Volume 199, 2017

Modifying surface forces through control of surface potentials

Abstract

Combining direct surface force measurements with in situ regulation of surface potential provides an exceptional opportunity for investigating and manipulating interfacial phenomena. Recently, we studied the interaction between gold and mica surfaces in water with no added salt, while controlling the metal potential, and found that the surface charge at the metal may vary, and possibly even change its sign, as it progressively approaches the (constant-charge) mica surface [Langmuir, 2015, 31(47), 12845–12849]. Such a variation was found to directly affect the nature of the contact and adhesion between them due to exclusion of all mobile counterions from the intersurface gap. In this work, we extend this to examine the potential-dependent response of the adhesion and interaction between gold and mica to externally applied voltages and in electrolyte solution. Using a surface force balance (SFB) combined with a three-electrode electrochemical cell, we measured the normal interaction between gold and mica under surface potential regulation, revealing three interaction regimes – pure attraction, non-monotonic interaction from electrostatic repulsion to attraction (owing to charge inversion) and pure repulsion. Accordingly, the adhesion energy between the surfaces was found to vary both in no added salt water and, more strongly, in electrolyte solution. We justify this potential-dependent variation of adhesion energy in terms of the interplay between electrostatic energy and van der Waals (vdW) interaction at contact, and attribute the difference between the two cases to the weaker vdW interaction in electrolyte solution. Finally, we showed that through abruptly altering the gold surface potential from negative to positive and vice versa, the adhesion between gold and mica can be reversibly switched on and off. We surmise that the process of bringing the surface into contact is associated with the formation of a strong electric field O (108 V m−1) in the intersurface gap.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
19 dic. 2016
Accepted
05 ene. 2017
First published
24 abr. 2017

Faraday Discuss., 2017,199, 261-277

Modifying surface forces through control of surface potentials

R. Tivony and J. Klein, Faraday Discuss., 2017, 199, 261 DOI: 10.1039/C6FD00255B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements