of the most common
approaches for classification tasks of isolated bacterial
strains.24,33 However, other studies could demonstrate higher
performance of other models, such as partial least squares-dis-
criminant analysis (PLS-DA)15,38, k-Nearest Neighbours
methods,23,31,36 or support vector machines (SVM),23 or deep
learning methods39 to just name a few. A detailed comparison
of different methods is beyond the scope of the manuscript
and will be subject of further studies.

Fig. 4 (a) PCA score plot showing the differentiation of one-pathogen
patient sample no. 16 (black) and the same strain isolated for microbio-
logical identification (red). Both measured under same measurement
conditions (scans). Raman spectra of identical strain, reflecting different
measurement mode (green, individual spectrum at 10 different position),
is also added to discuss effect of different measurement conditions. (b)
PC1 loadings plot.
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Excluded patients’ samples

During data analysis, a total of five patients had to be excluded
from the direct comparison of Raman prediction and routine
microbiological findings discussed above. Prediction results of
Raman analysis of the urine from those patients are presented
in ESI Table S7.† The reasons for excluding samples from the
study were (1) less than 10 spectra were kept from a patient’s
sample after automated quality check of the Raman data (true
for patient no. 60); (2) no bacteria were identified during
routine microbiological analysis (patients no.: 61–64), which
served as reference method in this study. As can be seen in the
further descriptions on observations in the footnote of ESI
Table S7,† in most of the latter cases, no pellet was seen by eye
after sample preparation of patient’s urine sample, being a
first indication of low bacterial count in the sample.

It has to be noted, that routine microbiological diagnostics
relies on viable bacteria in the urine sample as it is a cultiva-
tion-based method that yields number of bacteria as colony
forming units (CFU) per milliliter. Thus, bacteria that are
already killed by a successful antibiotic treatment cannot be
cultivated anymore, but might be still present (if not fully
lysed yet) in the urine sample.

Furthermore, the current sample preparation workflow
excludes fungal pathogens. If they should be included in
future work, the filtration step needs to be modified.

Conclusions

Raman spectroscopy was demonstrated to be a powerful
method to characterize bacteria. With a large data set of clini-
cal isolates comprising 85 bacterial strains from 23 species a
robust model could be trained to predict the Gram type of
unknown bacterial samples with >93% accuracy. For predic-
tions on family level, an overall balanced accuracy of around
87% was reached. Most misclassifications were observed
within the same Gram type. When applied to artificial mix-
tures, the model could correctly predict mixtures of Gram posi-
tive and Gram negative bacteria with an accuracy of 75%,
encouraging to translate this algorithm for the direct analysis
of urine samples for which mixed infections are diagnosed in
30–86% of urinary tract infections. We have established a pro-
cedure for the fast preparation of bacterial samples for Raman
spectroscopic analysis directly from 10 ml of patients’ urine
samples. In our study 59 patients were included out of which
29 were found to have a mixed infection. When translating our
classification model trained with clinical isolates cultivated
under standard conditions to primary patients’ samples, we
encountered a strong bias towards the prediction of Gram
negative bacteria. PCA analysis revealed characteristic differ-
ences between bacteria from patients’ urine samples and after
isolation and cultivation. It is therefore recommended to
include Raman spectra of primary urine samples (e.g. with just
single pathogen infections) into the training model to improve
classification accuracies.
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