Recent progress in the application of group 1, 2 & 13 metal complexes as catalysts for the ring opening polymerization of cyclic esters
Abstract
High performance biodegradable polymers (e.g., aliphatic polyesters) that can display properties that rival polyolefins are seen as future high demand materials for a variety of applications. Importantly, these types of polymers can be accessed by the ring opening polymerization (ROP) of monomers that can, in some cases, be derived from cheap biorenewable resources highlighting the sustainability of the process. Carefully designed metal complexes that can act as catalysts for such transformations have emerged as useful tools to achieve this goal. This review is concerned with recent progress in the use of well-defined metal complexes based on group 1, 2 and 13 metals to mediate the formation of aliphatic polyesters with a focus on the role played by the auxiliary ligand on influencing catalytic efficiency, controllability, molecular weight as well as stereoselectivity. More specifically, we report on developments in the design, synthesis and structure of such main group metal species supported by various multidentate ligands including bidentate, tridentate and tetradentate families bearing nitrogen, oxygen, sulfur, selenium or phosphorus donor atoms and their catalytic applications in the ROP of cyclic esters. In addition, the fundamental coordination chemistry of the metal complexes is discussed alongside variations in catalytic performance.
- This article is part of the themed collection: 2019 Inorganic Chemistry Frontiers Review-type Articles