Dalton Transactions

PAPER

Cite this: Dalton Trans., 2016, 45, 2294

Received 6th November 2015, Accepted 11th January 2016 DOI: 10.1039/c5dt04394h

<www.rsc.org/dalton>

Introduction

Aminophobanes: hydrolytic stability, tautomerism and application in Cr-catalysed ethene oligomerisation†

Mairi F. Haddow,^a Judit Jaltai,^a Martin Hanton,^b Paul G. Pringle, *^a Laura E. Rush,^a Hazel A. Sparkes^a and Christopher H. Woodall^a

9-Amino-9-phosphabicyclo[3.3.1]nonanes, (PhobPNHR'; R = Me or ⁱPr) are readily prepared by aminolysis of PhobPCl and are significantly less susceptible to hydrolysis than the acyclic analogues Cy₂PNHR' Treatment of Cy₂PNHMe with Cy₂PCI readily gave Cy₂PNMePCy₂. By contrast, treatment of PhobPCI with PhobPNHMe in the presence of Et₃N does not afford PhobPNMePPhob but instead the salt [PhobP-(=NMeH)PPhob]Cl is formed which, upon addition of [PtCl₂(NC^tBu)₂] gives the zwitterionic complex [PtCl₃(PhobP(=NMeH)PPhob)]. The neutral PhobP(=NMe)PPhob is accessible from PhobNMeLi and is converted to the chelate [PdCl₂(PhobPNMePPhob)] by addition of [PdCl₂(cod)]. The anomalous preference of the PhobP group for the formation of PPN products is discussed. The unsymmetrical diphos ligands PhobPNMePAr₂ (Ar = Ph, o-Tol) are prepared, converted to [Cr(CO)₄(PhobPNMePAr₂)] and shown to form Cr-catalysts for ethene oligomerisation, producing a pattern of higher alkenes that corresponds to a Schulz-Flory distribution overlaid on selective tri/tetramerisation. PAPER

Cross-

Considered and application in Cr-catalysed ethene

State Columbus and application in Cr-catalysed ethene

State Columbus and application in Cr-catalysed ethene

State Columbus and application in Cr-catalyse

Significant differences between the donor properties of phosphacycles and their acyclic analogues are to be expected because of the effects that ring constraints can have on the frontier orbital energies and the steric properties of the P-donor.¹ The molecular manifestations of these ring effects include stability (thermodynamic and kinetic) and structural rigidity which can be desirable qualities when considering the design of ligands. As a result, the coordination chemistry of phosphacycles and their applications in catalysis have attracted much academic and industrial attention.2

Phobanes (PhobPZ, in Chart 1) are examples of rigid phosphacycles which have found important applications in homo-

^aSchool of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. E-mail: paul.pringle@bristol.ac.uk

†CCDC 1433207–1433215. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt04394h ^bSasol Technology UK, Purdie Building, North Haugh, St Andrews, Fife KY16 9ST, UK

geneous catalysis3,4 most notably in Co-catalysed hydroformylation.⁵ We are interested in heterophobanes (PhobPZ where Z = a non-hydrocarbyl group) as ligands and particularly the effect that the phobyl group has on the reactivity of the P–Z bond. For example, fluorophobane (PhobPF) was shown to be a rare example of a fluorophosphine that is thermodynamically more stable to disproportionation and kinetically more stable to hydrolysis than acyclic fluorophosphine analogues; moreover PhobPF shows promise as a ligand for hydroformylation and hydrocyanation catalysis.⁶

Aminodiphosphines R_2 PNR'PR₂ (known as PNP ligands, Chart 1) are excellent ligands for Cr-catalysed ethene tri/tetramerisation. As illustrated in Table 1, the characteristics of the R and R' groups in R_2 PNR'PR₂ have a decisive effect on the chemoselectivity, productivity and therefore the potential industrial utility of the oligomerisation catalyst.^{7,8} Increased steric bulk serves to lower the ratio of 1-octene to 1-hexene obtained, whilst changing from aryl to alkyl substituents on phosphorus dramatically reduces activity and increases polymer formation. The data in Table 1 highlight the impact of process conditions such as solvent, temperature and pressure upon the catalysis.

The industrial interest in PNP ligands 9 makes it important to have reliable methods for their preparation. As summarised in Scheme 1, the most general route to PNP ligands is the reaction of a primary amine with a chlorophosphine in the presence of a base.¹⁰ The monophos R_2 PNHR' species are presumed intermediates and when R or R′ is bulky, they are

^a Catalysis data taken from ref. 7 and 8. All wt% values are of total product slate. C₆ and C₈ refers to the entire C₆ and C₈ fractions and 1-C₆ and 1-C₈ refer to the proportion of the linear α-olefin within that fraction. ^b Catalysis conditions: 33 µmol CrCl₃(THF)₃; 2 eq. ligand; 300 eq. MMAO-3A; 100 mL toluene. ^c Catalysis conditions: 33 μmol Cr(acac)₃; 2 eq. ligand; 300 eq. MMAO-3A; 100 mL toluene. ^d Catalysis conditions: 2.5 μmol Cr(acac)₃; 1.2 eq. ligand; 300 eq. MMAO-3A; 100 mL methylcyclohexane.

Scheme 1

readily isolated and are potential intermediates to unsymmetrical PNP ligands.¹¹ When the substituents in either of the reactants R_2 PCl or R'NH₂ are bulky, a complication is the formation of the phosphinimine PPN compounds (Scheme 1); Maumela *et al.*¹⁰ have shown that when R = Ph and R' = t Bu, the PPN product is the kinetic product whose isomerisation to the thermodynamic PNP product is catalysed by $Ph₂PCl$.

We were interested in investigating PNP ligands such as L_a-L_d where a phobyl group has been incorporated (Chart 2). It is shown here that the monophosphines L_a and L_b are readily prepared but their conversions to L_c and L_d has not been achieved. However the mixed diphosphines L_f and L_g are accessible and are shown to be ligands for Cr-catalysed ethene tri/ tetramerisation.

Results and discussion

Stereoelectronically, a $Cy₂P$ group can be viewed as an acyclic analogue of a PhobP group since ostensibly, they are similarly bulky dialkylphosphino groups. However, we have shown previously that the rigidity of the PhobP moiety leads to a larger steric profile than expected¹² and the approximately 90 \degree C–P–C bridgehead angle in PhobP has the effect of lowering the HOMO and LUMO energies.¹³ Ligands L_1-L_4 (Chart 3) were

Chart 2 Aminophobanes targets; L_c and L_d (in parentheses) have not been observed.

Chart 3 Aminodicyclohexylphosphines targets; L_4 (in parentheses) has not been observed.

targeted in the belief that a comparison of their chemistry with the phobane analogues L_a-L_d (Chart 2) would provide insight into the effect of the bicycle.

Monodentate aminophobanes

The monophobanes L_a and L_b were readily prepared by aminolysis of PhobPCl. The relative lability of L_a and L_b to hydrolysis (eqn (1)) was gauged by treatment of L_a , L_b , L_1 and L_2 with aqueous solutions under the same conditions and monitoring the formation of $R_2P(=O)H$ by ³¹P NMR spectroscopy. All four aminophosphines eventually underwent complete hydrolysis but at different rates. Comparison of the extents of hydrolysis

after 16 h (Table 2) shows that the NHⁱPr group provides more protection from hydrolysis than the less bulky NHMe. Moreover, the bicyclic compounds PhobPNHR are significantly kinetically stabilised to hydrolysis with respect to the acyclic $Cy₂PNIR$ analogues. The resistance to hydrolysis of PhobPNHR is consonant with the phobyl moiety behaving as a bulky group.¹²

$$
R_2P \longrightarrow H_2O \longrightarrow R_2P \longrightarrow H_2NR' \qquad (1)
$$

The donor properties of L_a and L_b can be compared quantitatively with L_1 and L_2 from the $\nu_{\rm CO}$ values for their trans-[RhCl $(CO)[L]_2$] complexes.¹⁴ The rhodium complexes were made *in situ* (see Scheme 2) and the recorded $\nu_{\rm CO}$ values (Table 2) are consistent with L_a and L_b being slightly poorer σ -donors/better π -acceptors than their acyclic analogues L_1 and L_2 , as expected.¹³

Ligands L_a and L_b form *trans*-dichloroplatinum(π) complexes 1a and 1b, and trans-tetracarbonylchromium(0) complexes 2a and 2b (Scheme 2). The crystal structures of 1b and

Table 2 Comparison of some properties of aminophobanes and acyclic analogues

	% Hydrolysis at 16 h^a	$v_{\rm CO}$ ^b /cm ⁻¹
PhobPNHMe (L_a)		1957
Cy ₂ PNHMe (L ₁)	100^c	1955
PhobPNH ⁱ Pr (L_b)		1954
$Cy2PNHiPr(L2)$	64	1951

 a For the hydrolysis experiments, the aminophosphines (1.4 mmol) were dissolved in a 0.55 M solution of water in MeOH (25 mL) and stirred. The reactions were monitored by periodically taking aliquots of the solution and measuring the ${}^{31}P$ NMR spectrum. b The IR spectrum in the 2050–1850 cm⁻¹ region was measured in CH₂Cl₂ for the trans- $[RhCl(CO)(L)_2]$ complexes generated in situ by combining $[\text{Rh}_2\text{Cl}_2(\text{CO})_4]$ with 4 equiv. of L. c L₁ was 50% hydrolysed after 0.5 h.

Scheme 2 Reagents: (i) $[PtCl_2(NC^tBu)_2]$ in CH_2Cl_2 ; (ii) $[Cr(CO)_4(nbd)]$ (nbd = norbornadiene) in $CH₂Cl₂$.

2b have been determined and are shown in Fig. 1 and 2. In addition, the crystal structure of trans- $[PLC1_2(L_2)_2]$ (3), an acyclic analogue of 1b has been determined (Fig. 3).

In aminophobane complex 1b and its acyclic analogue 3, the Pt metal centre is square planar. The Pt sits on a crystallographic inversion centre and the asymmetric unit consists of half of the complete molecule, consequently the N–P–P–N torsion angles are 180° in both cases, *i.e.* the *anti* conformer is adopted, as in other trans- $[PtCl_2(PhobPZ)_2]$ complexes.^{6,12,15} The cone angle of L_b in 1b is 111.8° and of $L₂$ in 3 is larger at 115.8°. In the structure of 2b, the asymmetric unit contains one complete molecule. The cone angle of L_b in 2b is 109.2° which is smaller than in 1b, the compression probably reflecting the greater crowding in the octahedral complex. The N–P– P–N torsion angle in 2**b** is $108.3(1)^\circ$ indicating the amino

Fig. 1 Crystal structure of trans-[PtCl₂(PhobPNHⁱPr)₂] (1b). All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Pt(1)–P(1) 2.3241(10), Pt(1)–Cl(1) 2.3102(8), P(1)–N(1) 1.6594(16), Pt(1)–P(1)–N(1) 109.40(6).

Fig. 2 Crystal structure of trans- $[Cr(CO)_4(PhobPNH^iPr)_2]$ (2b). All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Cr(1)–P(1) 2.3434(3), Cr(1)–P(2) 2.3499(3), P(1)–N(1) 1.6910(9), P(2)–N(2) 1.6934(10), 114.06(4), Cr(1)–P(1)–N(1) 114.20(2), Cr(1)–P(2)– $N(2)$

Fig. 3 Crystal structure of trans- $[PtCl_2(Cy_2PNH^iPr)_2]$ (3). All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°): Pt(1)–P(1) 2.3178(7), Pt(1)–Cl(1) 2.3193(7), P(1)–N(1) 1.681(3), Pt(1)–P(1)–N(1) 113.91(10).

groups are gauche to each other, a conformation not previously observed in PhobPZ complexes.

Bidentate aminophobanes

The previously reported¹⁶ diphosphinoamine L_3 is readily prepared from MeNH₂ and Cy₂PCl in the presence of Et₃N (Scheme 3). The intermediate in this reaction is presumably $Cy₂PNHMe (L₁)$ and indeed treatment of the isolated $L₁$ with Cy_2 PCl in the presence of Et₃N in CH₂Cl₂ gave L₃ quantitatively according to ${}^{31}P$ NMR spectroscopy. The spectrum of the reaction mixture also revealed a transient PPN species (as evidenced by a large J_{PP} of 280 Hz) to which the tautomeric structure L'_{3} is assigned. The PPN species L'_{3} smoothly converted over 30 min to PNP ligand L_3 whose structure was confirmed by its conversion to the chelate complex 4 (Scheme 3), the crystal structure of which has been determined (Fig. 4).

Scheme 3

The asymmetric unit consists of three independent molecules of 4 along with six chloroform molecules. Although the $PtP₂Cl₂$ fragment is approximately planar (rms deviation \sim 0.03 Å), the Pt has a distorted square planar geometry due to the constraints of the 4-membered PNP chelate. The three independent Pt–P–N–P rings are approximately planar with rms deviations of ∼0.03 Å.

In contrast to the ready reaction of L_1 with Cy₂PCl to give PNP ligand L_3 (Scheme 3), the reaction of PhobPNHMe (L_a) with PhobPCl in the presence of $NEt₃$ or N-methylpyrrolidine did not give the expected diphosphinoamine L_c. Instead, a PPN species (J_{PP} = 407 Hz) was the exclusive product; this was initially assigned structure L'_{c} but its ^{1}H NMR spectrum (which showed a multiplet at 7.01 ppm integrating for 1H) and mass spectrum $(M^+$ at $[L'_c + 1]$ led to its assignment as the HCl adduct L_c ·HCl (Scheme 4). This was supported by its reaction with $[\text{PtCl}_2(\text{NC}^t\text{Bu})_2]$ which yielded crystals of the insoluble, zwitterionic complex [PtCl₃(L'_c·H)] (5) whose X-ray crystal structure is shown in Fig. 5. The conditions under which L_c ·HCl was formed (Scheme 4) indicate that the iminophosphine L'_{c} is more basic than either NEt₃ or N-methylpyrrolidine. Ontoo Tansactions

On the agents of the independent on the common t

The crystal structure of 5 has a square planar Pt with an rms deviation of the atoms from the square plane of ∼0.03 Å. The PPN ligand is rotated away from the PtCl₃ plane with torsion angles Cl1–Pt1–P1–P2 of −102.4(1)° and Cl3–Pt1–P1– P2 of 75.6(1)°.

Treatment of PhobPNMeH with ⁿBuLi at -78 °C followed by PhobPCl gave a PPN species with a J_{PP} = 327 Hz (significantly smaller than the J_{PP} of 407 Hz for L_c ·HCl) that is assigned to the neutral L_c' which has been isolated. No reaction occurred upon addition of PhobPCl to L'_c in CH_2Cl_2 , conditions that might have been expected to tautomerise L_c to L_c .¹⁰

It has previously been shown that some neutral PPN compounds rearrange when they react with $[MCl_2(cod)] (M = Pd$ or Pt)¹⁷ or $[NiBr_2(dme)]^{18}$ to give PNP chelate complexes. Reaction

Fig. 4 Crystal structure of complex $[PtCl₂(L₃)]$ (4). Only one of the three unique molecules is shown and all hydrogen atoms and six molecules of CHCl₃ have been omitted for clarity. Selected bond lengths (\AA) and angles (°); Pt(1)–P(2) 2.206(6), Pt(1)–P(1) 2.257(6), Pt(1)–Cl(1) 2.363(5), Pt(1)–Cl(2) 2.376(7), P(1)–N(1) 1.745(17), P(2)–N(1) 1.668(18), P(2)–Pt(1)– P(1) 71.1(3), N(1)–P(1)–Pt(1) 92.8(6), N(1)–P(2)–Pt(1) 96.9(9), P(2)–N(1)– P(1) 99.0(8).

Fig. 5 Crystal structure of $[PtCl₃(L'_c·H)]$ (5). All hydrogen (except H1N) atoms, a CH₂Cl₂ molecule (50% occupied) and one C₂H₂Cl₄ molecule have been omitted for clarity. Selected bond lengths (Å) and angles (°); Pt(1)–P(1) 2.2194(13), Pt(1)–Cl(1) 2.3085(12), Pt(1)–Cl(2) 2.3683(12), Pt(1)–Cl(3) 2.2988(12), P(1)–P(2) 2.2797(19), P(2)–N(1) 1.629(4), N(1)– C(17) 1.468(7), N(1)–H(1N) 0.8800, P(1)–Pt(1)–Cl(3) 88.86(5), P(1)–Pt(1)– Cl(1) 92.80(5), Cl(3)–Pt(1)–Cl(1)177.36(5), P(1)–Pt(1)–Cl(2) 177.89(5), $Cl(3)-Pt(1)-Cl(2)89.39(5), Cl(1)-Pt(1)-Cl(2)$ 88.99(5), $Pt(1)-P(1)-P(2)$ 108.26(6), N(1)–P(2)–P(1) 111.95(19).

of $[PdCl_2(cod)]$ with L'_c gave the chelate $[PdCl_2(L_c)]$ (6) whose crystal structure has been determined and is shown in Fig. 6.

The asymmetric unit contains one molecule of 6, with the PdP₂Cl₂ fragment being essentially planar (rms ~ 0.07 Å) although the overall geometry is a distorted square planar due to the constraints of the 4-membered PNP chelate. As seen in the structure of analogue 4, the Pd1–P1–N1–P2 ring is also essentially planar with an rms deviation for the atoms of 0.01 Å.

From the homodiphos products obtained in the reactions of L_a and L_1 with R_2 PCl (see Schemes 3 and 4), it appears that the PhobP group differs from $Cy₂P$ and $Ar₂P$ groups in promoting PPN over PNP formation; this raised the question of what would happen when the syntheses of the heterodiphos PNP

Fig. 6 Crystal structure of complex $[PdCl_2(L_c)]$ (6). All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°); Pd(1)–P(1) 2.2311(4), Pd(1)–P(2) 2.2353(4), Pd(1)–Cl(2) 2.3735(4), Pd(1)– Cl(1) 2.3748(4), P(1)–N(1) 1.6949(14), P(2)–N(1) 1.7016(14), P(1)–Pd(1)– P(2) 70.851(15).

ligands PhobPNMePR₂ where R = Cy (L_e), Ph (L_f) or o -Tol (L_g) were attempted?

The reaction between PhobPNHMe and $Cy₂PCl$ was followed by ³¹P NMR spectroscopy and it was unambiguously shown that a PPN product was formed which, on the basis of its J_{PP} of 358 Hz, was tentatively assigned to the protonated species L'_e ^{HCl} (Scheme 5); addition of Et_3N led to multiple P-containing species but there was no evidence for the formation of the neutral PPN (L'_e) or PNP (L_e) species. The reaction between PhobPCl and Cy₂PNHMe was also monitored and in this case, $31P$ NMR spectroscopy revealed that a PPN product was formed $(J_{PP} = 403 \text{ Hz})$ which was assigned to the cationic species L''_e ·HCl (Scheme 5), an isomer of $L'e$ ·HCl. It therefore appears that the PPN-promoting effect of the PhobP group dominates over the PNP-preference of the $C_{12}P$ group.

The unsymmetrical PNP ligands L_f and L_g (J_{PP} = 80 Hz in both) featuring PhobP groups were successfully prepared upon treatment of PhobPNHMe with Ar_2PCl (Ar = Ph or o -Tol) in the presence of Et_3N (eqn (2)). It therefore appears that the PPN formation promoted by the PhobP group is superseded by the PNP preference of the Ar_2P groups.

The reaction of PhobPNHMe with Tol₂PCl was monitored by ³¹P NMR spectroscopy. A PPN species (J_{PP} = 331 Hz), tentatively assigned to L'_{α} ·HCl (Scheme 6) was formed rapidly which, upon treatment with NEt₃, was transformed to L_g (J_{PP} = 80 Hz).

Treatment of the bulky $\rm R_2PNH^iPr$ $\rm (\bf L_b~or~\bf L_2)$ with $\rm R_2PCl$ $\rm (R_2P$ $= Cy₂P$ or PhobP) under the conditions that converted R₂PNHMe to the corresponding L₃ (Scheme 3) or L'_c ·HCl/L'_c (Scheme 4) gave, according to in situ $31P$ NMR spectroscopy, mixtures of unidentified products as well as the reactants.

Under the conditions that smoothly led to the mixed PNP ligands L_f and L_g (eqn (2)), L_b reacted with Ar₂PCl to give PPN species whose structures were assigned to the protonated L'_b ·HCl and L'_i ·HCl (eqn (3)) on the basis of the large $J_{\rm PP}$ values of 338 and 359 Hz respectively. Crystals of L′h·HCl were obtained and the crystal structure shown in Fig. 7 confirms the PPN assignment. The N…Cl distance of 3.101(1) Å indicates the presence of hydrogen-bonding between the N–H and Cl.

PPN versus PNP preferences

The N- and P-substituents determine whether PNP (A) or PPN (A′) species are formed in the reaction of amines with chlorophosphines (Scheme 7). In some cases, it has been shown^{10,19} that the PPN can be converted to the PNP tautomer using a $R₂$ PCl catalyst and we have observed PPN species as transients en route to the PNP products (e.g. Cy_2 PNMePC y_2 see Scheme 3) showing that the PNP is the thermodynamic product. In other cases (e.g. $Cy_2PN\{SO_2Ar\}PCy_2$) the neutral PPN tautomer appears to be the thermodynamic product.^{17,18,20} An additional element observed in this work is the formation of a protonated A′·HCl product that is resistant to deprotonation by amines.

Fig. 7 Crystal structure of complex L'_h -HCl. All hydrogen atoms, except on the N1, have been omitted for clarity. Selected bond lengths (Å) and angles (°); P(1)–N(1) 1.6241(0), P(1)–P(2) 2.2403(4), N(1)–H(1N) 0.863(16), $N(1)-P(1)-P(2)$ 119.93(4).

Scheme 7 Proposed pathway for the conversion of an amine to a PNP ligand. A dotted line is used for step iv since this step is not observed with the aminophobanes.

A pathway from chlorophosphine and primary amine to PNP/PPN products that encompasses these empirical observations is shown in Scheme 7. Nucleophilic attack by amine on chlorophosphine with loss of HCl would give the intermediate aminophosphine (step i). Reaction of a second chlorophosphine at the P site of the aminophosphine would give the salt A′·HCl (step ii) which can eliminate HCl to give the neutral A′ (step iii) and finally rearrangement to give PNP (step iv).

The formation of a PPN species when PhobPCl reacts with Scheme 6 **PhobPNHMe or PhobPNMeLi** instead of PhobPNMePPhob

contrasts with the smooth formation of $Cy₂PNMePCy₂$ via a PPN intermediate; furthermore, PhobP(=NMe)PPhob does not isomerise to the PNP tautomer in the presence of PhobPCl. At present, it is not known whether these observations are due to $PhobP(=\text{NMe})$ PPhob being the thermodynamically preferred tautomer or slow kinetics of interconversion and therefore further investigation of this system is warranted.

Oligomerisation catalysis

The unsymmetrical PNP ligands L_f and L_g have been screened for Cr-catalysed ethene oligomerisation (see below) and it was therefore appropriate to explore their Cr coordination chemistry. The reaction of $[Cr(CO)₄(nbd)]$ with L_f or L_g gave the corresponding $Cr(0)$ complexes 7 and 8 (eqn (4)) which have been fully characterised and their crystal structures have been determined (Fig. 8 and 9).

In combination with chromium, the ligands L_f and L_g gave moderate activities towards ethylene oligomerisation but the formation of polymer was high, as can be seen from Table 3. Within the liquid fraction, it is clear that a degree of selective oligomerisation to 1-hexene and 1-octene did occur (particularly for L_{φ}) but concurrently with Schulz-Flory selectivity (Fig. 10). The 1-octene to 1-hexene ratios obtained for both ligands is high.

Fig. 8 Crystal structure of complex $[Cr(CO)₄(L_f)]$ (7). All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°); Cr(1)–P(3) 2.3163 (16), Cr(1)–P(2) 2.3474(16), P(2)–N(1) 1.714(5), P(3)–N(1) 1.701(5), P(3)–Cr(1)–P(2) 68.29(5), P(3)–N(1)–P(2) 100.1(2), N(1)–P(3)–Cr(1) 96.48(17), N(1)–P(2)–Cr(1) 94.99(16), C(17)– P(2)–C(16) 96.0(3), C(7)–P(3)–C(1) 103.5(2).

Fig. 9 Crystal structure of $[Cr(CO)_4(L_g)]$ (8). All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (°); Cr(1)– P(1) 2.3477(6), Cr(1)–P(2) 2.3669(6), P(1)–N(1) 1.7146(17), P(2)–N(1) 1.7035(17), P(1)–Cr(1)–P(2) 68.04(4), P(2)–N(1)–P(1) 101.01(9), N(1)–P(1)– $Cr(1)$ 94.67(6), $N(1)-P(2)-Cr(1)$ 94.29(6), $C(16)-P(1)-C(13)$ 95.66(10), $C(7)-P(2)-C(4)$ 105.17(9).

Conclusions

The monodentate aminophobanes PhobPNHR $(R = Me$ or ${}^{1}Pr)$ have been readily prepared and are more resistant to hydrolysis than their $Cy₂PNHR$ analogues consistent with the PhobP group having a greater effective steric bulk than $Cy₂P$. Attempts to make the free ligand PhobPNMePPhob have been thwarted by formation of PPN species which resist tautomerisation although a rearrangement takes place in the presence of $[PdCl₂(cod)]$ to give the desired PNP–Pd chelate. The readily prepared mixed diphos ligands PhobPNMePAr₂ (Ar = Ph or o-Tol) in combination with Cr, catalysed the oligomerisation of ethylene with a partial selectivity to tri/tetramerisation, the remainder of the selectivity appearing to be Schulz-Flory in nature; the activities were moderate, but the polymer formation was high.

Experimental

Unless otherwise stated, all reactions were carried out under a dry nitrogen atmosphere using standard Schlenk-line techniques. Dry N_2 -saturated solvents were collected from a Grubbs system 21 in flame and vacuum-dried glassware. MeOH was dried over 3 Å molecular sieves, pentane was dried over 4 Å molecular sieves and both were deoxygenated by N_2 saturation. The starting materials PhobPCl,¹³ $[Cr(CO)₄(\eta^4$ -norbornadiene)],²² [PtCl₂(NC^tBu)₂],²³ [PdCl₂(cod)],²⁴ were prepared by literature methods. All other reagents were used as received from Aldrich, Strem or Lancaster. The aminophosphines were stored under nitrogen at room temperature. NMR spectra were recorded on a Jeol Delta 270, Jeol Eclipse 300, Jeol Eclipse 400, Varian 400 or Lambda 300. Infrared spectroscopy was carried

Table 3 Ethene oligomerisation results^a

Rxn time/min	TON/kg TOF/kg	per g Cr per g Cr per h product/wt%	Liquid	Solid product $(PE)/wt\%$		$C_c/wt\%$ C_4 /wt% (% 1- C_6)	$C_0/wt\%$ $(% 1-C_8)$	$1-C_8$: $1-C6$	C_{10-14} /wt% C_{15+} /wt%	
L_f 24.8	393	951	89.5	10.5	1.7	16.1(20.7)	26.7(93.0)	7.5	22.4	33.0
L_g 16.7	31	110	56.6	43.4	1.8	16.3(70.2)	61.1(99.4)	5.3	7.2	13.6

^a Conditions: Cr(acac)₃ (2.5 µmol), 1.2 eq. L, 960 eq. MMAO-3A (800 eq. added to pre-activation, 160 eq. added to autoclave vessel), PhCl solvent (70 mL), 53 bar ethylene, 60 °C. The wt% values for the carbon number fractions refer to the liquid fraction.

Fig. 10 The distribution of products in the liquid fraction formed in the ethene oligomerisation catalysed by Cr catalysts of (a) L_f and (b) L_g showing the preferential formation of C_6 and C_8 alkenes.

out on a Perkin Elmer 1600 Series FTIR. Mass spectra were recorded on a MD800 by the Mass Spectrometry Service, University of Bristol. Elemental analyses were carried out by the Microanalytical Laboratory of the School of Chemistry, University of Bristol.

Preparation of PhobPNHMe (La)

PhobPCl (2.00 g, 11.3 mmol) was dissolved in a 2 M THF solution of MeNH₂ (22.9 mL, 45.3 mmol). The resulting suspension was stirred at room temperature for 16 h. The solvent was removed under reduced pressure to give a white residue which was extracted with diethyl ether (35 mL). The ethereal solution was filtered to remove the methylammonium chloride and then the solvent was evaporated to dryness to give a white solid (1.42 g, 75%). ³¹P{¹H} NMR (121 MHz; CDCl₃) δ 26.8.
¹H NMP (270 MHz; CDCl) δ 1.48-2.20 (14H m, phobane). ¹H NMR (270 MHz; CDCl₃) δ 1.48–2.20 (14H, m, phobane),

2.67 (3H, d, J_{HP} = 15.0 Hz, CH₃N). ¹³C{¹H} NMR (67 MHz; CDCl₃) δ 21.5 (d, J_{CP} = 2.0 Hz, CH₂), 22.9 (d, J_{CP} = 4.6 Hz, CH₂), 23.7 (d, $J_{\rm CP}$ = 3.1 Hz, CH₂), 28.1 (d, $J_{\rm CP}$ = 10.9 Hz, CH₃N), 31.2 $(d, J_{CP} = 14.0 \text{ Hz}, \text{ CH}_2), 33.0 \text{ (d, } J_{CP} = 26.9 \text{ Hz}, \text{ CH}).$ Elemental analysis: Found (Calc. for $C_9H_{18}NP$) C, 63.5 (63.1); N, 8.1 (8.1); H, 10.4 (10.6) %. MS (ESI: m/z 171 (M⁺).

Preparation of PhobPNHⁱPr (L_b)

PhobPCl (0.88 g, 5.0 mmol) was dissolved in a solution of i PrNH₂ (1.54 mL, 20.1 mmol) in THF (9.0 mL). The resulting suspension was stirred at room temperature for 16 h and the filtered to remove the isopropylammonium chloride. The solvent was removed under reduced pressure to give an oily residue which was dissolved in toluene (10 mL) to precipitate any remaining isopropylammonium chloride. This toluene solution was filtered to remove the methylammonium chloride and then the solvent was evaporated to dryness to give a colourless oil (0.57 g, 63%). ${}^{31}P_1^{\{1}H\}$ NMR (121 MHz; CDCl₃) δ 15.5. ¹H NMR (270 MHz; CDCl₃) δ 1.47-2.15 (14H, m, phobane), 1.14 (6H, d, J_{HP} = 6.2 Hz, CH₃N), 3.1-3.3 (1H, m, CH). ${}^{13}C_1^{1}H$ } NMR (75 MHz; CDCl₃) δ 21.6 (s, CH₂), 22.9 (s, CH₂), 24.0 (d, J_{CP} = 3.1 Hz, CH₃), 26.7 (d, J_{CP} = 6.9 Hz, CH₂), 29.5 (d, $J_{\rm CP}$ = 9.2 Hz, CH), 31.4 (d, $J_{\rm CP}$ = 13.8 Hz, CH₂), 48.6 (d, J_{CP} = 24.3 Hz, CH). Elemental analysis: Found (Calc. for $C_{11}H_{22}NP$ C, 66.7 (66.3); N, 6.9 (7.0); H, 11.3 (11.1) %. HRMS (EI): Found (Calc. for $C_{11}H_{22}NP$ 199.1496 (199.1490).

Preparation of $[PhobP(=\text{NHMe})PPhob]Cl$ (L'_c·HCl)

A solution of PhobPCl (0.530 g, 3.03 mmol) in CH_2Cl_2 (2.0 mL) was added in portions to a solution of L_a (0.510 g, 3.00 mmol)) and N-methylpyrrolidine (2.40 g, 28.2 mmol) in CH_2Cl_2 (2 mL). The reaction mixture was stirred for 3 h and then the solvent was removed under reduced pressure. The resulting white solid was recrystallised from hot MeCN to afford white crystals (0.43 g, 45%). ^{31}P {¹H} NMR (121 MHz; CDCl₃) δ 46.5 (d, J_{PP} = 407 Hz), -24.2 (d, J_{PP} = 407 Hz). ¹H NMR (400 MHz; CDCl₃) δ 1.60-2.54 (28H, m, phobane), 2.66 (3H, dd, J_{HP} = 12.3 Hz, $J_{\rm HP}$ = 5.68 Hz, CH₃N), 7.01 (1H, m, H*Cl*). ¹³C {¹H} NMR $(100 \text{ MHz}; \text{CDCl}_3)$ δ 20.4 $(d, J_{\text{CP}} = 6.9 \text{ Hz})$, 20.7 $(d, J_{\text{CP}} = 6.9 \text{ Hz})$, 20.8 (d, J_{CP} = 6.9 Hz), 21.2 (d, J_{CP} = 1.5 Hz), 21.9 (d, J_{CP} = 6.9 Hz), 24.9 (d, J_{CP} = 6.1 Hz), 25.1 (d, J_{CP} = 6.1 Hz), 26.2 (d, $J_{CP} = 6.1 \text{ Hz}$, 26.9 (d, $J_{CP} = 6.1 \text{ Hz}$), 27.3 (d, $J_{CP} = 6.1 \text{ Hz}$), 27.5 (dd, $J_{\rm CP}$ = 9.2 Hz, $J_{\rm CP}$ = 1.5 Hz) 27.7 (d, $J_{\rm CP}$ = 3.8 Hz), 28.9 (t, $J_{\rm CP}$ = 3.84 Hz), 32.7 (d, $J_{\rm CP}$ = 14.6 Hz), 32.9 (d, $J_{\rm CP}$ = 15.3 Hz). Elemental analysis: Found (Calc. for $C_{17}H_{32}CINP_2$) C, 59.1

(58.7); N, 3.8 (4.0); H, 9.4 (9.3) %. HRMS (EI): Found (Calc. for $C_{17}H_{32}NP_2$) 312.2004 (312.2011).

Preparation of PhobP(=NMe)PPhob (L'_c)

To the solution of L_a (0.45 g, 2.6 mmol) in THF (3.0 mL), a 1.6 M solution of n BuLi (4.5 mL, 7.20 mmol) in hexane was added at −78 °C over 5 min. The reaction mixture was stirred at −78 °C for 40 min. PhobPCl (0.45 g, 2.6 mmol) in THF (2 mL) was added in portions to the cooled reaction mixture. The mixture was allowed to warm to room temperature and stirred for 2 h. The solvent was then removed under reduced pressure and the residue was triturated with diethyl ether (10 mL). The solid was filtered off and dried. satisfactory elemental analysis was not obtained and the product was used without further purification $(0.52 \text{ g}, 65\%)$ $^{31}P(^{1}H)$ NMR (121 MHz, C_6D_6) δ 30.7 (d, J_{PP} = 320 Hz), -32.3 (d, J_{PP} = 320 Hz). ¹H NMR (300 MHz, C₆D₆) δ 1.25-2.52 (14H, m, phobane), 2.62 (3H, dd, J_{HP} = 14.5 Hz, J_{HP} = 5.7 Hz, CH₃N).

Preparation of PhobPNMePPh₂ (L_f)

Aminophobane L_a (0.280 g, 1.64 mmol) and NEt₃ (0.220 g, 2.17 mmol) were dissolved in MeCN (1 mL). To this stirred mixture, $Ph₂PCI$ (0.380 g, 2.12 mmol) was added dropwise over 5 min. The reaction mixture was stirred for 2 h to give a white solid, which was filtered off and recrystallised from hot MeCN to afford white needles (0.44 g, 69%). ^{31}P { ^{1}H } NMR (121 MHz; CD₂Cl₂) NMR δ 57.6 (d, J_{PP} = 80 Hz), 51.1 (d, J_{PP} = 80 Hz). ¹H NMR (270 MHz; CD_2Cl_2) δ 1.21-2.24 (14H, m, phobane), 2.32 (3H, dd, J_{HP} = 4.3 Hz, J_{HP} = 8.5 Hz CH₃N), 7.05-7.22, 7.55–7.69 (10H, 2 m, ArH). 13 C 4 H} NMR (67 MHz; CD₂Cl₂) δ 21.8 (d, J_{CP} = 1.5 Hz, CH₂), 23.2 (d, J_{CP} = 2.6 Hz, CH₂), 28.7 $(dd, J_{CP} = 20.7 \text{ Hz}, J_{CP} = 11.9 \text{ Hz}, \text{ CH}_3N), 30.2 \text{ (d, } J_{CP} = 17.1 \text{ Hz},$ CH₂), 33.0 (dd, J_{CP} = 16.6 Hz, J_{CP} = 7.2 Hz, CH), 24.1 (t, J_{CP} = 3.1 Hz, CH₂), 128.2 (d, J_{CP} = 5.7 Hz, CH), 128.4 (s, CH) 132.2 $(d, J_{CP} = 19.2 \text{ Hz}, \text{ CH})$, 138.4 $(dd, J_{CP} = 16.6 \text{ Hz}, J_{CP} = 1.0 \text{ Hz}, \text{ C}$. Elemental analysis: Found (Calc. for $C_{21}H_{27}NP_2$) C, 71.8 (70.9); N, 4.5 (4.0); H, 7.8 (7.6) %. HRMS (EI): Found (Calc. for $C_{21}H_{27}NP_2$) 355.1613 (355.1619).

Preparation of PhobPNMeP(o -Tol)₂ (L_g)

Aminophobane L_a (0.200 g, 1.16 mmol) and NEt₃ (0.240 g, 2.32 mmol) were dissolved in MeCN (1 mL). To this stirred mixture, $(\text{o-Tol})_2$ PCl (0.580 g, 1.52 mmol) was added dropwise over 5 min. The reaction mixture was stirred for 16 h to give the white solid product, which was filtered off and recrystallized from hot MeCN to afford white needles (0.17 g, 38%). ${}^{31}P$ {¹H} NMR (121 MHz; CD₂Cl₂) δ 60.2, (d, J_{PP} = 80 Hz), 36.8 $(d, J_{PP} = 80 \text{ Hz})$. ¹H NMR (300 MHz; CD₂Cl₂) δ 1.44–2.59 (14H, m, phobane), 2.34 (3H, dd, J_{HP} = 3.9 Hz, J_{HP} = 8.9 Hz, CH_3N), 2.35 (6H, s, CH₃), 7.07–7.42 (8H, m, HAr). 13 C 4 H} (100 MHz; CD_2Cl_2) 21.0 (d, J_{CP} = 5.3 Hz, CH₃), 21.2 (d, J_{CP} = 5.3 Hz, CH₃), 21.7 (d, $J_{\rm CP}$ = 1.5 Hz, CH₂), 23.1 (d, $J_{\rm CP}$ = 3.0 Hz, CH₂), 24.3 (t, J_{CP} = 2.8 Hz, CH₂), 28.7 (dd, J_{CP} = 20.7 Hz, J_{CP} = 11.5 Hz, CH₃N), 30.5 (dd, J_{CP} = 16.9 Hz, J_{CP} = 1.1 Hz CH₂), 33.9 (dd, J_{CP} $= 16.1$ Hz, $J_{CP} = 6.1$ Hz, CH), 128.5 (s, CH) 125.5 (s, CH), 130.3 (d, $J_{\rm CP}$ = 3.8 Hz, CH), 131.6 (d, $J_{\rm CP}$ = 2.3 Hz, CH), 136.7 (dd,

 J_{CP} = 17.6 Hz, J_{CP} = 1.5 Hz, C), 141.7 (d, J_{CP} = 26.9 Hz, C). Elemental analysis: Found (Calc. for $C_{23}H_{31}NP_2$) C, 72.2 (72.0); N, 3.8 (3.6); H, 8.1 (8.1) %. HRMS (EI): Found (Calc. for $C_{23}H_{31}NP_2$) 383.1931 (383.1932).

Preparation of [PhobP($=$ NH 1 Pr)PPh₂]Cl (L'_h·HCl)

 $Ph₂PCI$ (0.90 g, 5.0 mmol) was added dropwise to a solution of L_b (0.83 g, 4.2 mmol) and N-methylpyrrolidine (0.39 g, 4.2 mmol) in CH_2Cl_2 (5 mL). The reaction mixture was stirred for 1 h and the solvent was then removed under reduced pressure. The resulting white solid was recrystallised from hot MeCN to yield white crystals (0.71 g, 44%) suitable for X-ray crystallography. ${}^{31}P_1{}^{1}H$ } NMR (121 MHz; CDCl₃) δ 50.0 (d, J_{PP} = 338 Hz), 39.1 (d, J_{PP} = 338 Hz). ¹H NMR (400 MHz; CDCl₃) δ 0.94 (6H, d, J_{HH} = 6.2 Hz, CH₃), 1.35 (1H, d, J_{HH} = 6.4 Hz, CH), 1.74–2.94 (14H, m, phobane), 7.46–7.54, 7.64–7.77 (10H, 2 m, HAr). $^{13}C_1^{1}H$ } NMR (100 MHz; CD₂Cl₂) δ 20.5 (d, J_{CP} = 5.4 Hz), 20.9 (d, $J_{\rm CP}$ = 4.6 Hz), 25.1 (d, $J_{\rm CP}$ = 4.6 Hz), 26.6 (d, $J_{\rm CP}$ = 5.3 Hz), 27.7 (d, $J_{\rm CP}$ = 2.3 Hz), 28.1 (s), 46.6 (s), 128.5 (d, $J_{\rm CP}$ = 8.5 Hz), 130.2 (d, $J_{\rm CP}$ = 7.6 Hz), 131.4 (s), 134.9 (d, $J_{\rm CP}$ = 2.3 Hz). HRMS (EI): Found (Calc. for $C_{23}H_{32}NP_2$) 384.2004 (384.1999). Published the space of 11 enero 2016. On $f_{\rm cr} = 7.8$ Hz, $f_{\rm cr} = 7.8$ Hz,

Preparation of [PhobP($=$ NH i Pr)P(o -Tol) $_{2}$]Cl (L' $_{i}$ ·HCl)

A solution of $(o\text{-}Tol)_2$ PCl $(0.620 \text{ g}, 2.51 \text{ mmol})$ in MeCN (5.0 mL) was added in portions to PhobPNH(i Pr) (L_{b}) (0.530 g, 2.67 mmol) and N-methylpyrrolidine (3.20 g, 37.5 mmol) in MeCN (5 mL). The reaction mixture was stirred for 1 h and then the solvent was removed under reduced pressure. The remaining white solid was recrystallised from hot MeCN to yield white crystals (0.71 g, 62%). $^{31}{\rm P}$ { $^{1}{\rm H}$ } NMR (161 MHz; CDCl₃) δ 49.3 (d, J_{PP} = 359 Hz), -39.8 (d, J_{PP} = 359 Hz). Η (400 MHz; CDCl₃) δ 0.89 (6H, d, J_{HH} = 6.36 Hz, CH₃ⁱPr), 1.65–2.40 (14H, m, phobane), 2.53 (6H, s, CH3), 7.20–7.40 (8H, m, HAr). $^{13}C_1^{1}H$ } NMR (100 MHz; CDCl₃) δ 19.5 (dd, J_{CP} = 14.1 Hz, $J_{\rm CP}$ = 5.4 Hz), 21.1 (d, $J_{\rm CP}$ = 24.1 Hz), 23.8 (d, $J_{\rm CP}$ = 4.6 Hz), 25.8 (d, $J_{\rm CP}$ = 6.2 Hz), 26.8 (d, $J_{\rm CP}$ = 10.9 Hz), 28.5 (d, $J_{\rm CP}$ = 3.8 Hz), 28.9 (d, J_{CP} = 4.6 Hz), 45.6 (d, J_{CP} = 4.6 Hz), 123.8 (dd, $J_{\rm CP}$ = 14.0 Hz, $J_{\rm CP}$ = 3.8 Hz), 126.7 (s), 130.4 (d, $J_{\rm CP}$ = 7.8 Hz), 135.9 (d, $J_{\rm CP}$ = 7.0 Hz), 142.3 (dd, $J_{\rm CP}$ = 31.9 Hz, $J_{\rm CP}$ = 7.0 Hz). Elemental analysis: Found (Calc. for $C_{25}H_{36}C_NP_2$) C, 67.0 (67.0) ; N, 3.5 (3.1) ; H, 8.5 (8.1) %.

Preparation of $Cy₂PNMePCy₂ (L₃)$

Cy₂PCl (2.79 g, 11.9 mmol) was dissolved in CH₂Cl₂ (6.0 mL). To this, a 2 M THF solution of $MENH₂$ (3.0 mL, 6.0 mmol) and $NEt₃$ (1.30 g, 12.8 mmol) were added dropwise over 5 min. The resulting suspension was stirred for 16 h. The solvent was then removed under reduced pressure and the residue was redissolved in toluene (30 mL). The $[Et₃NH]Cl$ salt was filtered off to give a clear solution. The solvent was removed under reduced pressure to give the crude product, which was recrystallized from hot acetonitrile (0.77 g, 32%). ${}^{31}P_1^{\{1}H\}$ NMR $(121 \text{ MHz}; \text{ CDCl}_3)$ δ 86.8. ¹H NMR $(300 \text{ MHz}; \text{ CDCl}_3)$ δ 1.10–1.60 (44H, m, CH and CH₂), 2.64 (s, CH₂), 27.2 (s, CH₂), 29.5 (t, $J_{\rm CP}$ = 9.2 Hz, CH₃N). ¹³C{¹H} NMR (300 MHz; CDCl₃)

 δ 26.7 (d, J_{CP} 36.9 Hz, CH₃), 26.8 (s, CH₂), 24.9 (s, CH₂), 32.2 (t, J_{CP} 8.6 Hz, CH), 45.7 (s, CH₃). Elemental analysis: Found (Calc. for $C_{25}H_{47}NP_2$ C, 70.4 (70.9); N, 2.8 (3.3); H, 11.4 (11.2) %. HRMS (CI): Found (Calc. for $[C_{25}H_{47}NP_{2}H]$) 424.3262 (424.3262).

Preparation of trans- $[PtCl₂(PhobPNHMe)₂]$ (1a)

PhobPNHMe (0.069 g, 0.45 mmol) was dissolved in CH_2Cl_2 (2.0 mL) . $[\text{PtCl}_2(\text{NC}^t\text{Bu})_2]$ $(0.086 \text{ g}, 0.23 \text{ mmol})$ was added and the resulting yellow solution was stirred for 2 h. The solvent was reduced to ca. 1 mL and then hexane (4 mL) was added to give the yellow precipitated product (0.080 g, 57%). $^{31}P(^{1}H)$ NMR (121 MHz; CDCl₃) δ 46.3 ($J_{\rm PtP}$ = 2638 Hz). ¹H NMR (300 MHz; CDCl₃) δ 1.52–2.16 (28H, m, phobane), 2.98 (6H, t, $J_{\rm HP}$ = 6.6 Hz, CH₃N). ¹³C{¹H} NMR (75 MHz; CDCl₃) δ 21.3 (s), 22.1 (s), 24.2 (t, J_{CP} = 6.6 Hz), 25.8 (s), 29.2 (s), 30.8 (s). Elemental analysis: Found (Calc. for $C_{18}H_{36}Cl_2N_2P_2Pt$) C, 35.4 (35.5); H, 5.5 (6.0); N, 4.6 (5.0) %. HRMS (EI): Found (Calc. for $[C_{18}H_{36}Cl_2N_2P_2Pt]H$ 608.1451 (608.1438). Open Access Article. Published on 11 enero 2016. Downloaded on 05/10/2024 16:21:08. This article is licensed under a [Creative Commons Attribution 3.0 Unported Licence.](http://creativecommons.org/licenses/by/3.0/) **[View Article Online](https://doi.org/10.1039/c5dt04394h)**

Preparation of *trans*-[PtCl₂(PhobPNHⁱPr)₂] (1b)

PhobPNHⁱPr (0.18 g, 0.90 mmol) was dissolved in $\mathrm{CH_2Cl_2}$ (2.0 mL) . $[\text{PtCl}_2(\text{NC}^t\text{Bu})_2]$ $(0.20 \text{ g}, 0.46 \text{ mmol})$ was added and the resulting yellow solution was stirred for 2 h. The solvent was reduced to ca. 1 mL and then hexane (4 mL) was added to give the yellow precipitated product (0.26 g, 85%). $^{31}P(^{1}H)$ NMR (121 MHz; CDCl₃) δ 40.4 ($J_{\rm PtP}$ = 2646 Hz). ¹H NMR (300 MHz; CDCl₃) δ 1.56–2.15, 2.55–2.76 (28H, m, phobane), 1.31 (12H, d, J_{HH} = 6.6 Hz, CH₃¹Pr), 4.14-4.26 (2H, m, CH). ¹³C{¹H} NMR (75 MHz; CDCl₃) δ 21.4 (t, *J*_{CP} = 2.3 Hz), 22.0 (t, J_{CP} = 2.3 Hz), 25.4 (t, J_{CP} = 24.3 Hz). Elemental analysis: Found (Calc. for $C_{22}H_{44}Cl_2N_2P_2Pt$) C, 39.7 (39.7); N, 3.9 (4.2); H, 6.6 (6.6) %. MS (ESI): m/z 665.21 $(M + 2H)^+$.

Preparation of trans- $[Cr(CO)₄(PhobPNHMe)₂]$ (2a)

PhobPNHMe (0.048 g, 0.29 mmol) was dissolved in CH_2Cl_2 (4.0 mL). $[Cr(CO)_{4}(\eta^{4})$ -norbornadiene)] (0.048 g, 0.15 mmol) was added and the resulting yellow solution was stirred for 24 h. The solvent was removed under reduced pressure and the resulting yellow solid product was washed with hexane $(0.023 \text{ g}, 26\%)$. ${}^{31}P_1{}^{1}H_1$ NMR $(121 \text{ MHz}; \text{CDCl}_3) \delta 102.5$. ${}^{1}H$ NMR (300 MHz; CDCl₃) δ 1.53-2.57 (28H, m, phobane), 2.70 (6H, d, J_{HH} = 8.4 Hz, CH₃N). ¹³C{¹H} NMR (75 MHz; CDCl₃) δ 21.5 (d, $J_{\rm CP}$ = 52.2 Hz, CH₃), 26.4 (s, CH₂), 28.3 (s, CH₂), 29.9 $(t, J_{CP} = 8.6$ Hz, CH). HRMS (ES): Found (Calc. for $C_{22}H_{36}CrN_2O_2P_2$) 506.1552 (506.1555). IR (CH₂Cl₂): $\nu(CO)$ 1869, 1858 cm−¹ .

Preparation of $trans\text{[Cr(CO)_4(PhobPNH^iPr)_2]}$ $(2b)$

PhobPNH $\rm ^{i}$ Pr (0.078 g, 0.39 mmol) was dissolved in CH2Cl2 (4.0 mL) . $[Cr(CO)_{4}(\eta^{4})$ -norbornadiene)] $(0.050 \text{ g}, 0.19 \text{ mmol})$ was added and the resulting yellow solution was stirred for 24 h. The solvent was removed under reduced pressure and the resulting yellow solid product was washed with hexane $(0.042 \text{ g}, 36\%)$. ${}^{31}P({}^{1}H)$ NMR (121 MHz; CDCl₃) δ 94.9.
¹H NMP (300 MHz; CDCl) d 1.24 (12H d J = 6.4 Hz ¹H NMR (300 MHz; CDCl₃) d 1.24 (12H, d, J_{HH} = 6.4 Hz,

Preparation of $[PtCl_2(Cy_2PNMePCy_2)]$ (4)

To a solution of L_3 (0.032 g, 0.070 mmol) in CH₂Cl₂ (2 mL), $[PtCl_2(NC^tBu)₂]$ (0.034 g, 0.070 mmol) in CH_2Cl_2 (2 mL) was added and the mixture was stirred for 2 h. The solvent was then reduced to ca. 2 mL, hexane was added (4 mL) and a yellow solid was obtained (0.023 g, 47%). ${}^{31}P_1^{\{1}H\}$ NMR $(121 \text{ MHz}; \text{CDCl}_3) \delta 37.1 (J_{\text{PP}} = 3211 \text{ Hz}).$ ¹H NMR (300 MHz; CDCl₃) δ 1.20–1.97 (44H, m, CH and CH₂), 2.72 (3H, t, J_{HP} = 9.4 Hz, CH₃N). ¹³C $\{^1H\}$ NMR (75 MHz; CDCl₃) δ 25.7 (s), 26.9 (m) 28.7 (s), 27.9 (s), 38.0 (t, J_{CP} = 15.2 Hz). Elemental analysis: Found (Calc. for $C_{25}H_{47}Cl_{2}NP_{2}Pt$) C, 43.3 (43.5); N, 2.3 (2.0); H, 6.8 (6.9) %. HRMS (EI): Found (Calc. for $C_{25}H_{47}CNP_{2}Pt$) 653.2529 (653.2520).

Preparation of $[PtCl_3(PhobP(=\text{NHMe})\text{PPhob})]$ (5)

A mixture of $\mathbf{L'}_{\mathbf{c}}$ ·HCl (0.025 g, 0.070 mmol) and $[\text{PtCl}_2(\text{NC}'\text{Bu})_2]$ $(0.034 \text{ g}, 0.070 \text{ mmol})$ were dissolved in CH_2Cl_2 (5 mL) and stirred for 2 h to give a yellow solution. Warming this solution to 40 °C led to the slow formation of yellow crystals of the product 5 suitable for X-ray crystallography. Satisfactory elemental analysis was not obtained and the crystals were insoluble in common organic solvents which precluded further characterisation by NMR spectroscopy.

Preparation of $[PdCl₂(PhobPNMePPhob)]$ (6)

To a suspension of L'_{c} (0.031 g, 0.099 mmol) in toluene (3 mL) , $[\text{PdCl}_2(\text{cod})]$ $(0.031 \text{ g}, 0.12 \text{ mmol})$ was added. The suspension was stirred at 50 °C for 5 min. The clear reaction mixture was then cooled to room temperature and the resulting yellow precipitate was filtered off and washed with hexane (0.010 g, 20%). Crystals suitable for X-ray crystallography were grown from $CDCl₃$ although satisfactory elemental analysis was not obtained. $\mathrm{^{31}P(^{1}H)}$ NMR (121 MHz; CDCl₃) δ 37.0. $\mathrm{^{1}H}$ NMR (300 MHz; CDCl₃) δ 1.65-2.40 (28H, m, phobane), 2.58 $(d, J_{HP} = 8.3 Hz)$. HRMS (EI): Found (Calc. for $\left[{\rm C}_{17}{\rm H}_{31}{\rm NP}_2{\rm ClPd}\right]^+$) 452.0672 (452.0649).

Preparation of $[Cr(CO)₄(PhobPNMePPh₂)]$ (7)

To a solution of L_f (0.030 g, 0.070 mmol) in CH_2Cl_2 (2 mL), $[Cr(CO)_4(\eta^4{\text -}norborna diene)]$ (0.018 g, 0.070 mmol) in CH_2Cl_2 (2 mL) was added. The resulting yellow solution was stirred for 24 h. The solvent was then removed under reduced pressure to yield a yellow solid, which was washed with hexane (5 mL) $(0.014 \text{ g}, 27\%)$. $^{31}P_1^{1}H$ } NMR $(121 \text{ MHz}, \text{CDCl}_3) \delta$ 105.7 $(\text{d}, J_{\text{PP}} =$ 42 Hz), 108.1 (d, J_{PP} = 42 Hz). ¹H NMR (300 MHz, CDCl₃) δ 1.50–2.65 (14H, m, phobane), 2.97 (3H, t, J_{HP} = 6.9 Hz, CH₃N), 7.33-7.59 (10H, m, HAr). ¹³C {¹H}NMR (125 MHz; CD₂Cl₂) δ 20.3 (d, J_{CP} = 7.8 Hz), 21.2 (d, J_{CP} = 6.3 Hz), 23.4 (d, J_{CP} = 4.4 Hz), 23.6 (d, J_{CP} = 8.3 Hz), 29.6 (m), 34.7 (m), 126.1 (d, J_{CP} = 10.7 Hz), 126.7 (d, J_{CP} = 12.2 Hz) 132.7 (m). HRMS (EI):

Table 4 Crystal data and structure refinement for all structures in the paper

Paper **Dalton Transactions**

Found (Calc. for $C_{25}H_{27}CrNO_4P_2$) 519.0812 (519.0820). IR (in CH₂Cl₂): ν (CO) 2003, 1910, 1885, 1873 cm⁻¹.

Preparation of $[Cr(CO)₄(PhobPNMeP(o-Tol)₂)]$ (8)

To a solution of L_g (0.030 g, 0.060 mmol) in CH₂Cl₂ (2 mL), $[Cr(CO)_4(\eta^4\text{-norborn}] (0.017 \text{ g}, 0.060 \text{ mmol})$ in CH_2Cl_2 (2 mL) was added. The resulting yellow solution was stirred for 24 h. The solvent was then removed under reduced pressure to yield a yellow solid, which was washed with hexane (5 mL) (0.021 g, 30%). ${}^{31}P_1^1H$ } NMR (121 MHz, CDCl₃) δ 104.1 (d, J_{PP} = 27 Hz), 104.6 (d, $J_{\rm PP}$ = 27 Hz). ¹H NMR (300 MHz, CDCl₃) δ 1.24 (6H, s, CH₃), 1.52-2.65 (14H, m, phobane), 2.97 (3H, dd, J_{HP} = 7.4 Hz, J_{HP} = 8.1 Hz, CH₃N), 7.11-7.56 (8H, m, HAr). HRMS (EI): Found (Calc. for $C_{27}H_{31}CrNO_4P_2$) 547.1130 (547.1133). IR (in CH₂Cl₂): ν (CO) 2003, 1908, 1885, 1869 cm⁻¹.

Oligomerisation catalysis

A rigorously cleaned autoclave was heated (130 °C) under vacuum for 60 min, then cooled to reaction temperature and back-filled with Ar (1 bar). Solvent was then added via syringe. The autoclave was pressurised with ethylene to 10 bar and vented. On a Schlenk line, a pre-activated catalyst solution was prepared by stirring the Cr source, ligand and modified methylaluminoxane (MMAO) together for 60 s, then transferred to the autoclave via syringe. The autoclave was pressurised and the pressure kept constant throughout the reaction by the continuous addition of ethylene, which was monitored via flow-meter. Once ethylene uptake had ceased or the autoclave was filled, the gas supply was closed and the reactor cooled to 5 °C. The reactor was carefully vented. The reactor contents were treated with 1000 μL of nonane (GC internal standard) and 10% HCl (aq). A sample of the organic phase was taken for GC-FID analysis. Any solid formed was collected, washed repeatedly with EtOH, then acetone and dried overnight and weighed.

GC-FID analysis was performed on an Agilent Technologies 6890N GC system equipped with PONA (50 m \times 0.20 mm \times 0.50 μm) and MDN-12 (60 m \times 0.25 mm \times 0.25 μm) columns. Catalysis was performed in a stainless steel 300 mL volume AE autoclave with Viton-ETP seals, equipped with a customised gas-entraining mechanical stirrer, internal cooling coil (tap water) and fluidised jacket (connected to an external thermostatic bath). Ethylene was passed through moisture and oxygen scrubbing columns prior to use and the flow measured using a Siemens Sitrans F C Massflo system (Mass 6000-Mass 2100) and the data logged.

Crystal structure determinations

X-ray diffraction experiments for 1b, 3, 4, 5, 6 and L_h ·HCl were carried out at 100 K and for 2b at 173 K on a Bruker APEX II diffractometer using Mo-K_α radiation ($\lambda = 0.71073$ Å). 7 was collected at 120 K on a Bruker Nonius FR591 Rotating Anode using Mo-K_α radiation ($\lambda = 0.71073$ Å)²⁵ and 8 was collected on EH1 of Station I19 of Diamond Light Source $(\lambda = 0.71073 \text{ Å})$ at 120 K. 26 Data collections were performed using a CCD area detector from a single crystal mounted on a glass fibre. Inten-

Table 4

(Contd.)

sities were integrated using SAINT with a multi-scan absorption correction preformed using SADABS. 27 All structures were solved using SHELXS and refined against all ${F_{\rm o}}^2$ using SHELXL and OLEX2.²⁸ All non-hydrogen atoms were refined anisotropically and hydrogen atoms were located geometrically and refined using a riding model. The structure of 4 was refined as a racemic twin and restraints were applied to the thermal displacement parameters to maintain sensible values. Crystal structure and refinement data are given in Table 4. The structures are shown in Fig. 1–8 with thermal ellipsoids drawn at the 50% probability level. Published on 11 External Commons are computed on 11 enero 2016. The Windows Article is an article of the model on the common and the state of t

Acknowledgements

We thank Sasol for a Ph.D. studentship (JJ). We thank the Bristol Chemical Synthesis Centre for Doctoral Training, funded by EPSRC (EP/G036764/1), and the University of Bristol, for a Ph.D. studentship (LR).

References

- 1 (a) M. F. Haddow, A. J. Middleton, A. G. Orpen, P. G. Pringle and R. Papp, Dalton Trans., 2009, 202–209 and references therein; (b) J. A. Gillespie, D. L. Dodds and P. C. J. Kamer, Dalton Trans., 2010, 39, 2751–2764; (c) F. Matthey, in Phosphorus-Carbon Heterocyclic Chemistry, Elsevier, 2001.
- 2 L. Kollár and G. Keglevich, Chem. Rev., 2010, 110, 4257– 4302.
- 3 D. L. Dodds, J. Floure, M. Garland, M. F. Haddow, T. R. Leonard, C. L. McMullin, A. G. Orpen and P. G. Pringle, Dalton Trans., 2011, 40, 7137–7146 and references therein.
- 4 For recent examples see: (a) C. Schotten, D. Plaza, S. Manzini, S. P. Nolan, S. V. Ley, D. L. Browne and A. Lapkin, ACS Sustainable Chem. Eng., 2015, 3, 1453–1459; (b) D. Schweitzer and K. D. Snell, Org. Process Res. Dev., 2015, 19, 715–720; (c) S. Manzini, A. Poater, D. J. Nelson, L. Cavallo, A. M. Z. Slawin and S. P. Nolan, Angew. Chem., Int. Ed., 2014, 53, 8995–8999; (d) S. Manzini, D. J. Nelson, T. Lebl, A. Poater, L. Cavallo, A. M. Z. Slawin and S. P. Nolan, Chem. Commun., 2014, 50, 2205–2207; (e) J. A. Bailey, M. F. Haddow and P. G. Pringle, Chem. Commun., 2014, 50, 1432–1434; (f) S. Raoufmoghaddam, E. Drent and E. Bouwman, Adv. Synth. Catal., 2013, 355, 717–733; (g) M. Czapiewski, O. Kreye, H. Mutlu and M. A. R. Meier, Eur. J. Lipid Sci. Technol., 2013, 115, 76–85; (h) A. Behr, S. Krema and A. Kämper, RSC Adv., 2012, 2, 12775–12781; (i) M. Yoshida, T. Nemoto, Z. Zhao, Y. Ishige and Y. Hamada, Tetrahedron: Asymmetry, 2012, 23, 859–866; (j) D. M. Ohlmann, N. Tschauder, J.-P. Stockis, K. Gooβen, M. Dierker and L. Gooβen, J. Am. Chem. Soc., 2012, 134, 13716–13729.
- 5 (a) J. P. Mulders, Neth. Patent, 660409 to Shell, 1966; (b) J. L. V. Winkle and R. F. Mason, U. S. Patent, 3400163 to Shell, 1968; (c) J. L. V. Winkle, R. C. Morris and R. F. Mason, Ger. Patent, 1909620 to Shell, 1969; (d) P. N. Bungu and S. Otto, Dalton Trans., 2007, 2876; (e) J. M. Birbeck, A. Haynes, H. Adams, L. Damoesense and S. Otto, ACS Catal., 2012, 2, 2512–2523; M. de Boer-Wildschut, M. Charernsuk, C. A. Krom and P. G. Pringle, World Patent, WO2012072594, 2012.
- 6 N. Fey, M. Garland, J. P. Hopewell, C. L. McMullin, S. Mastroianni, A. G. Orpen and P. G. Pringle, Angew. Chem., Int. Ed., 2012, 51, 118–122.
- 7 K. Blann, A. Bollmann, H. de Bod, J. T. Dixon, E. Killian, P. Nongodlwana, M. C. Maumela, H. Maumela, A. E. McConnell, D. H. Morgan, M. J. Overett, M. Prétorius, S. Kuhlmann and P. Wasserscheid, J. Catal., 2007, 249, 244–249.
- 8 A. Bollmann, K. Blann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. S. McGuinness, D. H. Morgan, A. Neveling, S. Otto, M. Overett, A. M. Z. Slawin, P. Wasserscheid and S. Kuhlmann, J. Am. Chem. Soc., 2004, 126, 14712–14713.
- 9 (a) D. F. Wass, Dalton Trans., 2007, 816–819; (b) P. W. N. M. van Leeuwen, N. D. Clement and M. J.- L. Tschan, Coord. Chem. Rev., 2011, 255, 1499–1517; (c) D. S. McGuinness, Chem. Rev., 2011, 111, 2321; (d) T. Agapie, Coord. Chem. Rev., 2011, 255, 861; (e) G. P. Belov, Pet. Chem., 2012, 52, 139–154; (f) G. J. P. Britovsek, R. Malinowski, D. S. McGuiness, J. D. Nobbs, A. K. Tomov, A. W. Wadsley and C. T. Young, ACS Catal., 2015, 5, 6922–6925.
- 10 (a) M. C. Maumela, K. Blann, H. de Bod, J. T. Dixon, W. F. Gabrielli and D. B. G. Williams, Synthesis, 2007, 3863–3867 and references therein; (b) K. G. Gaw, M. B. Smith, J. B. Wright, A. M. Z. Slawin, S. J. Coles, M. B. Hursthouse and G. J. Tizzard, J. Organomet. Chem., 2012, 699, 39–47 and references therein.
- 11 L. E. Bowen, M. Charernsuk, T. W. Hey, C. L. McMullin, A. G. Orpen and D. F. Wass, Dalton Trans., 2010, 39, 560– 567.
- 12 J. M. Lister, M. Carreira, M. F. Haddow, A. Hamilton, C. L. McMullin, A. G. Orpen, P. G. Pringle and T. E. Stennett, Organometallics, 2014, 33, 702–714.
- 13 M. Carreira, M. Charernsuk, M. Eberhard, N. Fey, R. van Ginkel, A. Hamilton, W. P. Mul, A. G. Orpen, H. Phetmung and P. G. Pringle, J. Am. Chem. Soc., 2009, 131, 3078–3092.
- 14 (a) A. Roodt, S. Otto and G. Steyl, Coord. Chem. Rev., 2003, 245, 121–137; (b) M. L. Clarke, D. J. Cole-Hamilton, A. M. Z. Slawin and J. D. Woollins, Chem. Commun., 2000, 2065–2066.
- 15 M. R. Eberhard, E. Carrington-Smith, E. E. Drent, P. S. Marsh, A. G. Orpen, H. Phetmung and P. G. Pringle, Adv. Synth. Catal., 2005, 347, 1345–1348.
- 16 I. Pernik, J. F. Hooper, A. B. Chaplin, A. S. Weller and M. C. Willis, ACS Catal., 2012, 2, 2779–2786.
- 17 Z. Fei, R. Scopelliti and P. J. Dyson, Eur. J. Inorg. Chem., 2004, 530–534.
- 18 P. Boulens, M. Lutz, E. Jeanneau, H. Olivier-Bourbigou, J. N. H. Reek and P.-A. R. Breuil, Eur. J. Inorg. Chem., 2014, 3754–3762.
- 19 V. L. Foss, Y. A. Veits, T. E. Chernykh and I. F. Lutsenko, Zh. Obshch. Khim., 1984, 54, 2670–2684.
- 20 (a) Z. Fei, R. Scopelliti and P. J. Dyson, Dalton Trans., 2003, 2272–2779; (b) Z. Fei, N. Biricik, D. Zhao, R. Scopelliti and P. J. Dyson, Inorg. Chem., 2004, 43, 2228–2230. Open Access Articles. Published on 11 Enero 2016. Downloaded on 11 enero 2016. Downloaded on 2016. Downloaded on 11 enero 2016. The Enero 2016. The Creative Commons Articles. The Creative Commons Articles. The Creative Com
	- 21 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics, 1996, 15, 1518.
	- 22 M. A. Bennett, L. Pratt and G. Wilkinson, J. Chem. Soc., 1961, 2037.
- 23 D. Fraccarollo, R. Bertani, M. Mozzon, U. Belluco and R. A. Michelin, Inorg. Chim. Acta, 1992, 201, 15–22.
- 24 D. Drew and J. R. Doyle, Inorg. Synth., 1991, 28, 346–349.
- 25 S. J. Coles and P. A. Gale, Chem. Sci., 2012, 3, 683–689.
- 26 H. Nowell, S. A. Barnett, K. E. Christensen, S. J. Teat and D. R. Allan, J. Synchrotron Radiat., 2012, 19, 435–441.
- 27 Bruker-Nonius, SAINT version 7.32A, 2006, Bruker-AXS, Madison, Wisconsin, USA; G. M. Sheldrick, SADABS V2008/ 1, University of Göttingen, Germany.
- 28 (a) G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112–122; (b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.