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Insights into the nucleation and growth of BiOCl
nanoparticles by in situ X-ray pair distribution
function analysis and in situ liquid cell TEM+
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The synthesis of bismuth oxyhalides as defined nanostructures is hindered by their fast nucleation and
growth in aqueous solutions. Using our recently developed single-source precursor, the formation of
bismuth oxychloride in such solutions can be slowed significantly. As reported herein, this advance
enables BiOCl formation to be investigated by in situ X-ray total scattering and in situ liquid cell trans-
mission electron microscopy. In situ pair distribution function analysis of X-ray total scattering data
reveals the local order of atomic structures throughout the synthesis, while in situ liquid cell transmission
electron microscopy allows for tracking the growth of individual nanoparticles. Through this work, the
precursor complex is shown to give rise to BiOCl upon heating in solution without the observation of
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structurally distinct intermediates. The emerging nanoparticles have a widened interlayer spacing, which
moderately decreases as the particles grow. Mechanistic insights into the formation of bismuth oxyhalide
nanoparticles, including the absence of distinct intermediates within the available time resolution, will
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Introduction

Solar water splitting is a useful method to store solar energy in
chemical bonds." ™ After a semiconductor absorbs sunlight of
energy greater than its bandgap, photogenerated holes and
electrons can migrate to the surface of the semiconductor to
oxidize and reduce water to O, and H,, respectively."'** The
produced hydrogen can then be stored until needed as a
fuel.>>*'52% Tapping into solar energy in such a carbon
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help facilitate future design of controlled BiOX nanostructures.

neutral way makes the use of photocatalytic systems a promis-
ing route to replace non-renewable resources like fossil fuels.

A photocatalytic material with an appropriate band gap is
key for the success of solar water splitting. Heteroanionic
materials like oxynitrides, oxyhalides, and oxysulfides com-
monly have smaller band gaps than their oxide counterparts,
as the less electronegative atoms raise the valence band
minimum.>'">® This smaller band gap allows for a wider spec-
trum of wavelengths of light to be wused to initiate
photocatalysis.

Bismuth oxyhalides of the form BiOX (X = Cl, Br, I) have a
band gap that is tunable from only UV absorbing when X = Cl
to visible absorbing when X = Br or 1.>°”*° Their structure fur-
thermore minimizes electron-hole recombination.*** BiOX
materials are comprised of positively charged [Bi,0,]*" layers
and negatively charged double halide layers, e.g., [CI]” for
BiOCI (Fig. $17).** These charged layers give rise to a static
internal electric field which, in turn, spatially separates photo-
generated holes and electrons to the negatively and positively
charged layers, respectively.’** This spatial separation mini-
mizes recombination and facilitates an efficient use of charge
carriers in photocatalytic redox reactions.

Bismuth oxyhalides can be readily obtained via hydrolysis-
based precipitation reactions occurring when bismuth and
halide ions are simultaneously present in aqueous

This journal is © The Royal Society of Chemistry 2024
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solution.?”*®*33 The general insolubility of Bi** compounds
in aqueous media (e.g, BiOCI Ky 505 x = 1.8 x 107°")’° causes
these precipitations to occur so rapidly that there is not
enough time for shape-controlling agents to affect the final
morphology. Precipitation syntheses therefore often result in
large aggregates of polycrystalline particles.’®  The
resulting speed of BiOCI precipitation furthermore impeded
detailed experimental studies on the involved formation
mechanism.

Mechanistic understanding can facilitate the design of new
syntheses with desired outcomes. Classical nucleation the-
ories, such as the LaMer model, are typical starting points for
mechanistic explanations of nanoparticle formation in
solution.?”*® The chemistry involved in nucleation and growth
processes is, however, vastly underrepresented in these the-
ories.*® One assumption in LaMer’s approach is that the result-
ing nanoparticles are spherical (isotropic) and of constant
shape.’” Additionally, classical nucleation theory assumes a
single interfacial energy term for the nanoparticle.’”

Both assumptions are inconsistent for bismuth oxyhalide
systems due to their layered crystal structures. The surface
energies of the tetragonal crystal’s facets differ vastly: yj01; <
Yio10} < Y110} (0.026, 0.532, 1.426 ] m ™2, respectively).*’ To mini-
mize the overall surface energy,*" BiOCI particles preferentially
grow in-plane, giving rise to a high degree of anisotropy. The
resulting nanoplates have highly expressed {001} facets and
smaller {010} facets at their sides.

Thus, more complex mechanistic models are needed to
account for the intricacies of BiOCl formation. Despite this,
the current understanding about the BiOCl formation process
is limited. While Bi*" is known to hydrolyze rapidly in the
absence of strongly acidic conditions,** the structure of the
hydrolyzation product involved in BiOCl formation is not
agreed upon. One hypothesis assumes an initial hydrolyza-
tion step to yield H" and covalently bound [Bi,0,]*".>° By
coupling of the [BiZOZ]2+ cations to CI™ anions via electro-
static interactions, individual [Cl-Bi-O-Bi-Cl] nuclei form
and subsequently grow in-plane to minimize their overall
surface energy. Stacking of these layers in the ¢ direction
through van der Waals interactions then gives rise to
BiOCL.*>*?* This hypothesis is rooted in the layered BiOCl
structure and the Bi*" hydrolysis mechanism proposed by
Garnér and Sillén.*® They suggested the formation of co-
valently bound [Bi,0,]*" layers upon hydrolysis through ‘poly-
meric-like growth in 2D. More extensive studies did,
however, show that hydrolyzed Bi*" in solution takes on the
form of discrete cluster species, among which the hexamer
[Big(OH),,]*" is particularly stable at the high Bi** concen-
trations typically applied in BiOCI syntheses.**** Whether
this model holds true in the presence of Cl™ anions is,
however, not clear. Until now, the rapid nature of BiOCI for-
mation prevented direct experimental insight into the influ-
ence of Cl~ on the hydrolyzation process of Bi** and thereby
into the mechanism yielding BiOCl. In this work, we take
first steps towards such direct evidence aiming to experi-
mentally test the proposed models.
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Single-source precursors have been demonstrated to supply
the necessary atoms for a chemical process in a single
molecule.”>*® Recently, we developed single-source precursors
for bismuth oxyhalides which include BiClLac (Fig. 1a), a
metal-organic complex composed of a central Bi** bound with
four bidentate 3-chlorolactate ligands (ClLac).*’” Via a proposed
nucleophilic substitution mechanism, water replaces the chlor-
ine on the ligand.*® Releasing this chloride ion into solution
initiates precipitation with Bi** as BiOCl. Temperature corre-
lates with the ligand’s reactivity and, thereby, provides a way to
tune the generation rate of chloride ions in situ, and thus the
BiOCl formation rate.
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Fig. 1 (a) BiClLac complex reference structure as obtained from a cut-

out of the full crystal structure (CCDC Deposition 2211246, Refcode
AFADEU).%” The respective xyz coordinates are listed in Table S1.1 (b)
Comparison of PDF of the precursor solution and the reference PDF cal-
culated based on the same parameters. Characteristic peaks are
assigned to the respective interatomic distances and the unphysical
peak at 0.75 A is highlighted. A detailed discussion of the background
subtraction approach regarding this peak is given in the ESI.¥ The experi-
mental PDF has an acquisition time of 10 min. (c) Comparison of the
experimental PDF and the reference PDF from (b) focusing on the Bi-O
peak splitting. The Bi—O distances expected for the BiClLac reference
structure (2.34 A and between 2.45 A and 2.47 A)¥ are indicated in
purple, while estimates for the experimentally observed Bi—O distances
in solution are given as black lines. (d) Refinement of the BiCllLac
complex to the precursor PDF from (b), including a refinement of the
chlorine Bj, values. A fit range of 1.7 to 20 A was used. The results of
this refinement are listed in Table S2.}

Nanoscale, 2024, 16,15544-15557 | 15545


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4nr01749h

Open Access Article. Published on 19 julio 2024. Downloaded on 15/11/2025 5:02:34 p.m..

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

The significantly slowed BiOCI formation provided by these
single-source precursors allows the formation and growth pro-
cesses to be probed. Such studies have not been possible
before now. Here, two complementary techniques—Pair
Distribution Function (PDF) analysis of in situ X-ray total scat-
tering (TS) data and in situ liquid cell transmission electron
microscopy (LCTEM)—are used to provide insights into the
early stages of BiOCI formation from the atomic scale to the
nanoscale.

PDF analysis of in situ TS data monitors the evolution of the
local atomic structure throughout the synthesis. This method-
ology has been widely applied to study the formation of],
among others, metal and metal oxide nanoparticles*>*® as
well as metal organic frameworks.”" The reduced pair distri-
bution function, G(r), is obtained from TS data via a Fourier
transform and both Bragg and diffuse scattering are included
in the analysis.’**® In situ studies based on PDF analysis can
therefore provide information on the atomic scale structure of
species present both prior to and after crystallization. The PDF
is, in essence, a histogram of interatomic distances, r. The
intensity of a PDF peak is governed by both the atomic
number of the involved atoms and the frequency of the
respective distance. Thus, PDF makes it possible to extract
qualitative information through model free analysis. If
more intricate insights are sought, structural models can be
refined to the data.® By applying this technique in situ,
precursor structures, amorphous intermediates, and the local
structure of emerging particles can be studied for a given
synthesis.

Complementarily to in situ PDF, in situ LCTEM provides the
opportunity to visually follow the early stages of nanoparticle
formation.>*® LCTEM involves encasing a small volume of
solution in a chamber which is then imaged using an electron
beam. Here, an aqueous solution of BiClLac was sandwiched
between two chips containing silicon nitride membrane
windows (Fig. S21). One of the liquid cell chips contains a
resistive coil allowing for in situ heating of the reaction solu-
tion. This setup was used to sequentially image the solution
with electron microscopy as the solution was heated.
Importantly, the electron beam is not an innocuous imaging
tool but inherently influences the studied system, so beam
effects limit in situ LCTEM experiments. The electron beam
has the ability to reduce metal cations, generate radicals from
water, and thereby degrade nanostructures.’®®®® Such electron
beam-induced artifacts are reduced in this study by minimiz-
ing the electron dose to replicate ex situ conditions (i.e., no
electron beam) as closely as possible.

Previously, in situ TEM experiments have shown the degra-
dation of BiOCl nanocrystals under electron beam irradiation
by imaging previously synthesized nanoparticles.®® Those
were, however, not liquid cell experiments, nor did they probe
the formation process. These differences are important, as par-
ticle formation is not simply the reverse of particle degra-
dation. Other TEM experiments have followed the growth of
metallic Bi on BiOCI®” and explored metallic Bi growth in solu-
tion and ex situ,°®°° but the literature still lacks the founda-
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tional understanding and imaging of BiOCl formation and
structural evolution.

Experimental
Materials

Bismuth nitrate pentahydrate (98%) and (+)-3-chloropropane-
1,2-diol (98%) were purchased from Alfa Aesar. Nitric acid
(ACS Plus) and ethyl acetate (ACS) were purchased from Fisher.
Chloroform (ACS) was obtained from Macron. NaCl (>99.0%)
was purchased from VWR. MgSO, (>98.0%, anhydrous) was
obtained from EMD Millipore. All chemicals were used as
received. Milli-Q (18.2 MQ-cm at 25 °C) purified water was
used for all experiments.

Synthesis of 3-chlorolactic acid

The synthesis of 3-chlorolactic acid has been fully described in
our previous publication.”® Briefly, (+)-3-chloropropane-1,2-
diol was added to a round bottom flask. Concentrated nitric
acid was added with stirring. (CAUTION: handling large
amounts of concentrated acids is dangerous, and the reaction
produces NO, gases. For these reasons, it is critical to perform
these steps in a fume hood.) A condenser was attached, and
the flask was heated slowly with stirring to 80 °C until a vigor-
ous reaction started. The reaction was kept at 80 °C for 30 min
and then raised to 100 °C for another 30 min. The solution
was cooled and then neutralized. The product was extracted
using ethyl acetate, washed with brine, dried over MgSO,, and
concentrated. Chloroform was added to the crude product and
kept at —20 °C overnight to produce 3-chlorolactic acid (ClLac).
Fourier-transform infrared spectroscopy (FTIR), 'H nuclear
magnetic resonance spectroscopy (NMR), high-resolution
mass spectrometry (HRMS), and melting point match previous
results.”®

Synthesis of aqueous BiClLac

The synthesis of BiClLac here is based on our previous publi-
cation.”” For in situ LCTEM experiments in TEM mode,
3-chlorolactic acid (0.498 g, 4.00 mmol, 4.00 equiv.) was added
to a 10 mL volumetric flask and dissolved by adding a portion
of water. Bismuth nitrate pentahydrate (0.485 g, 1.00 mmol,
1.00 equiv.) was added and mixed with vortexing and soni-
cation. The flask was filled to the mark with water and
thoroughly mixed for a final concentration of 0.100 M BiClLac.
Haziness was observed when the ligand : bismuth nitrate pen-
tahydrate ratio was less than 4: 1, so any haziness was treated
by adding slight excess of 3-chlorolactic acid and mixing. The
solution could be further purified by filtering to remove any
unreacted bismuth compounds which could cause hetero-
geneous nucleation. "H and **C NMR and FTIR spectra match
previous results.”” The pH of this solution was 0.89. For in situ
LCTEM experiments in STEM mode, the precursor concen-
tration was decreased to 3.33 mM BiClLac. For in situ PDF
experiments, the precursor concentration was 0.2 M BiClLac.

This journal is © The Royal Society of Chemistry 2024
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In situ and ex situ X-ray total scattering

The in situ X-ray total scattering (TS) experiments were con-
ducted at beamline P21.1, PETRAIII, Deutsches Electronen-
Synchrotron (DESY) in Germany, in a custom-made setup for
in situ studies similar to one previously used by Mathiesen
et al.*® The setup is composed of an aluminum block with cut
out slots for NMR tubes with the precursor solutions. The pre-
cursor solution was injected into a thin NMR tube (Wilmad)
with a 3 mm diameter and a wall thickness of 0.29 mm, ensur-
ing a high transmission of X-rays. The NMR tubes were posi-
tioned vertically in the in situ setup and fixed by springs.
When the experiments were initiated, the entire aluminum
block was heated to 90 °C at a heating rate of 3 °C min™". The
temperature was monitored using a thermocouple, which was
placed in an adjacent NMR tube filled with sand. TS data were
collected in transmission geometry using a PerkinElmer
XRD1621 area detector with a pixel size of 200 x 200 pm in the
RA-PDF setup mode.”* A wavelength of 1 = 0.122 A and a
sample-to-detector distance of ca. 400 mm were used. The
latter was calibrated using a LaBs standard and Fit2D.”>””* The
collected 2D data had a time resolution of 10 s per frame and
were integrated using Dioptas.”

X-ray powder diffraction

Ex situ X-ray powder diffraction (PXRD) data of the reaction
product was collected at room temperature right after an
in situ TS experiment conducted by first heating to 70 °C and
subsequently heated up to 90 °C. The sample-to-detector dis-
tance was changed to ca. 1400 mm and calibrated with
Fit2D’*7* using a LaBs standard. Apart from that, setup and
conditions remained the same.

PDF analysis

The pair distribution functions (PDFs) were obtained with the
ad hoc approach of PDFgetX3,”® using the following para-
meters: Qmax,inst = 23.7 A7 Qmin = 1.5 A7, Qax = 18 A%, 1y
= 0.9 A. In line with the stoichiometry of the precursor
complex single crystal, Bi(C3H,0;Cl);(C;H50;Cl), a compo-
sition estimate of BiC;,H;,0,,Cl; was used when calculating
the PDFs."” Reference TS data acquired from a 0.8 M aqueous
3-chlorolactic acid solution in the in situ setup was subtracted
as background: for the in situ data, TS data measured during
the heating of this 3-chlorolactic acid solution from RT to
90 °C functioned as the background. For ex situ data, TS data
of the empty NMR tube was additionally used for a separate
subtraction of the glass and the RT solution background.
Qdamp and Qproaqa Were determined based on the PDF of a LaBg
standard. The PDFs of crystalline BiOCl particles were ana-
lyzed using real space Rietveld refinements in PDFgui.”” The
precursor structure did not exhibit long-range order and was
therefore modeled using the DebyePDFCalculator in DiffPy-
CML.”® The sequential refinement of the in situ PDF data was
conducted backwards, ie., starting from the last frame
(76.66 min of heating) of the data set. Nyquist sampling was
applied for all the sequentially refined data, except the frame

This journal is © The Royal Society of Chemistry 2024
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used for the initial refinement (76.66 min of heating). The
individual modeling parameters and parameter restrictions of
each refinement are listed in the ESL{

PXRD data analysis

The PXRD data was fitted using Topas Academic’® and the
Rietveld method.?® The instrumental resolution function was
determined based on a LaBg standard. Apart from scaling
factors and lattice parameters, the peak shape parameters of
the BiOCl phase were refined using the Thompson-Cox-
Hastings Pseudo Voigt function (U, V, W, X, Y, and Z refined).
The preferred orientation of the BiOCl particles was accounted
for using the March-Dollase approach.?' Peak asymmetry was
refined with the Simple Axial Model for both phases.
Background scattering caused by solvent and glass contri-
butions was fitted with a polynomial function. VESTA®**> was
used to visualize the structural models used for both reciprocal
and real space refinements.

In situ liquid cell transmission electron microscopy

LCTEM studies were performed using a Protochips Poseidon
Select liquid cell holder with a PJAS tip. The liquid cell was
assembled by stacking a perfluoroelastomer gasket, small
e-chip (part EPB-52DNF, 550 pm x 20 pm x 50 nm silicon
nitride window with built-in 150 nm spacer between windows),
sample solution droplet (<1 pL), liquid heating large e-chip
(part EHT-45ZZ, 550 pm x 50 pm x 50 nm silicon nitride
window), and lid onto the holder tip and sealing with screws
(Fig. S27). The small and large e-chip windows were arranged
perpendicular to each other (crossed) for an overall viewable
volume of 50 pm x 20 pm x 150 nm (ca. 0.15 pL). Prior to
assembly, the liquid cell e-chips were cleaned for 2 min in
acetone followed by 2 min in methanol to remove the photo-
resist layer, followed by plasma cleaning for 2 min on high (30
W; Harrick Plasma PDC-001) to increase the hydrophilicity of
the chips. A leak check was then performed using a Gatan
Model 655 Dry Pumping Station. The solution was heated
using a resistive coil in the large e-chip and a Keithley 2450
power supply attached to the holder which was controlled by
the Poseidon Select software (V10.1.0.0). The chip/solution was
heated from room temperature at 5 K min™' in Movie 1}
(TEM) and at 3 K min~" in Movie 2, S1, and S2} (STEM). The
heating program and TEM recording were started simul-
taneously so time and temperature could be correlated with
individual frames.

Transmission electron microscopy

Sample analysis by TEM and selected area electron diffraction
(SAED) were collected using a JEOL JEM 1400Plus, equipped
with a LaBg source and Gatan OneView CMOS camera, operat-
ing at 120 kV. Frames were acquired using the In Situ
Acquisition feature in DigitalMicrograph. All alignments, set-
tings, and calibrations were conducted prior to the liquid cell
experiments using standard gold nanoparticles or a diffraction
grating waffle TEM sample. TEM electron dose rate was esti-
mated by first comparing the total intensities of two sets of

Nanoscale, 2024, 16, 15544-15557 | 15547


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4nr01749h

Open Access Article. Published on 19 julio 2024. Downloaded on 15/11/2025 5:02:34 p.m..

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

images under identical conditions (similar to the experimental
conditions), one with a liquid cell with sample solution, and
another with nothing in the beam path. This gave an attenu-
ation factor due to the presence of the liquid sample and
holder. Total intensities were measured from experimental
frames before any nucleation occurred. Using the attenuation
factor, the incident dose of the beam was roughly estimated.

Scanning transmission electron microscopy

Sample analysis by scanning transmission electron microscopy
(STEM) and energy-dispersive X-ray spectroscopy (EDS) were
conducted on a JEOL JEM 3200FS (S)TEM, equipped with a
thermal field emission gun source and Gatan 4k x 4k
UltraScan 4000 CCD camera, operating at 300 kV interfaced
with an Oxford Instruments X-max" 100 TLE silicon drift
detector. STEM frames were acquired using an in-house
SerialEM®® script that acquired frames either continuously or
with a set delay time between frames. STEM probe current was
calculated by measuring the total intensity of the STEM probe
at the appropriate spot size over an exposure time of 0.05 s
(Fig. S371). The total counts were converted to electrons using a
conversion factor of 6.74 counts per electron for the micro-
scope and camera determined using a Faraday cup and then
finally converted from electrons per s to nA. Pixel dwell times
were between 3.8 and 8 ps. The instrument interfaces with an
Oxford INCA detector for EDS mapping.

Image processing

Automated particle size measurements were achieved through
step-by-step processing of the in situ STEM movies in Image]®*
and Fiji.*® First, particles/clusters suitable for tracking (iso-
lated, in frame throughout) were identified using TrackMate.®®
The movies were stabilized®” and then cropped to a representa-
tive area containing the particle(s) of interest. Next, the bound-
ary between particle and background was defined using an
appropriate thresholding algorithm. The TryAll function at
various timepoints, (beginning, middle, and end), allowed for
direct comparisons between the thresholding algorithms over
the whole timescale. Based on visual comparison of the
thresholds with the microscopy movie, optimal thresholding
was achieved using the Triangle®® or Yen® algorithms. The
processed binary video was inverted (to be black particles on
white background) for further analysis. Finally, the particle
size was automatically measured using the Analyze Particles
function of Fiji with no circularity limits.*> A size limitation
was selected to capture relevant particle information while
removing background noise. The movie may be further
cropped to isolate the measurements of single particle if there
are other particles nearby. Sample temperatures from
Poseidon Select were correlated to image frames and then the
labeled®® particle video was then exported. Particle sizes were
plotted as 2D size vs. time. Videos of analysis steps were
assembled for export using Blender.
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Results and discussion
In situ pair distribution function

The formation of BiOCI from BiClLac was probed by in situ
PDF. The precursor structure in solution was first studied prior
to heating and compared to a single Bi(C3H,05Cl)3(C3H;505Cl)
complex taken from the BiClLac crystal structure (CCDC
Deposition 2211246, Refcode AFADEU, cutout Fig. 1a) reported
previously.”” Due to the nature of the setup and the aqueous
solution surrounding the precursor species, a significant
amount of background scattering is observed. To extract mean-
ingful structural insight from the acquired TS data we sub-
tracted TS data of an NMR tube filled with 0.8 M ClLac solu-
tion acquired under identical conditions as the actual experi-
ments as the background. This approach assumes that the
local solvent structure is not affected by the presence of
BiClLac. Possible solvent restructuring, as it has been observed
in close proximity of nanoparticle surfaces,” is thereby
neglected.

Comparing the precursor solution PDF in Fig. 1b to the cal-
culated PDF of a single Bi(C3H,05Cl);(C3H505Cl) complex
(Fig. 1a) shows that the experimentally observed structure has
a similar correlation length as the structural model. Both
species are smaller than 10 A. The experimental PDF exhibits
an intense peak at 0.75 A (highlighted in Fig. 1b). Since this
distance is too short for it to belong to an actual interatomic
distance, it is likely an artefact of the Fourier transform> or
the background subtraction. The background subtraction strat-
egy is therefore further discussed in the ESL.{ Apart from that,
the key distances of the complex align well with the experi-
mental PDF. Significantly, no Bi-Bi distance is evident in the
experimental BiClLac PDF, which would appear as intense
peaks between 3.6 A and 3.8 A for bismuth oxo species.”* **
Thus, the formation of multinuclear Bi-based cluster struc-
tures in solution can be excluded. The main peak of the PDF at
ca. 2.45 A can be assigned to Bi-O bonds. Peak splitting points
towards more varied Bi-O distances between ca. 2.3 and 2.5 A
(Fig. 1c) that are not expected for the reference cluster
obtained from the solid state BiClLac. Although this deviation
from the reference initially seems to indicate significant struc-
tural differences, it might be caused by inherent differences
between complexes in solution and solid state instead. Most
prominently, the degree of protonation in solution can differ
from the one in solid state. Unlike the BiClLac complexes in
solid state (CCDC Deposition 2211246, Refcode AFADEU),
BiClLac in solution does not need to be partially deprotonated
to satisfy charge balance. A 0.1 M aqueous solution of BiOCl
exhibits a pH of 0.89, indicating that a large share of the
ligand’s carboxy groups are protonated. This in turn affects the
ability of these groups to function as electron donors to the
Bi** and thereby impacts the Bi-O bond distance. Moreover,
the observed Bi-O peak splits into two peaks of around equal
intensity (Fig. 1b). This ratio matches well with the bidentate
nature of the ClLac ligands and indicates that our general
hypothesis regarding the precursor structure holds despite the
Bi-O peak splitting. Nevertheless, a partial replacement of the
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ClLac ligands with aqua or hydroxy ligands cannot be ruled
out based on our PDF data. A large degree of ligand exchange
with water can, however, be excluded, as this would cause the
precipitation of bismuth, as seen for aqueous Bi(NO;); solu-
tions without ClLac ligands.

Apart from the Bi-O peak, the Bi-C distances in the struc-
tural model match well with an observed peak at ca. 3.35 A.
Ligand atoms located spatially further away from Bi (notated
as O', C' and Cl in Fig. 1a), on the other hand, experience more
freedom of movement relative to the Bi atom. Therefore, the
broad experimental features observed between 4.0 A and 6.5 A
can be assigned to the distances of O’, C’ and Cl to the central
Bi atom. The CI atoms, especially, can move significantly with
respect to the central Bi as the terminal -C'H,Cl group can
rotate around the C-C’ single bond.

Fig. 1d shows a fit of the BiClLac complex structure to the
experimental PDF. The fit makes clear that the key features of
the experimental PDF can be described by the model both
qualitatively regarding the peak positions and quantitatively
regarding the peak intensity. This is, however, only achievable
by allowing for very high atomic displacement parameters
(ADP) of the Cl atoms, i.e., 9.27 A% Fig. S51 shows a systematic
comparison of refinements conducted with different treat-
ments of the CI position and ADPs. The observation that the
fit improves substantially when the Big,(Cl) values are refined
(as in Fig. 1d) is in line with the previous argument regarding
the rotational degree of freedom of the terminal -C'H,Cl
groups. Freeing the Cl positions as well (Fig. S5ct), results in
an improved fit but unphysical C-Cl bond distances (up to
3.48 A). Since these shortcomings of the structural model are,
however, limited to the CI atom positions, they do support the
overall model choice.

The fit in Fig. 1d is based on a PDF from TS data acquired
for 10 minutes. Applying the BiClLac model to a PDF with the
acquisition time used for the in situ study (10 s, see Fig. S61)
yielded similar results, although with an even higher result for
Biso(Cl) (10 A%), reaching the upper limit of the applied Bj,(Cl)
parameter range. Collectively, the analysis of the precursor
solution PDF hints towards a precursor structure in water
closely related to that of the mononuclear BiClLac complex
structure deduced via single-crystal XRD. The PDFs clearly
show that prior to heating, no BiOCl is present.

To study BiOCI formation, the temperature of the precursor
solution was increased from 30 °C in a rate of 3 °C min™* until
reaching 90 °C. The temperature was then held over a total
heating time of 75 minutes (Fig. 2d), while collecting TS data
at a rate of 10 s per frame (460 frames in total). Fig. 2 and
Fig. S8 give an overview of the data gathered throughout the
BiOCl synthesis. Both the reciprocal space (F(Q), in Fig. 2a and
c) and the real space representation (G(r), in Fig. 2b and e) of
the TS data are shown. This data makes it possible to follow
the evolution in both the long range and local structure. In the
first 30 minutes, no significant changes are observed, neither
in the reciprocal nor the real space data. Afterwards, Bragg
peaks appear (Fig. 2a and c¢) and grow gradually in intensity as
time progresses. A comparison of these Bragg peaks to the cal-
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culated F(Q) of the reference structures can be found in
Fig. S7.7 A closer inspection of Fig. 2a reveals that prior to the
emergence of the BiOCI reflection at 2.31 A™*** a small Bragg
peak appears at the slightly lower Q of 2.19 A™". This peak is
emphasized in more detail in Fig. S9,1 where a higher time
resolution of 3 min is employed in the Q range of interest. The
peak position matches with the (040) and (131) Bragg peaks of
Bi(C,0,)OH,”® which is visualized in Fig. $10.1 To identify this
side product, more reliable PXRD data was acquired. The
respective 2D detector images (Fig. S111) show spotty Debye
Scherrer rings, indicating large Bi(C,0,)OH crystals. A two-
phase Rietveld refinement of this data using Bi(C,0,)OH and
BiOCl is given (Fig. S111) and further discussed in the ESLf}
The impact of the spotty Debye Scherrer rings on the resulting
PDF quality is discussed there as well.

The Bi(C,04)OH side product was initially surprising as it
had not been observed in the PXRD data obtained from pro-
ducts of comparable syntheses conducted outside of the syn-
chrotron beam.*” It is therefore most likely the effects of the
synchrotron irradiation that initiate the side phase for-
mation.’® Oxalate anions can be produced through the oxi-
dation of glyceric acid, which forms from the ClLac ligand
upon halide release. The oxidation of glyceric acid to oxalate
requires strong oxidizing agents such as sodium periodate or
nitric acid when performed on the bench.””® In the case of
our in situ study, however, the oxidizing agent is likely hydroxyl
radicals produced from beam-induced water radiolysis.”®*°*
Such radiolysis can occur at synchrotron sources because of
their high flux. Since hydroxyl radicals are among the strongest
known oxidizing agents, they are capable of oxidizing the
ligand to yield oxalate anions.”® Furthermore, lactate, a com-
pound structurally similar to the ClLac 