Three-step-in-one synthesis of supercapacitor MWCNT superparamagnetic magnetite composite material under flow†
Abstract
Composites of multi-walled carbon nanotubes (MWCNTs) and superparamagnetic magnetite nanoparticles, Fe3O4@MWCNT, were synthesized in DMF in a vortex fluidic device (VFD). This involved in situ generation of the iron oxide nanoparticles by laser ablation of bulk iron metal at 1064 nm using a pulsed laser, over the dynamic thin film in the microfluidic platform. The overall processing is a three-step in one operation: (i) slicing MWCNTs, (ii) generating the superparamagnetic nanoparticles and (iii) decorating them on the surface of the MWCNTs. The Fe3O4@MWCNT composites were characterized by transmission electron microscopy, scanning transmission electron microscope, TG analysis, X-ray diffraction and X-ray photoelectron spectroscopy. They were used as an active electrode for supercapacitor measurements, establishing high gravimetric and areal capacitances of 834 F g−1 and 1317.7 mF cm−2 at a scan rate of 10 mV s−1, respectively, which are higher values than those reported using similar materials. In addition, the designer material has a significantly higher specific energy of 115.84 W h kg−1 at a specific power of 2085 W kg−1, thereby showing promise for the material in next-generation energy storage devices.
- This article is part of the themed collection: Supercapacitors