Issue 6, 2019

Ultra-programmable buckling-driven soft cellular mechanisms

Abstract

Buckling, which was once considered the epitome of design failure, has been harnessed during the last few years to develop mechanical metamaterials with advanced functionalities. Soft robotics in general and soft actuators in particular could greatly benefit from such designer materials. Unlocking the great potential of buckling-driven materials is, however, contingent on resolving the main limitation of the designs presented to date, namely the limited range of their programmability. Here, we present multi-material buckling-driven metamaterials with high levels of programmability. We combined rational design approaches based on predictive computational models with advanced multi-material additive manufacturing techniques to 3D print cellular materials with arbitrary distributions of flexible and stiff materials in the central and corner parts of their unit cells. Using the geometry and spatial distribution of material properties as the main design parameters, we developed soft mechanical metamaterials behaving as mechanisms whose actuation force and actuation amplitude could be adjusted both independently and concomitantly within wide ranges. Our designs also resulted in the emergence of a new lowest instability mode, i.e. double-side buckling, in addition to the already known modes of side-buckling and symmetric compaction. Finally, we proposed a general approach to pre-dispose our soft mechanical metamaterials such that they can reliably actuate their higher instability modes without any need for additional boundary conditions or fixtures. To demonstrate this approach, we created a cellular mechanism with a rotational buckling pattern that clones the functionality of mechanical machines. The potential of the presented designs in robotics is then demonstrated by applying them as a force switch, kinematic controllers, and a pick and place end-effector.

Graphical abstract: Ultra-programmable buckling-driven soft cellular mechanisms

Supplementary files

Article information

Article type
Communication
Submitted
22 ene. 2019
Accepted
04 abr. 2019
First published
07 jun. 2019
This article is Open Access
Creative Commons BY license

Mater. Horiz., 2019,6, 1138-1147

Ultra-programmable buckling-driven soft cellular mechanisms

S. Janbaz, F. S. L. Bobbert, M. J. Mirzaali and A. A. Zadpoor, Mater. Horiz., 2019, 6, 1138 DOI: 10.1039/C9MH00125E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements