Issue 14, 2021

3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects

Abstract

Repair of osteochondral defects is still a challenge, especially the regeneration of hyaline cartilage. Parathyroid hormone (PTH) can inhibit the hypertrophy of chondrocytes to maintain the phenotype of hyaline cartilage. Here, we aimed to construct a bio-printed biphasic scaffold with a mechanical gradient based on dual modification of silk fibroin (SF) for the integrated repair of osteochondral defects. Briefly, SF was grafted with PTH (SF-PTH) and covalently immobilized with methacrylic anhydride (SF-MA), respectively. Next, gelatin methacryloyl (GM) mixed with SF-PTH or SF-MA was used as a bio-ink for articular cartilage and subchondral bone regeneration. Finally, the GM + SF-PTH/GM + SF-MA osteochondral biphasic scaffold was constructed using 3D bioprinting technology, and implanted in a rabbit osteochondral defect model. In this study, the SF-PTH bio-ink was synthesized for the first time. In vitro results indicated that the GM + SF-MA bio-ink had good mechanical properties, while the GM + SF-PTH bio-ink inhibited the hypertrophy of chondrocytes and was beneficial for the production of hyaline cartilage extracellular matrix. Importantly, an integrated GM + SF-PTH/GM + SF-MA biphasic scaffold with a mechanical gradient was successfully constructed. The results in vivo demonstrated that the GM + SF-PTH/GM + SF-MA scaffold could promote the regeneration of osteochondral defects and maintain the phenotype of hyaline cartilage to a large extent. Collectively, our results indicate that the integrated GM + SF-PTH/GM + SF-MA biphasic scaffold constructed by 3D bioprinting is expected to become a new strategy for the treatment of osteochondral defects.

Graphical abstract: 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects

Supplementary files

Article information

Article type
Paper
Submitted
05 abr. 2021
Accepted
11 may. 2021
First published
13 may. 2021

Biomater. Sci., 2021,9, 4891-4903

3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects

C. Deng, J. Yang, H. He, Z. Ma, W. Wang, Y. Zhang, T. Li, C. He and J. Wang, Biomater. Sci., 2021, 9, 4891 DOI: 10.1039/D1BM00535A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements