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Biofilms are detrimental to many industrial systems that include reverse osmosis (RO) membranes.
Accordingly, the development of surfaces with inherently bactericidal properties has attracted
much research attention. Antimicrobial peptides (AMPs) have been shown to be potent antimicrobial and
anti-biofilm agents. In the current study, we developed an efficient synthetic procedure for AMP
immobilization on RO membranes which is based on the copper() mediated Huisgen 1,3-dipolar
cycloaddition reaction (“click chemistry”). Optimization of the reaction temperature, time, peptide and
catalyst concentration resulted in efficient coupling of peptides to the membrane surface. The reaction
conditions did not affect membrane salt rejection, and resulted in only a slight reduction (14%) in pure
water flux at the highest temperature tested (80 °C). Short AMPs that consisted of Arg—Trp repeats were
attached onto a virgin RO membrane surface, and an RO membrane surface coated with a copolymer of
methacrylic acid and poly(ethylene glycol)methacrylate. In a bacterial contact killing assay, the resulting
peptide-modified membrane surfaces showed increased antimicrobial activity especially on the virgin
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1. Introduction

In order to supply drinking water to growing populations, even
in areas of the world where fresh water is scarce, desalination
technologies have been attracting considerable attention as
effective methods for the production of potable water."> Among
them, reverse osmosis (RO) membrane technology today
accounts for the major share of potable water production from
seawater and brackish water.®* However, biofouling, ie. the
formation of biofilms on the membrane surfaces, is a major
problem as it brings about serious impairments of the overall
membrane performance: increased trans membrane pressure
and thus energy consumption, decreased flux, increased salt
passage, shortened membrane lifespan and consequently in
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the attachment of a wide variety of antimicrobials or other entities to surfaces.

higher operational costs than for non-fouled membranes.** In
order to mitigate these drawbacks, the feed water can be pre-
treated in order to remove bacteria and dissolved substances,
which can serve as nutrients to bacteria attached to the
membranes. But these are only partially effective as they cannot
completely eliminate the organic matter responsible for fouling
and the concentrations of microorganisms and nutrients that
remain in the treated feed water are high enough to promote
bacterial growth on the membrane surface.”

The problem of biofilm formation is ubiquitous - from
industrial water treatment settings to biomedical applications
to natural environments - due to the ability of the microor-
ganism to colonize almost any surface where nutrients tend to
concentrate and accumulate.* It begins with deposition of
bacteria on the membrane surface and adhesion, followed by
multiplication and micro-colony formation, and is accompa-
nied by the excretion of extracellular polymeric substances
(EPS). Once embedded in the EPS, the microbial cells are
practically irreversibly attached to the surface and difficult to
remove.*"°

As the attachment of bacteria to the surface is the initial step
of biofouling, an intriguing strategy for combatting biofilm
formation focuses on the physical and functional characteris-
tics of the surface. Thin film composite (TFC) polyamide
membranes, widely used in RO applications, consist of a dense,
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semipermeable polyamide barrier layer (50-200 nm) supported
on a polysulfone layer (~40 pm) on a fibrous polyester web
(~120 pum) that provides mechanical stability. The major
transport properties of these membranes, determined by the
polyamide barrier layer, include the almost complete retention
of salts (salt rejection above 99%) and a substantial flux of
water.>™ Biofilm inhibition strategies for such membranes
have included surface modifications and coatings, since
membrane surface characteristics significantly affect foulant
deposition and fouling layer formation. For example, Rahaman
et al. observed a reduction in biofouling on TFC polyamide RO
membranes modified with biocidal silver nanoparticles and
antifouling polymer brushes.” The surface modifications
resulted in a significant reduction of irreversible bacterial cell
adhesion. Nikkola et al. studied polyvinyl alcohol coatings
modified with cationic polyhexamethylene guanidine hydro-
chloride polymer for enhanced anti-adhesion and anti-
biofouling membranes.”* Zodrow et al. used a controlled-
release platform, in which antibacterial compounds (cinna-
maldehyde, kanamycin) were encapsulated in biodegradable
poly(lactic-co-glycolic acid) particles and bound to TFC poly-
amide RO membranes, to achieve significant reductions in
biofilm formation.™

Beyond that, it is even more intriguing to modify membrane
surfaces such that they exhibit antimicrobial properties by
inhibiting bacterial proliferation. A strategy that prevents viable
bacteria from settling and multiplying on the surface may halt
the biofilm formation process in its early stages. This approach
was followed, as the objective herein was to optimize the cova-
lent binding of antimicrobial peptides (AMPs) to membrane
surfaces. Such a tool may facilitate the development of
membranes with inherent antimicrobial properties. AMPs have
been shown to have anti-biofilm properties.” The covalent
immobilization of the AMP also ensures that the active coating
will not eventually leach from the membrane surface.

Examples of antimicrobial peptides covalently tethered to
different surfaces were reviewed by Costa et al., who also dis-
cussed the various methods for covalently immobilizing AMPs
onto biomaterial surfaces, including important parameters
such as spacer length, peptide concentration and orientation.'®
These studies showed that the immobilization of AMPs on
surfaces may prevent biofilm formation by reducing microbial
viability after it comes in contact with the AMP-containing
surface. The attachment of AMPs on the surfaces of RO
membranes has been previously studied for effective antimi-
crobial surfaces’” and suggested as a method of biofilm
inhibition."®

The aim of this study was to optimize AMP attachment to TFC
polyamide RO membranes via a copper(1) mediated Huisgen 1,3-
dipolar cycloaddition reaction between an azide and an alkyne
(CuAAC, “click chemistry”). Widely adopted as an efficient
conjugation method for a broad range of materials and
compounds,**?* click chemistry has previously been used for
membrane materials such as polysulfone, polypropylene, and
polyamide.>*>* The advantages of this reaction include high
yield, broad scope, stereospecificity, and that it can be conducted
in aqueous solvents under mild conditions.>* In comparison to
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bonding the peptide to the membrane via an amide linkage, the
resulting 1,4-disubstituted 1,2,3-triazoles have been shown to be
similar to the amide moiety in terms of size, planarity, H-bonding
capabilities, and dipole moment, while being more protease-
resistant.*® Previously, click reactions were exploited to modify
polyamide membrane surfaces through the attachment of poly-
zwitterions onto polyamide, which enhanced membrane fouling
resistance. The key steps included synthesis of an alkyne-
polyzwitterion via reversible addition-fragmentation chain
transfer polymerization, functionalization of polyamide with
azide functional groups by bromination followed by the Sy2
nucleophilic substitution of Br with azide, and finally, the
attachment of alkyne-polyzwitterion onto azide-functionalized
polyamide by an azide-alkyne cycloaddition. Improved anti-
fouling of the polyamide membrane was observed, a finding
attributable to the effects of reduced specific binding, steric
repulsions and strong hydrophilic repulsion.®*

In the present study, we functionalized the polyamide surface
of commercial RO membranes with a short azide linker. Alkyne
functionalized AMPs were synthesized using the silyl-based
alkyne modifying-linker, which conveniently gives C-terminal
acetylene-derivatized peptides upon cleavage from the resin.
The mode of surface attachment of the alkyne functionalized
peptides to the azide functionalized RO membranes was opti-
mized by varying reaction conditions, including time, tempera-
ture, and the concentrations of reagents and catalyst, taking into
consideration the effect of the reaction conditions on membrane
performance in terms of salt rejection and pure water perme-
ability. This optimization was performed with short AMPs on RO
membrane surfaces directly and on a surface-grafted layer con-
sisting of a copolymer of methacrylic acid and poly(ethylene
glycol)methacrylate. The functionalized surfaces were then tested
for antimicrobial activity via a bacterial contact killing assay. The
peptide modified non-grafted surfaces showed antibacterial
activity in comparison to non-modified membranes. The
methods and findings presented herein provide a basis for future
studies to examine the attachment of a wide variety of antimi-
crobials and other entities to surfaces.

2. Experimental section

2.1. General

Flat-sheet extra low energy polyamide RO membranes (XLE
membrane) were provided by DOW FILMTEC Membranes
(Midland, MI). Poly(ethylene glycol)methacrylate (PEGMA,
product # 409537), methacrylic acid (MA, 99%), sodium
hydroxide (NaOH) and cupric sulfate (CuSO,, 99%) were
purchased from Sigma-Aldrich Chemie GmbH (Steinheim,
Germany). Potassium metabisulfite (K,S,0s, 97%) and potas-
sium persulfate (K,S,0s, 99%) were obtained from Acros
Organics (Geel, Belgium). Ethyl(dimethylaminopropyl)carbo-
diimide (EDC, 99.9%), N-hydroxysuccinimide (NHS, 99.9%),
and sodium ascorbate (99.6%) were purchased from Chem-
Impex International, Inc. (Wood Dale, IL). Isopropyl alcohol
and ethanol were purchased from Merck Millipore (Darmstadst,
Germany). Phosphate buffered saline (PBS) was prepared in the
laboratory with sodium chloride (NaCl), potassium chloride

This journal is © The Royal Society of Chemistry 2016
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(KCl), disodium phosphate (Na,HPO,) and potassium phos-
phate (KH,PO,) purchased from Bio-Lab Ltd. (Jerusalem,
Israel). Lysogeny broth (LB) was prepared with Bacto Tryptone
and Bacto Yeast Extract obtained from Becton, Dickinson and
Company (New Jersey, United States). Sodium chloride (NaCl)
and hydrochloric acid (HCI) were purchased from Bio-Lab Ltd.
(Jerusalem, Israel). Bacto Agar was obtained from Becton,
Dickinson and Company (New Jersey, United States).

For contact angle measurements using the sessile drop
method, the OCA-20 contact angle analyzer (DataPhysics, Fil-
terstadt, Germany) was used. Prior to that, membrane samples
were dried under vacuum for at least 3 h at room temperature.
For each membrane sample at least five measurements were
done, using drops of 0.5 pL distilled water, and the average and
standard deviation were calculated.

Attenuated total reflectance Fourier transform infrared
spectroscopy (ATR-FTIR) was carried out for at least five times
per dried membrane sample using a Vertex 70 spectrometer
(Bruker Optics, Ettlingen). The data were evaluated using the
spectral analysis software (OPUS 6.5), averages were compiled
and the ratios and standard deviation of the signal intensities at
different wavelengths were calculated.

X-ray photoelectron spectroscopy (XPS) was carried out on
dried membranes using an ESCALAB 250 apparatus (Thermo
Fisher Scientific).

2.2. Synthesis of peptides

Although it was based on a procedure described previously,*
the synthesis of peptide 1 in this study employed 4-pentynoic
acid as the acylating agent for the lysine side-chain amino
group. Peptides 2 and 3 were synthesized using standard,
published procedures with the second generation silyl-based
alkyne modifying (SAM2)-linker.** In short, the SAM2-linker
was immobilized on a polystyrene-aminomethyl resin using
a reductive amination reaction. Then, all reactive amino-groups
were permanently capped with acetyl-groups, and the SAM2-
protecting trityl-group was removed using diluted trifluoro-
acetic acid (TFA) in CH,Cl,. The exposed amino-group was the
anchor-point on which the Arg-Trp based synthetic AMP
precursor was built.** Since the two peptides share the C-
terminal pentapeptide sequence, this peptide was assembled
on the entire batch. After the H-Trp(Boc)-Arg(Pbf)-Trp(Boc)-
Arg(Pbf)-Trp(Boc) sequence was assembled on the SAM2-
polystyrene resin, the batch was divided into two portions: (1)
for the coupling of ferrocene carboxylic acid (i.e., FcC(O)OH),
and (2) for the coupling of Fmoc-Arg(Pbf)-OH. For the latter of
the two portions, synthesis of the resin-bound peptide was
completed by Fmoc-deprotection. Lastly, the FcC(O)-Trp-Arg-
Trp-Arg-Trp-N(H)CH,CCH peptide was obtained by cleaving
the peptide in the presence of triisopropylsilane (TIS) and
phenol; for the H~(Arg-Trp);-N(H)CH,CCH peptide, the stan-
dard TFA/TIS/water mixture was applicable.

2.3. Analysis of peptides

Analytical high performance liquid chromatography (HPLC)
was performed on an automated HPLC system using a C;5-AQ
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reverse phase (RP) column (250 x 4.6 mm) at a flow-rate of 1 mL
min~": 0-5 min 100% buffer A; 5-25 min linear gradient (0-
100%) of buffer B; 25-30 min 100% buffer B; 30-35 min linear
gradient (100-0%) of buffer B; 35-40 min 100% buffer A (buffer
A: H,0O/acetonitrile/TFA, 95 : 5 : 0.1, v/v/v; buffer B: acetonitrile/
H,O/TFA, 95 :5:0.1, v/v/v). Purification of the peptides was
performed on an HPLC machine equipped with photodiode
array detector that was coupled to an RP-18e reversed phase
column (250 x 25 mm), using a similar gradient as for the
analytical HPLC but with a flow rate of 20 mL min *. The
cleaved peptides were >90% pure (as inferred from HPLC), and
were obtained as pure compounds after preparative HPLC.
Analysis of peptide 1 (H-(Arg-Trp)s;-Lys(C(O)CH,CH,CCH)-
NH,): RP-HPLC (C,): tg = 17.50 min; ESI-MS: m/z 627.18 (calc.
627.26 for [M + H]*"). Peptide 2 (H~(Arg-Trp);-N(H)CH,CCH):
RP-HPLC (Cyg): tg = 17.6 min; ESI-MS: m/z 1082.20 (calc.
1082.59 for [M + HJ"). Peptide 3 (FcC(O)-Trp—(Arg-Trp),-N(H)
CH,CCH): RP-HPLC (C,4): tg = 20.3 min; ESI-MS: m/z 1138.08
(calc. 1138.48 for [M + HJ").

2.4. Redox-initiated graft polymerization

A commercial XLE RO membrane was cut into pieces (1 x 2
cm?), disinfected and washed with 50% (v/v) isopropyl alcohol
(3 x 10 min) and with distilled water (3 x 10 min) in an ultra-
sonication bath (Bandelin Sonorex, Allpax, Germany). Redox-
initiated graft polymerization was performed by dissolving
K,S,05 (67 mg, 0.25 mmol) and K,S,05 (55 mg, 0.25 mmol),
each in 11.7 mL distilled water. Once dissolved, the solutions
were added to an Erlenmeyer flask containing the membrane
pieces and methacrylic acid (0.85 mL, final concentration 10
mM) and poly(ethylene glycol)methacrylate (average M, 360)
(0.81 mL, final concentration 2.5 mM) while stirring at 25 °C in
a temperature-controlled water bath for three different time
intervals (20 min, 30 min and 40 min). The membranes were
then washed intensively with distilled water (3 x 15 min) in the
ultra-sonication bath and then stored in distilled water at 5 °C.

2.5. Attachment of azide linker

A solution of 1-amino-3-azidopropane (60 mM), EDC (20 mM)
and NHS (20 mM) in PBS (5 mL, 0.1 M, pH 7.4) was added to six
membrane samples of either the washed XLE commercial RO
membranes or the grafted membranes in a reaction vial. The
solution was agitated by a Unimax 1010 orbital platform shaker
(Heidolph, Kelheim, Germany) overnight at room temperature
(25 °C). The membranes were subsequently washed with PBS (3
x 10 min) and distilled water (3 x 10 min) with sonication and
were stored in distilled water at 5 °C.

2.6. Immobilization of peptides using click chemistry

In general, the copper catalyzed azide-alkyne cycloaddition was
performed on an azide-functionalized membrane piece by
adding to it solutions of peptides 1-3, CuSO,, and sodium
ascorbate in distilled water for a total reaction volume of 0.5
mL. The reaction was performed with variable concentrations of
each reagent, reaction temperatures, and reaction times. The
membrane was subsequently washed two times with HCI (1.0

RSC Adv., 2016, 6, 91815-91823 | 91817
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mM, 2 x 10 min) in order to remove absorbed Cu ions from the
membrane (the membranes became colorless), and distilled
water (2 x 10 min) in an ultra-sonication bath and stored in
distilled water at 5 °C until further use.

2.7. Membrane performance analysis

Flux, membrane permeability and salt rejection were deter-
mined using a custom made 200 mL cylindrical stirred (500
rpm) dead-end filtration cell with a total membrane area of 11.3
cm’. Flux measurements of three XLE RO membrane pieces
were taken before and after treating the membranes at different
temperatures (25 °C, 40 °C, 60 °C, 80 °C) for 20 min in an
aqueous solution of cupric sulfate (1.0 mM) and sodium
ascorbate (2.0 mM). A pressure of 10 bar was applied and the
flux of pure water was determined by collecting and weighing
the permeate every 5 min until the collected permeate reached
a stable and constant flux value. Average flux was calculated
before and after membrane treatment, and the percent flux
reduction was calculated using (1 — (Fa/Fp)) X 100, where F, is
the permeate flux after treatment, and F, is the permeate flux
before treatment. For salt rejection measurements a NaCl-
solution (2000 mg L™, conductivity 3945 &+ 20 uS cm™') was
used. After 10 min, the permeates of three test membranes were
collected and the conductivity of the permeate was measured
using an inoLab level 1 (WTW GmbH & Co., Weilheim, Ger-
many). Since the salt concentration and solution conductivity
are proportional, the salt rejection equation can also be
expressed as a function of solution conductivity as ((A¢ — 4,)/A)
X 100, where / is the feed conductivity, and 4, is the permeate
conductivity.

2.8. Contact killing bioassay

A culture of E. coli was grown in LB (100 mL) at 37 °C until the
turbidity of the mixture reached an optical density (OD) of 0.4
(600 nm). The bacteria were pelleted and a test inoculum con-
taining 2 x 10”7 CFU mL ™" in sterile PBS was prepared. A
membrane sample (2 cm?®) was cut into pieces of approximately
2 mm? and placed in an Eppendorf tube (2 mL). The membrane
was sterilized with 70% ethanol (v/v) and then washed with PBS
(3x), after which the E. coli test inoculum (0.5 mL) was added to
the tube containing the test membrane. The tubes containing
membrane and inoculum were centrifuged for 5 min at 14 800
rpm and then vortexed for 10 s. This was repeated six times for
a total bacterial incubation time of ca. 30 min. Finally the tube
was ultra-sonicated® in an ice-water bath for 30 s and viable
bacteria, expressed in colony forming units (CFU mL™ "), were
counted on LB agar plates. The average of three experiments is
reported including standard deviation.

3. Results and discussion

3.1. Preparation of peptides with azide functionality

Peptides with alkyne functionality (Fig. 1) were prepared. To
that end, we used the recently developed SAM2-linker that, in
contrast to the SAM1-linker,* produces unprotected peptide
side chains that have a free or a modified N-terminus and an
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Fig. 1 Structures of AMP alkynes used in the study.

acetylene-functionalized C-terminal carboxamide group.** The
peptides were synthesized employing standard Fmoc/¢Bu-based
solid-phase peptide-synthesis procedures. They were then
purified with preparative HPLC, and their identities were
confirmed with mass spectrometry. Compared to other known
AMPs, the peptides used are relatively short, namely five or six
amino acids long. These peptides were selected in view of their
potent broad spectrum antibacterial activity.>* They have been
studied in great detail, and their mode of action has been
established as delocalizing membrane-bound proteins.*” As
such, they do not require to be internalized in bacteria before
they can exert their antibacterial activity. Even more, due to
their small size, variations can be introduced using synthetic
methods in order to further enhance their antibacterial prop-
erties.®® Lastly, these short peptides can be prepared on a rela-
tively large scale, allowing them to find widespread application
as membrane coatings for anti-biofouling purposes.

3.2. Grafting of TFC RO membranes

Azide functionalized membranes and alkyne functionalized
peptides were prepared for this study. A commercial TFC RO
membrane (Dow XLE) was used, in which the top layer was
a thin film of aromatic polyamide polymer that includes surface

This journal is © The Royal Society of Chemistry 2016
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Fig. 2 (a) LE 440 RO membrane surfaces were modified with

a copolymer of methacrylic acid and poly(ethylene glycol)methacry-
late. (b) FTIR absorbance ratio 1720 cm~%/1488 cm™ of modified
surfaces at different reaction times, at 25 °C.

exposed carboxylic acid moieties. To increase the amount of
available carboxylic acid groups, a copolymer of methacrylic
acid (MA) and poly(ethylene glycol)methacrylate (PEGMA) was
grafted from the surface at a constant temperature of 25 °C
using the redox radical initiators K,S,0s and X,S,0g
(Fig. 2a).**> The reaction time was varied from 20 min to 40
min. The copolymer grafting reaction was monitored using
FTIR spectroscopy by measuring the ratio of the signal
measured at the spectral band corresponding to the carboxylic
acid and ester carbonyl in the newly formed copolymer layer
(1720 cm ™) to that measured at the band for the aromatic C-C
signal of the polyamide surface (1488 cm™'). Signal ratios of
0.19, 0.78, and 0.97 were obtained for reaction times of 20 min,
30 min, and 40 min, respectively, and a reaction time of 30 min,
which resulted in an intermediate amount of polymer on the
membrane surface, was used to prepare the experimental
membrane surfaces (Fig. 2b). Compared to the surface of the
original membrane, this new membrane surface with increased
carboxylic acid functionality was found to be more hydrophilic,
with a water-drop contact angle of 37° compared to 57° on the
original membrane. Both the grafted and non-grafted
membranes were functionalized with an azide linker and used
to test the optimization of peptide attachment.

3.3. Coupling of antimicrobial peptides to the membrane

The azide linker 1-amino-3-azido-propane was immobilized on
the membrane surface using EDC as the coupling reagent for
a reaction time of 16 h to ensure efficient coupling (Fig. 3).
Monitoring of the reaction using FTIR showed a new signal at
2100 ¢cm™', which indicated that the azide was covalently
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Fig. 3 Attachment of antimicrobial peptides to LE 440 RO membrane
surfaces: for non-grafted membrane surface (a): attachment of azide
functionality (b); and immobilization of peptide using click chemistry
(c). For membrane surface grafted with copolymer of methacrylic acid
and poly(ethylene glycol)methacrylate (d): attachment of azide func-
tionality to grafted surface (e); immobilization of peptide on grafted
surface using click chemistry (f).

incorporated on the membrane surface. This signal was much
stronger on the membrane-azide with the grafted copolymer
layer compared to the azide on non-grafted membrane, sug-
gesting that the grafted membrane had a higher amount of
azide linker attached. In addition, azide immobilization led to
further decreases of 16-19% in the contact angles of both the
grafted and non-grafted membrane surfaces, indicating that
their surfaces had greater hydrophilicity than an unaltered
membrane.

The peptide immobilization reaction (Fig. 3) was optimized
based on the following considerations: (i) the reaction time
should be relatively short, (ii) it should consume minimum
amounts of peptide and catalyst, and (iii) the reaction condi-
tions should not adversely affect membrane performance. To
this end, we systematically varied reaction time, temperature,
amount of peptide, and amount of catalyst.

RSC Adv., 2016, 6, 91815-91823 | 91819


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6ra21930f

Open Access Article. Published on 21 septiembre 2016. Downloaded on 03/11/2025 1:35:17.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

First, we varied the temperature from 25 °C to 80 °C and
found, based on FTIR analysis of the azide-bands on the
membranes, that the reaction at the highest temperature was
the most efficient (Fig. 4a). The hydrophobicity also increased,
which was indicated by an increase in contact angle, and it was
found to correlate with increases in the amount of surface-
immobilized peptide (Fig. 4b). The reaction at 80 °C for 20
min was deemed to have a higher efficiency compared to the
same reaction time at lower temperatures and compared to the
long reaction time of 16 h at a lower temperature (25 °C). We
compared untreated membranes with a measured NacCl rejec-
tion of 92.7 4+ 0.4% to the same membranes treated with the
highest temperature reaction conditions (80 °C, 20 min) and
observed no significant differences to the NaCl rejection (p >
0.29). At 25 °C and 40 °C no change in pure water flux was
observed. Only minor changes in flux values resulted after
treating the membrane under the highest temperature condi-
tions (60 °C or 80 °C, 20 min): a slight decrease in flux was
observed, 9% or 14% respectively, compared to the untreated
membranes. Modification of membrane surfaces may lead to
a reduction of permeability. This is especially observed in the
case of graft polymerization on membrane surfaces where re-
ported permeability reductions can be up to 40%.** Thus the
benefits gained in the surface property modification should be
weighed against the decreased membrane permeability. On the
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other hand, membranes may be engineered to maintain a high
flux and rejection character by choosing appropriate membrane
substrates. For example, PA-TFC membranes with permeabil-
ities in the nanofiltration range were nanostructured with
a surface graft polymerization technique, to obtain membranes
performance values comparable to commercially available RO
membranes.**

Next, using the short reaction time of 20 min at a tempera-
ture of 80 °C, the reaction was performed using a range of
peptide concentrations from 0.05 mM to 1.0 mM (Fig. 4c and d).
FTIR analysis of each membrane showed that the amide C=0/
aromatic C-C intensity ratio steadily grew as the peptide
concentration was increased from 0.05 mM to 0.4 mM, but from
0.4 mM to the highest concentration of 1.0 mM no significant
change occurred. With the exception of the reaction with 1.0
mM peptide, in all reactions the membrane contact angle also
increased proportionally to the AMP tethering efficiency, as
seen by FTIR in which the contact angle was observed to be
lower. Although a specific explanation for this phenomenon has
not been offered, the fact that amphiphilic AMPs interact and
aggregate when at high concentrations may influence the effect
they have on the hydrophobicity of the membrane surface as
measured by contact angle. Thus, FTIR may be a more reliable
measure to determine the relative amounts of peptide on the
membrane surface.
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After identifying the optimal peptide concentration at 0.4
mM, the concentration of copper catalyst was varied from 0.004
mM to 1 mM using the short reaction time of 20 min at
a temperature of 80 °C (Fig. 4e and f). In all cases, the copper(1)
catalyst was generated in situ using a 1 : 2 ratio of CuSO, and
sodium ascorbate. The reaction, which proceeded only at
copper concentrations of 0.04 mM and above, was seen clearly
using both FTIR and contact angle measurements. The optimal
reaction conditions, therefore, comprised the short reaction
time of 20 min, a temperature of 80 °C, and concentrations of
both peptide and copper of 0.4 mM.

Peptides 2 and 3 were applied to both the azide-XLE
membranes and the azide-grafted copolymer-XLE membranes
using the optimal coupling conditions identified above. After
peptide application, the membrane surfaces were analyzed
with X-ray photoelectron spectroscopy (XPS), a technique that
gives quantitative information about the elemental composi-
tion of the surface to a depth of 5-10 nm. An anticipated
indication of peptide attachment, especially for the polymer
grafted membranes, can be observed in nitrogen content. We
expected the grafted control membrane to lack nitrogen and
the membranes with peptide coupling to show increased
nitrogen content due to the presence of nitrogen in the peptide
amides, the arginine residues, and the tryptophan residues.
Indeed, we observed only 0.35% nitrogen in the control grafted
membranes compared with 14-15% after peptide attachment.

Unique to peptide 2 was the presence of iron (Fe**) in the
form of a ferrocene derivative, which aided in membrane
surface characterization and gave insight into the surface
concentration of the covalently attached peptide. No detectable
amounts of Fe*" were observed in the control membranes or in
membranes coupled with peptide 3 (Table 1). As expected, Fe**
was only detected in the membranes coupled with peptide 2 at
0.35% and 0.45% for the un-grafted and the grafted
membranes, respectively. This minor difference in Fe** revealed
that the amount of peptide available on the surface was rela-
tively similar for both membrane types. However, ATR-FTIR
revealed larger differences in amide band absorption ratios
(1660 cm™'/1488 cm™ ') for the grafted compared to the un-
grafted membranes (see Fig. 4), indicating that the peptide
was incorporated throughout the grafted layer and not only on
its surface. Since the AMPs are covalently bound to the polymer,
a mechanism of leaching from within the polymer to contact
bacteria is not possible. Thus an effective antimicrobial surface
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requires that the antimicrobial be present on the surface layer
of the membrane to ensure physical contact with bacterial
components. This would also ensure efficient use of the amount
of AMP needed for modification. Development of effective
antimicrobial surfaces via covalent attachment of AMPs will
also depend on other factors such as peptide orientation,*
peptide structure and surrounding polymer chemistry,*® and
other parameters such as tethering length.*’

3.4. Antimicrobial surface activity

The antimicrobial effectiveness of the AMP-functionalized
membranes was tested using a direct inoculum method that
involved centrifugation of the bacteria on the membrane
surfaces. The centrifugation step was added in order to enhance
the probability of the bacteria to contact the membrane. To
evaluate the bactericidal ability of the peptides upon contact with
bacteria, the bacteria were incubated for a total time of approx-
imately 30 min. For E. coli, a 32% and 36% decrease in CFU was

XLE RO membrane
[l grafted XLE RO membrane

125
g1 001
601

40

Normalized CFU

201

peptide 2 peptide 3

Fig. 5 Antimicrobial effect of peptides bonded to the membranes: E.
coli colony forming units (CFU) after 30 min exposure, as percentage
of CFU on unmodified membranes controls. Two types of control
membranes are used and indicated with the dashed line: commercial
XLE membrane (control for gray bars), or the copolymer coated XLE
membrane surface (control for the black bars). Average of 3 inde-
pendent experiments including the standard deviation is shown.

Table 1 XPS analysis results of surface elemental composition of immobilized AMPs

Modification

XLE 440 control

XLE 440 + peptide 2

XLE 440 + peptide 3

Elements

(%) Un-grafted Grafted Un-grafted Grafted Un-grafted Grafted
C 73.6 71.0 69.8 69.9 70.58 68.52
N 13.24 0.35 15.18 13.49 15.11 14.6

(] 12.95 28.64 14.51 16.21 14.31 16.88
Fe®* ND* ND 0.35 0.45 ND ND

“ ND not detected.
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observed for both peptides 2 and 3 compared to the unmodified,
control membrane (Fig. 5). In comparison, the membranes with
the peptide-copolymer coating showed less activity for either
sequence. This finding indicates that tethered AMP activity is
influenced by AMP surface immobilization parameters, i.e.
surface concentration, spacer length, flexibility, and orientation
of AMP, but also by membrane surface composition and prop-
erties to which the AMP is attached.*® Research to further eluci-
date these findings with respect to RO membrane surfaces is
ongoing. The hexapeptide reported herein was ideal for method
development, and facilitates future surface antimicrobial activity
studies with a series of AMPs that will be reported in due course.

4. Conclusions

The aim of this study was to optimize the reaction conditions
for antimicrobial peptide immobilization on RO membrane
surfaces while maintaining membrane performance. Peptides
that were directly coupled to the membrane surface showed
increased antimicrobial activity compared to peptides on
membrane surfaces that were modified with a copolymer. This
study provides the necessary tools for the efficient attachment
of a wide variety of antimicrobial and other compounds to RO
membrane surfaces. In addition, it may contribute to an overall
better understanding of the antibacterial and potential anti-
biofilm effects of tethered antimicrobial agents on RO
membranes and on other surfaces.
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