Metal–organic framework-derived semiconductors for photocatalytic hydrogen production
Abstract
Hydrogen production as a green renewable fuel using photocatalysis is a viable approach that can realize a near-zero emission from clean energy consumption while promoting environmental sustainability. Metal–organic frameworks-derived semiconductors (MOF-SCs) have emerged as promising candidates to drive this technology due to the unique intrinsic properties they can acquire from the parent MOFs through careful design and synthesis, making them highly attractive for energy and environmental applications. MOF-SCs have shown great potential for simultaneous energy production and environmental remediation, referred to as dual-functional photocatalysis (DFP). However, only a little is understood about how to maximize their activity for efficient performance in DFP. Herein, we describe different strategies associated with the design, synthesis, and application of MOF-SCs for hydrogen production and provide insights into their potential for DFP, which is considered a sustainable way of maximizing the photocatalytic system.
- This article is part of the themed collection: Molecular Engineering in MOFs: Beyond Reticular Chemistry