Issue 37, 2022

FeII spin crossover complexes containing N4O2 donor ligands

Abstract

Spin crossover (SCO) is one of the most studied magnetic bistable phenomena because of its application in the field of multifunctional magnetic materials. FeII complexes in a N6 coordination environment have been the most well-studied in terms of their SCO behaviour. Other coordination environments, notably the N4O2 coordination environment, has also been quite effective in inducing SCO behaviour in the corresponding FeII complexes. This review deals with such systems. The three ligand families that are discussed are: Jager type ligands, hydrazone based ligands and tridentate ligands having salicylaldehyde derivatives. These ligands allow the assembly of both mononuclear and multinuclear complexes that exhibit cooperative spin transitions. Also, FeII complexes obtained from some of these ligands are multifunctional and exhibit a coupling of optical and magnetic properties. Most of the FeII complexes obtained from these families of ligands are charge neutral which allows easy surface deposition. Further, modulation of these ligand families allows a fine tuning of the ligand field strength which results in varying SCO behavior. In addition some of the FeII complexes derived from these ligands exhibit a light induced excited spin state trapping (LIESST) effect. All of the above aspects are reviewed in this review.

Graphical abstract: FeII spin crossover complexes containing N4O2 donor ligands

Article information

Article type
Perspective
Submitted
21 jun. 2022
Accepted
21 ago. 2022
First published
22 ago. 2022

Dalton Trans., 2022,51, 13995-14021

FeII spin crossover complexes containing N4O2 donor ligands

B. Dey and V. Chandrasekhar, Dalton Trans., 2022, 51, 13995 DOI: 10.1039/D2DT01967A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements