Time-difference blow-spinning to a flexible dual-scale multilayer fabric for highly efficient electromagnetic interference shielding†
Abstract
A new kind of pollution known as electromagnetic interference (EMI) caused by the ubiquitous usage of integrated electronic devices and communication systems is attracting increasing attention. The design and mass-production of functional materials for large-scale, flexible, and curved surface EMI shielding remains a challenge. In this study, we have developed a time-difference blow-spinning technology to continuously fabricate multilayer polyacrylonitrile (MLPAN) nanofibers; on combining with roll-to-roll dip-coating post-processing, a flexible Ti3C2Tx/MLPAN hybrid fabric was obtained. It shows a special dual-scale multilayer structure, including a primary multilayer structure from MLPAN, and a secondary nanoscale multilayer structure from Ti3C2Tx. The hybrid fabric is lightweight (639.0 mg cm−3), with high conductivity (23327.40 S m−1) and good mechanical stability. Moreover, this hybrid fabric exhibits a remarkable EMI shielding property with a shielding efficiency of 61.8 dB, which is attributed to the synergistic effect of surface reflection, internal multiple scattering and multiple reflections.
- This article is part of the themed collection: Stability of Optoelectronic Materials and Devices