Issue 9, 2019

Development of an automated kinetic profiling system with online HPLC for reaction optimization

Abstract

Automated kinetic profiling is a valuable tool for providing insights into key mechanistic features of complex catalytic systems. In an attempt to optimize a palladium-catalyzed Suzuki cross-coupling reaction, automated kinetic profiling was utilized with offline liquid chromatography to monitor reaction progress. Upon uncovering analytical sample instability issues, an online HPLC capability was developed and implemented through integration of a Chemspeed liquid handling robot with an Agilent HPLC to facilitate automated reaction set-up and monitoring. Application of this capability resulted in the observation that precatalyst activation was a key factor influencing the reaction rate. Leveraging this mechanistic insight, a more efficient method to access the active catalyst was developed. This change resulted in a five-fold increase in the reaction rate.

Graphical abstract: Development of an automated kinetic profiling system with online HPLC for reaction optimization

Supplementary files

Article information

Article type
Communication
Submitted
23 feb. 2019
Accepted
25 mar. 2019
First published
29 mar. 2019

React. Chem. Eng., 2019,4, 1555-1558

Development of an automated kinetic profiling system with online HPLC for reaction optimization

M. Christensen, F. Adedeji, S. Grosser, K. Zawatzky, Y. Ji, J. Liu, J. A. Jurica, J. R. Naber and J. E. Hein, React. Chem. Eng., 2019, 4, 1555 DOI: 10.1039/C9RE00086K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements