Issue 2, 2024

Metal dimer nanojunction-magnetic material composites for magnetic field sensing

Abstract

Noble metal nanocrystals are used as high sensitivity optoelectronic sensors, such as surface-enhanced Raman scattering, SERS. The sensing performance of metal nanocrystals can be further improved by forming dimer nanojunctions with strong “plasmonic coupling”. Since the strength of “plasmonic coupling” is highly sensitive to the sub-nanoscale spacing between plasmonic nanocrystals in nanojunctions, nanojunctions can be used to detect external stimuli that can change the spacing of nanocrystals in the nanojunction and thus change the sensitivity of the Raman scattering spectrum. Here, we utilize this principle to detect the direction and strength of an external magnetic field (MF) using dimer nanojunctions surrounded by magnetic materials as a sensing platform. The results reveal that the changes in nanocrystal spacing in the nanojunction are caused by the rearrangement of the magnetic material under an external MF, which strongly depends on the interaction between the magnetic material and the ligands on the nanocrystal surface and the steric repulsion generated by the ligand configuration on the nanocrystal surface. Compared with the Raman spectrum without an external MF, the enhancement factors of the Raman scattering spectrum under an external MF can reach up to ∼900%, which makes dimer nanojunctions with magnetic materials suitable for “magnetic field” sensing applications.

Graphical abstract: Metal dimer nanojunction-magnetic material composites for magnetic field sensing

  • This article is part of the themed collection: #MyFirstMH

Supplementary files

Article information

Article type
Communication
Submitted
14 oct. 2023
Accepted
06 nov. 2023
First published
13 nov. 2023

Mater. Horiz., 2024,11, 442-453

Metal dimer nanojunction-magnetic material composites for magnetic field sensing

G. Chen, F. Liu and S. Hsu, Mater. Horiz., 2024, 11, 442 DOI: 10.1039/D3MH01694C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements