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Label-free microfluidic cell sorting and detection
for rapid blood analysis
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Blood tests are considered as standard clinical procedures to screen for markers of diseases and health
conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition
often pose significant technical challenges for accurate blood analysis. An emerging approach for point-
of-care blood diagnostics is utilizing “label-free” microfluidic technologies that rely on intrinsic cell
properties for blood fractionation and disease detection without any antibody binding. A growing body of
clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are
complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more
comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free
separation of different blood cell components including circulating tumor cells, leukocytes, platelets and
nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical
properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also
be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine
learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative
microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis.
Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for
high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for
clinical diagnostics.

hematoanalyzers can detect the presence of infections based
on cell enumeration or the neutrophil-lymphocyte ratio,*

Blood is the most complex biofluid in our body and consists
of a diverse range of circulating cell types (red blood cells
(RBCs), white blood cells (WBCs), platelets, etc.) and
biomolecules (lipids, proteins and nuclei acids) that reflect
our health and disease status." Routine blood testing is
considered a standard clinical procedure in the diagnosis of
many diseases. A typical clinical blood test measures your
complete blood count (CBC), metabolic and lipid profiles,
and hormone levels to detect pathological conditions
including diabetes, cancer and anemia.>* While CBC using
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increasing clinical evidence has shown that probing of
cellular functions,™® biophysical phenotypes,”® and non-
traditional  cellular markers (e.g  monocyte-platelet
aggregates’) is more comprehensive and invaluable in disease
detection (e.g. sepsis and COVID-19 (ref. 10-12)). Platelet
activation is also observed in viral infections such as human
immunodeficiency virus (HIV),"*'* hepatitis C virus (HCV)"
and dengue,"®"” with thrombocytopenia as a clinical
hallmark in dengue patients. Besides immune cells, diseased
cells such as circulating tumor cells (CTCs) are present in
blood during cancer metastasis which are crucial for cancer
prognosis, diagnosis and treatment monitoring.'®"°

Apart from cellular components, there is increasing
interest in studying cell-derived extracellular vesicles (EVs)
and their roles in cell-cell communication and disease
pathophysiology.?®  Circulating EVs  (exosomes and
microvesicles) in blood often contain disease-specific
information from their host cells, making them ideal
biomarkers for non-invasive liquid biopsy*! in inflammation
and injury,>*>* diabetes,”* CVD,*® cancer*® and COVID-19.%’
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Recent technological advances have also demonstrated EV-
based diagnosis for cancer,®®>° Alzheimer's disease®" and
Parkinson's disease®® with superior detection sensitivity to
conventional testing methods. Due to their nanoscale sizes
(~50 nm-1 um),** EV isolation remains a major bottleneck
and researchers are actively developing novel tools and assays
to study EV biology and improve their clinical adoption.
While blood possesses cell types and
components which makes it a rich source of biomarkers,
these cells and components can in turn increase the
complexity of analysis as the high content of cellular
components (~50% v/v) and RBC abundance (>99% of all
cells) pose significant technical challenges for many blood
tests and diagnostics. For example, the scarcity of circulating
tumor cells (CTCs) in blood (1-100 CTCs among billions of
RBCs)*"* is a major bottleneck for CTC isolation and
detection. This is further aggravated by pre-treatment steps
such as centrifugation and RBC lysis which could cause cell
loss.>®  Conventional sample preparation steps (e.g
centrifugation, density gradient centrifugation) are time
consuming, laborious and could also cause unnecessary
activation of sensitive immune cells,® platelet activation®’
and shear-induced microparticle  shedding.*®*  Other
approaches such as immunocapture using antibodies could
alter cell function or phenotype which complicates
downstream analysis.** Therefore, fast and efficient blood
separation methods are highly sought after to gain deeper
insights into their biophysiological functions and empower
clinicians with more comprehensive blood analysis.
Microfluidics has revolutionized biomedical research with
unprecedented sensitivity and efficiency by enabling small

numerous

@ White Blood Cells (WBCs)
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blood volume handling and precise control of the cell
microenvironment. In particular, label-free microfluidic
approaches which utilize intrinsic cell properties for cell
separation and detection (without using antibodies) are
extremely attractive for low-cost and rapid diagnostics.
Recently, a plethora of technologies have been reported for
label-free blood cell sorting based on cell size, shape, density
and deformability. As these cellular biophysical properties
are commonly linked to cell biology and pathology,® they
can be further exploited for label-free cell phenotyping to
identify cell diseases and cellular states’® including
lymphocyte activation,”” sepsis,"> diabetes®® and renal
diseases.**

While several reviews have been published on
microfluidic cell-sorting techniques,**® and single cell
analysis,” ™" in this review, we aim to provide a
comprehensive  overview on  recent  microfluidics

technologies (selecting publications after 2015) for label-free
blood cell separation and detection. We will first focus on
various blood fractionation techniques for microscale
(WBCs, platelets) and nanoscale (EVs) blood components
(Fig. 1). We will next summarize the applications of single
cell analysis for label-free detection (optical, mechanical and
electrical) novel blood-based

of cellular properties as

biomarkers in diseases (Fig. 8). Thirdly, we will discuss
machine learning approaches used for multi-parametric cell
profiling, and showcase integrated microfluidic platforms
that achieve complete label-free blood cell sorting and
analysis. Lastly, we will offer our perspectives on the
challenges and future directions of microfluidic-based label-
free blood diagnostics.

Label-free Blood Cell Isolation Methods
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Fig. 1 Overview of label-free blood cell sorting categorized as passive (filtration, deterministic lateral displacement (DLD), inertial microfluidics,

viscoelastic) and active (acoustophoresis and dielectrophoresis) methods.
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Fig. 2 Microfluidic filtration cell sorting. (A) CTC isolation using a tapered-slit filter fabricated with a photosensitive polymer device. Reproduced from ref. 64
with permission from Ivyspring International Publisher. (B) Schematic of the cluster-chip with triangular pillars for CTC cluster isolation. Reproduced from ref.
65 with permission from Springer Nature. (C) High throughput radial pillar device for platelet enrichment. (a) Microscope image of the device; (b) magnified
image of a sector of the device shows the varying sizes of the pillars and the pillar gaps in each of the three zones; (c) schematic of the experimental set-up
for platelet enrichment from whole blood; (d) schematic of the radial, and the cross flows. Reproduced from ref. 66 with permission from Springer Science +
Business Media. (D) Microfluidic tangential flow filtration, or cross-flow filtration device for exosome isolation and purification. Reproduced from ref. 75 with
permission from Elsevier. (E) Microfluidic cross-flow device for bacteria separation from diluted whole blood. Reproduced from ref. 72 with permission from
Elsevier. (F) Schematic of the numbering-up chip for direct leukocyte and erythrocyte separation. (a) A separation unit for particle sorting and particle
behaviors at a branch point; (b) a square, integrated structure composed of 4 separation units; (c) four arranged structures shown in image (b) connected to
a symmetrically branched inlet distribution channel. Reproduced from ref. 70 with permission from the Royal Society of Chemistry.

Label-free blood fractionation

Conventional cell sorting methods include physical
filtration,”>" density gradient centrifugation (e.g. Ficoll or
Percoll),>® and addition of labels to identify target cells prior
to isolation.® The current gold standard is fluorescence

activated cell sorting (FACS)*"** which uses flow cytometry to

1228 | Lab Chip, 2023, 23,1226-1257

detect fluorescently-labelled cells and sort them into different
populations based on surface marker expression. Another
popular approach is magnetic activated cell sorting
(MACS)>*™°® that uses antibodies conjugated with magnetic
labels for positive or negative cell selection. Despite the high
specificity and separation efficiency of these techniques, they
are mostly limited for research use due to laborious

This journal is © The Royal Society of Chemistry 2023


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2lc00904h

Open Access Article. Published on 19 enero 2023. Downloaded on 5/01/2026 10:50:12 p.m..

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Lab on a Chip

B

Clusters, @
Singles, .\\’ . Large
1

+ + Blood cells ) Clusters

O ;". L )
'
1
Stage 1 . I. ’: solution
? "
oo o

L4
Coll

uffer
Clusters

Singles, ,;.\' Small
Biood Cells Clusters

1 1

< & &,
/ 1,
<

] € & &

Micropillars Purified o
\ / \ leukocytes ') )
n e
Clean substrate O

%00 %0 %0

View Article Online

Critical review

. Leukocyte

\
&) ) 2 7Pz".q’/3
090059% NWor e

SSC-A
o

e 0 0

e

Contaminants Waste
solution outlet

4 i
q € &«
¢ i
(Waste) (Collection)
¢ Small
Waste Clusters
Pipette 10 L DLD Design
Into ¢
Open (Dm@r0)
| Reservoir
\/ ™ Undiluted a 4
Whole Blood H DLD Assay 1:
g L shape
3
)
P
= v
&
Outlet Port \
DLD Assay 2:
L' shape

Cutout collected  Vortex -Release from Spin
fractions paper into suspension down

\/

VEVEVIVIRVIRVIRVER A& )

Sampleinlet fluid Fluid from zigzag outlet vias Bump outlet fluid

Oo large and small OO ®) enriched larger
0.~9, small particles Oooo plus smaller
O particles only particles

Fig. 3 Deterministic lateral displacement (DLD). (A) Schematic representation of a cascaded DLD array device for isolation of large and small CTCs
clusters. Reproduced from ref. 79 with permission from Nature Research. (B) An integrated continuous-flow microfluidic assay to separate
leukocytes from lysed blood solution and resuspension in clean substrate solution for subsequent droplet encapsulation. Reproduced from ref. 81
with permission from the American Chemical Society. (C) Unconventional L- and inverse-L shaped pillar arrays for sorting and biophysical
measurement of immune cell population from whole blood directly. Reproduced from ref. 83 with permission from Wiley. (D) Capillary-driven based
DLD platform to isolate MCF-7 from RBCs. Reproduced from ref. 86 with permission from Royal Society of Chemistry. (E) A two-stage cascaded
DLD platform for isolating E. coli from whole blood. Reproduced from ref. 84 with permission from Nature Research. (F) NanoDLD arrays on a
silicon-glass microfluidic chip to separate EVs from serum samples. Reproduced from ref. 77 with permission from the Royal Society of Chemistry.

labeling,’"*® high cost (e.g. antibodies),’ and sorting

performance being dependent on the operators.® The
current gold standard for EV isolation is differential
ultracentrifugation (UC),”” which is not suitable for clinical
testing as it is time-consuming (~4-5 h) and prone to EV
losses.”®  Other commercial approaches such as

This journal is © The Royal Society of Chemistry 2023

immunoaffinity might affect EV functionality®® or result in
high protein contamination.® Size-exclusion chromatography
(SEC), which achieves size-based EV separation through a
resin column, has been gaining traction in recent years.®>*
A common issue for the aforementioned EV isolation
methods is that they all require pre-processed blood (plasma)

Lab Chip, 2023, 23,1226-1257 | 1229
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Inertial microfluidics and viscoelastic focusing for blood separation. (A) Illustration of cell distribution positions and force analysis in a zigzag

structured with a straight expansion channel based inertial microfluidic chip. Reproduced from ref. 93 with permission from the American Chemical
Society. (B) Size-based differential migration of cells towards buffer flow in the middle of the main channel. Reproduced from ref. 94 with permission
from Springer Nature. (C) Images of a spiral shaped single and multiplexed ExoDFF device for isolation of circulating EVs. Reproduced from ref. 97 with
permission from the Royal Society of Chemistry. (D) Schematic illustration of platelet-derived micro-particle (PDMP) separation in a straight
microfluidic device using viscoelastic non-Newtonian fluid. Reproduced from ref. 100 with permission from Wiley. (E) Schematic representation of red
blood cell and bacteria sorting in a cascaded contraction-expansion microchannels. Reproduced from ref. 101 with permission from Elsevier. (F)

Illustration of particle migration at the U-turn zigzag channel. Reproduced from ref. 103 with permission from Wiley.

as the starting sample, which itself involves several manual
centrifugation steps. In this section, we will discuss recent
progress in microfluidic label-free sorting of different blood

cellular  constituents using active (acoustophoresis,
dielectrophoresis) and passive (viscoelastic, inertial focusing,
deterministic  lateral displacement (DLD), filtration,

biomimetic cell margination) methods (Fig. 1). The
representative microfluidic techniques based on different cell
types for blood fractionation and their performance metrics
are summarized in Tables 1-3.

Filtration

Microfluidic filtration separate cells based on size and can be
broadly divided into three categories: membrane
filtration,®***  pillar filtration,*® and tangential flow
filtration.®® While readers are highly encouraged to learn
more about the various filtration mechanisms from other
excellent review articles,”°”®® this section focuses on their
applications  to  isolate  CTCs,***>*  leukocytes,”®

1230 | Lab Chip, 2023, 23,1226-1257

platelets,®®”" bacteria,”> and EVs’>*””> from whole blood. In
general, key advantages of filtration methods include scalable
throughput, low-cost and simple operation. However, most
blood filtration devices are affected by clogging and bubble
formation issues that may affect the sorting efficacy.
Selection of membrane size cut-off and flow parameters is
also an important consideration as larger cells may be
trapped or deform through pores under high pressure which
results in lower cell recovery.

Membrane filtration  generally commercial
membranes with through holes to trap or isolate larger cells.
Kang et al.®* improved the membrane with unique tapered-
slits to increase the sample throughput for CTC isolation
(Fig. 2A). This tapered-slit filter fabricated with a
photosensitive polymer was connected to a syringe to achieve
a high CTC capture rate of 77.7% and viability of 80.6%.
Besides single CTC isolation, Sarioglu et al® developed a
cluster-chip based on pillar filtration to isolate CTC clusters
from whole blood directly (Fig. 2B). A set of triangular pillars
were designed to capture CTC clusters which successfully

uses

This journal is © The Royal Society of Chemistry 2023
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Fig. 5 Acoustofluidics based blood fractionation. (A) CTC isolation and enrichment using a hybrid (inertia and acoustic) microfluidic sorting
device. Reproduced from ref. 108 with permission from the Royal Society of Chemistry. (B) Tumour cells isolated by a multi-stage surface acoustic
wave (SAW) device. Reproduced from ref. 109 with permission from Elsevier. (C) Platelet isolation using a PMMA plastic-based device. Reproduced
from ref. 113 with permission from the Royal Society of Chemistry. (D) Clinical-scale automated isolation of bacteria. Reproduced from ref. 115
with permission from Nature Research. (E) Exosome isolation by taSSAW (tilted-angle standing SAW) using a dual-stage acoustofluidic device.
Reproduced from ref. 117 with permission from United States National Academy of Sciences.

identified CTC clusters in 30-40% of patients with metastatic
breast or prostate cancer or with melanoma. Another pillar-
based device was used for continuous separation of platelets
from whole blood in a radial sample flow direction (Fig. 2C
).°® The multiple radial parallel paths and self-generating
cross flow greatly minimize clogging to achieve a ~60x
platelet enrichment.

Another form of filtration is tangential flow filtration, also
commonly known as cross-flow filtration. In this approach,
the sample will flow close and parallel (“pinched”) to the

This journal is © The Royal Society of Chemistry 2023

filtration structure using an additional sheath flow, while a
pressure gradient is established to promote cells passing
through small gaps perpendicular to the flow direction. Han
et al” fabricated a microfluidic chip by bonding two
polymethyl methacrylate (PMMA) layers with a nanoporous
membrane to isolate and purify exosomes from human blood
with a higher recovery rate (>80%) (Fig. 2D). Raub et al.”?
designed a microfluidic device using cross-flow filtration for
separation of bacteria from blood cells (Fig. 2E). This chip

could remove 97-98% of RBCs and retain 30% of bacteria

Lab Chip, 2023, 23,1226-1257 | 1231
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(PBMCs) under continuous flow. Reproduced from ref. 121 with permission from Public Library of Science. (B) Continuous sorting of human breast
cancer cells from blood cells in low conductivity sucrose-dextrose medium. Reproduced from ref. 122 with permission from Wiley. (C) Combined
microdialysis and DEP for bacterial isolation from blood. Reproduced from ref. 125 with permission from the Royal Society of Chemistry. (D) Rapid
exosome isolation from whole blood using an alternating current electrokinetic (ACE) microarray. Reproduced from ref. 128 with permission from
the American Chemical Society. (E) Continuous cell-free plasma extraction from undiluted blood. Reproduced from ref. 131 with permission from

Wiley.

from undiluted whole blood with a higher relative bacterial
abundance of 8200%. A new hydrodynamic filtration
multiplexed method was reported to separate leukocytes from
diluted blood samples at an ultra-high throughput of 15 mL
min" and a leukocyte recovery ratio of ~94% (Fig. 2F).”°

Deterministic lateral displacement (DLD)

Deterministic lateral displacement (DLD) is an established
microscale separation technique that uses an array of
micropillars to displace larger particles laterally’® in a

1232 | Lab Chip, 2023, 23,1226-1257

bumping migratory flow trajectory.”®”’® By carefully designing
the critical sorting diameter (D.) based on the formula: D, =
1.4Ge"*®, where G is the spacing between pillars and e is the
row shift fraction (e = tan ¢) when q is the tilt angle,””*" DLD
can be exploited for blood processing to separate CTCs,* %
leukocytes,®* bacteria’” and EVs (Fig. 3).”” Since the first DLD
work reported in 2004,%> many research groups have explored
different sorting applications and improved the technique in
terms of scalability and separation resolution with different
pillar designs. Recent advances in blood fractionation include
the use of a novel cascaded DLD approach to isolate CTC

This journal is © The Royal Society of Chemistry 2023
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Springer Nature. (D) High Throughput Vortex Chip (Vortex HT) that traps larger cells in microvortices developed in reservoirs, while allowing
smaller cells to pass through to achieve separation. Reproduced from ref. 137 with permission from Impact Journals. (E) Lab-on-a-disc system
equipped with fluid-assisted separation technology (FAST) for CTC isolation from whole blood. Reproduced from ref. 152 with permission from the
American Chemical Society. (F) Microfluidic device using a combination of capillary flow, differential wetting and sedimentation effects for the
separation of plasma. Reproduced from ref. 142 with permission from Nature Research. (G) Negative magnetophoresis separation of cancer cells
using ferrofluid. Reproduced from ref. 145 with permission from Royal Society of Chemistry.

clusters from whole blood with a recovery yield of 91.8% and  contrast to conventional single-stage DLD devices, Au et al.
48% for large and small CTC clusters, respectively.”” In  integrated asymmetrical pillars and channel height
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Fig. 8 Overview of microfluidic label-free single cell analysis.

restriction in a dual-stage DLD chip to achieve high CTC yield
and integrity with a lower shear stress rate (Fig. 3A).”°
Besides particle separation, efforts have also been made to
incorporate different functionalities in DLD systems. An
example is the integration of a droplet generator with DLD to
encapsulate single DLD-purified leukocytes in droplets for
protease analysis (Fig. 3B).*" Another work demonstrated the
application of a label-free and rapid (15 min) combinational
DLD assay to measure the biophysical properties (cell
deformability) of immune cell population from 20 mL of
whole blood for point-of-care testing (Fig. 3C).** These
measurements were correlated to patient clusters with
different levels of immune severity, thus facilitating early
detection of asymptomatic-infected individuals before the
condition exacerbates into sepsis.

To improve portability, a capillary paper pump-based DLD
method was recently reported to isolate MCF-7 breast cancer
cells (>90% viability) from RBCs (Fig. 3D).*® The capillary
pumps rely on a negative pressure imposed by the
downstream capillary action to initiate fluid flow over a
prewetted or hydrophilic DLD array surface. Finally,
researchers have also successfully scaled down the DLD cell
sorting technique for smaller (sub-micron) bacteria and EV
isolation.””®** One study highlighted E. coli isolation from
whole blood using a two-stage cascaded DLD approach to
achieve a recovery yield of 25-50% (Fig. 3E).** Smith et al.
also reported a microfluidic silicon-glass nanoDLD array to
selectively enrich large EVs from serum using a pillar gap
distance of 225 nm. This resulted in the highest yield of
~50% with a significantly shorter processing time (60 min)
as compared to ultracentrifugation (Fig. 3F).”” While DLD is
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a highly versatile size-based blood separation technique, it
should be noted that the sorting performance can be
influenced by other factors including particle shape and
deformability, and the presence of cell aggregates.”® Clogging
issues and non-specific cell binding must be minimized
during blood processing which can otherwise directly impact
cell movements within the pillar array.

Inertial microfluidics

Inertial microfluidics is a hydrodynamic cell focusing method
based on the interplay between inertial lift forces and Dean drag
forces acting on particles under Newtonian flow. Several review
articles have recently discussed the fundamentals and
applications of inertial microfluidics.®”® As these forces are
particle size dependent, different cells are focused on distinct
equilibrium positions to achieve continuous and high throughput
(~mL min™) cell separation for different bio-fluids including
blood, urine,” and semen samples.”’ When designing inertial
cell sorters, it is important to consider both target and non-target
cell sizes, starting sample concentration and volume, fluid
properties, and channel dimensions for optimum focusing.”
Abdulla et al. reported a zigzag microchannel for label-free
separation of CTCs from whole blood.”* The zigzag structure
was used to promote size-based particle migration and help
stabilize the focused particles and larger CTCs (>10 pm) to the
channel center (Fig. 4A). Zhou et al. used a multi-flow straight
microfluidic device to demonstrate the separation of CTCs
directly from whole blood (Fig. 4B). Using a 2-inlet system, the
larger CTCs migrated to the channel center into a clean buffer
flow with a high purity (>87%) and recovery (>93%) rate.”

This journal is © The Royal Society of Chemistry 2023
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Table 1 Comparison of microfluidic label-free blood fractionation for immune cells and CTCs
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Principles Sample type Throughput  Efficiency/recovery Purity/sensitivity/enrichment Ref.
Filtration Spiked blood 10 mL h™" >90% recovery N.A. 63
Diluted blood 10 mL h™* 77.7% efficiency 17.44% purity 64
Whole blood 2.,5mLh™ 99% efficiency N.A. 65
Spiked blood 1mLh™ 95% efficiency 99% purity 69
Whole blood 37.5 uL min™"  72.1% recovery 15.1% purity 236
232-Fold enrichment
Diluted blood 40 pL min™' N.A. 78 + 14% purity 237
Diluted blood 1 mL min™* ~94% efficiency ~4000-Fold enrichment 70
DLD Whole blood 0.5mL h™ ~91.8% recovery for large CTC N.A. 79
clusters
~48% recovery for small CTC
clusters
Whole blood 10 pL min™* ~80% recovery N.A. 81
Whole blood 10000 cells N.A. 0.91 sensitivity 83
pers
Spiked RBC 110 s 95% recovery N.A. 86
100 mL ™
Inertial Whole blood 720 uL min™'  88.1% efficiency N.A. 95
microfluidics Whole blood 0.4 mL min™"  >80% efficiency N.A. 93
Whole blood 80 mL h™* 90% recovery N.A. 238
Viscoelastic Whole blood 200 L min~'  67% recovery N.A. 100
focusing Whole blood 12 uL min™"  98% efficiency N.A. 101
Whole blood 30 uL h™" 76% efficiency N.A. 102
DEP Lysed blood 0.4 uL min™"  N.A. N.A. 124
PBMCs 35 uL min™'  53-70% efficiency N.A. 121
Spiked blood 6 uLh™* 100% recovery 81% purity 122
PBMC 4-7 uL h™t N.A. N.A. 123
Acoustophoresis ~ Diluted blood 1.0 uL min™"  N.A. 2500-Fold enrichment 108
Spiked phosphate buffer 0.3 uL min™"  90% =+ 2.4% efficiency N.A. 109
solution
Lysed blood 6 mLh™ 91.8 + 1.0% efficiency for breast ~ 20-Fold enrichment for breast CTCs 110
CTCs
84.1 + 2.1% efficiency for prostate 20-Fold enrichment for prostate
CTCs CTCs
Lysed blood 2.5mLh™ 87% recovery 0.11% purity 111
162-Fold enrichment
Lysed blood 100 uL min™"  85.0% efficiency for prostate 53 + 27-fold enrichment for prostate 112
CTCs CTCs
89.8% efficiency for breast CTCs 84 + 30-fold enrichment for prostate
CTCs
Lysed blood 7.5mLh™" 86% efficiency N.A. 239
Others Diluted blood 3 mL min™" 96.6% efficiency N.A. 133
Whole blood 0.5-5 pL >80% efficiency 12-Fold enrichment 5
min™"
Whole blood 3 mL min™" 95.9 + 3.1% recovery N.A. 152
Whole blood 6.75mLh™"  89.8% efficiency N.A. 134
Diluted blood 800 uL min™"  83% efficiency N.A. 174
WBCs 1.2 mLh™ 82.2% efficiency N.A. 145

Spiral inertial microfluidics is another popular cell sorting
design due to its larger channel dimensions which minimizes
clogging issues during blood processing. Zhu et al. reported a
novel inertial microfluidic (IM) cube which was integrated with
four subunits of spiral channels and stacked in multiple layers
to extract WBCs from 1.3 mL of whole blood within 2 min.”
The design is based on passive secondary flow mixing and
inertial sorting to achieve complete RBC lysis and a white
blood cell extraction efficiency of 88.1%.

A major bottleneck in inertial microfluidics is the inability
to separate small particles as they experience insufficient
inertial forces, or require excessively long channel lengths to
migrate to their equilibrium positions (large pressure drop).

This journal is © The Royal Society of Chemistry 2023

To address this issue, Tay et al. reported a novel transient
(non-equilibrium) cell focusing method in spiral channels
based on subtle differences in the particle innermost
distance (Djnner) from the channel inner wall to separate sub-
micron bacteria and nanoparticles.’® This was subsequently
adapted to isolate EVs from whole blood directly (ExoDFF)
and multiplexed to process 5 mL of whole blood within an
hour with the same EV separation performance (Fig. 4C).””

Viscoelastic focusing

Another passive microfluidic cell sorting method gaining in
popularity is using viscoelastic focusing effects. Briefly, the
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Table 2 Comparison of microfluidic label-free blood fractionation based on platelets, bacteria and plasma
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Principles Sample type Throughput Efficiency/recovery  Purity/sensitivity/enrichment Ref.
Filtration Whole blood 1 mL min™" >80% recovery N.A. 71
Whole blood 600 nL min~" 97% recovery ~70% purity 66
60-Fold enrichment
Whole blood 100 + 30 mL min~" 30% efficiency N.A. 72
DLD Spiked blood DLD1: 100-600 puL min™" DLD1: 50% N.A. 84
recovery
DLD2: 7-50 uL min " DLD2: 25%
recovery
DEP 1000x diluted plasma 2 pL, 2 min N.A. N.A. 127
Whole blood 10 pL min~* ~78% efficiency N.A. 125
20x diluted blood 18 uL h™ 97% efficiency N.A. 126
Viscoelastic Whole blood 10-32 pL min " N.A. N.A. 103
focusing
Acoustophoresis Undiluted whole 20 mL min™’ 87.3% efficiency 82.9% purity 240
blood
Whole blood 1.5 uL min™"' 86% efficiency 7.7-Fold enrichment 114
Undiluted whole 10 mL min™" >85% efficiency N.A. 241
blood
Diluted whole blood ~ 80 uL min™ 90% efficiency 103-Fold enrichment 242
Culture media 5 mL min™" N.A. N.A. 116
Others Whole blood 0.66 uL min~" N.A. 99.9% purity 142
Whole blood 1.5 min for plasma, 15 min for bufty N.A. 100% purity 141
coat
Table 3 Comparison of microfluidic label-free blood fractionation based on EVs
Principles Sample type Throughput Efficiency/recovery Purity/sensitivity/enrichment Ref.
Filtration Diluted plasma 50 uL min™* >97% efficiency N.A. 75
>80% recovery
Undiluted serum 90 uL min* N.A. N.A. 73
Plasma 5-10 pL min " N.A. N.A. 74
DLD Serum 900 uL h™ ~70% recovery 2.6-3.0-Fold enrichment 77
Inertial microfluidics Whole blood 80 uL min~" ~15% efficiency N.A. 97
Viscoelastic focusing Adenocarcinoma human alveolar 200 uL h™* >80% recovery >90% purity 99
Basal epithelial cells
DEP Culture media 1.5 uL min™" 81% recovery 95% purity 130
Plasma 3-5 uL min™* N.A. N.A. 128
Acoustophoresis Plasma 0.5 uL min™* N.A. N.A. 243
Undiluted whole blood 4 uL min™" 82.4% efficiency 98.4% purity 244

elasticity of dilute polymer solutions causes the lateral
migration of single particles to focus on the channel center
due to a non-uniform distribution of the normal stress
between the centerline and the walls of the microchannel.”®
Besides optimizing flow rates or channel dimensions, one
can also tune the concentration of the polymer (poly(ethylene
oxide), PEO) to control viscoelastic forces and particle
separation resolution at lower flow rates. Liu et al. reported a
straight microchannel design to separate exosomes from
other larger EVs with high separation purity (>90%) and
recovery (>80%) by adding a small amount of PEO (0.1 wt%)
into the cell culture medium.”

Recently, a sheathless focusing device using viscoelastic
fluid was reported to isolate platelet-derived micro-particles
(PDMPs ~ 0.3-2 pm) from RBCs with a 4.8-fold increase in
yield as compared to the centrifugation within 2 min (Fig. 4D
).1%° Similarly, Bilican et al. also developed a cascaded

1236 | Lab Chip, 2023, 23, 1226-1257

expanding-contracting straight microchannel for sheathless
separation of Enterococcus faecalis (~0.5-2 um) in viscoelastic
fluid with 98% separation efficiency (Fig. 4E)."”" As single
inlet devices are simple to operate, there are several other
interesting sheathless cell sorting devices using viscoelastic
focusing to achieve undiluted whole blood separation,'*>
integration with positive magnetophoresis (Fig. 4F),'* and a
scaled-up double spiral design.'®*

Although  both inertial and viscoelastic focusing
microfluidic technologies are useful for separating nano to
microscale particles from blood, there are still challenges to
improve the separation dynamic range in a single chip for
complete blood fractionation. The use of viscoelastic or
polymer solution can enhance cell focusing but may affect
downstream analysis (e.g. mass spectrometry) with additional
chemical components or rare cell isolation. Future studies
are warranted to investigate cell biocompatibility and

This journal is © The Royal Society of Chemistry 2023
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functionalities after prolonged exposures (~days). More
details on viscoelastic microfluidic mechanisms and
applications can be found in a review by Papautsky et al.'®

Acoustophoresis

Acoustophoresis (or acoustofluidics) is an active method
which uses an external acoustics field to manipulate
particles. In general, microfluidic devices consist of
interdigitated transducers (IDTs) using a piezoelectric
material to generate bulk acoustic waves (BAWs) and surface
acoustic waves (SAWs). This leads to the formation of
pressure and anti-pressure nodes for size or density-based
particle separation in a contactless and label-free
manner.'°'””  With recent advances in improving
biocompatibility, cascaded designs, multiplexed cell sorting
and scalable manufacturing, acoustofluidic technologies have
demonstrated their potential for point-of-care blood-based
clinical applications.

Using a hybrid platform, Zhou et al. combined passive
(inertia sorting) and active (acoustic sorting) methods to
isolate CTCs from 10x diluted whole blood (Fig. 5A)."° The
first section consists of a reverse ‘S’-curved microchannel
design to deplete RBCs while focusing the larger CTCs to the
acoustic sorter to sort fluorescence-labelled MCF-7 cells. In
another work, Wang et al. utilized a pair of IDTs to generate
standing SAWs (SSAW) to focus CTCs and RBCs on a single
pressure node at the channel centre. Next, larger particles
(>5 um) would be deflected laterally due to the larger
acoustic radiation induced by travelling pulsed SAWSs
(TSAW).'*® The authors applied this to sort U87 glioma cells
from the RBCs without the need for sample dilution
(Fig. 5B). Similar CTC acoustic sorting devices were also
reported by other groups with improved throughput''**'* or
combined with negative selection of WBCs."'>

Key advantages of acoustofluidic platforms include the
tunability of the acoustics field strength for smaller particles
and scalability for large sample volume processing. For
example, Gu et al. isolated platelets (2-3 um) using a PMMA
disposable device which is suitable for rapid fabrication and
clinical use (Fig. 5C)."** By producing a pressure node near
the top layer with a quarter-wavelength resonator, blood cells
were deflected vertically to the top layer to achieve a platelet
recovery rate of 87.3% at an ultra-high throughput of 20 mL
min~". Another scaled up platelet separation device fabricated
by the lithography method was reported using SSAW.''*
Besides platelets, bacterial separation (>90% recovery) from
whole blood is also reported based on bulk acoustophoresis
(Fig. 5D).""> Another work was reported by Devendran et al.
to separate bacteria at 5 mL min™" by utilizing diffractive-
acoustic SAW (DASAW) to focus particles along a 90-degree
angled serpentine channel with only a single travelling
wave.''®

For sub-micron particles, Wu et al. developed a dual-
modular acoustofluidic platform with a microscale cell-
removal module followed by an nanoscale exosome isolation

This journal is © The Royal Society of Chemistry 2023
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module."”” Both sections use tilted-angle standing SAW
(taSSAW) fields to filter out blood components larger than 1
pm (>99.9% blood cell removal) in the first stage, and a
higher frequency of 40 MHz to separate EVs and apoptotic
bodies with a purity rate of 98.4% at the 2nd stage (Fig. 5E).
Taken together, acoustics-based sorters are scalable, versatile
and have excellent sorting performances. Due to frequent
bubble formation and high setup costs, future work will
focus on improving the device robustness and their
translation for clinical use.

Dielectrophoresis

Dielectrophoresis (DEP) is another established active label-
free cell sorting method based on electrical properties of
particles and medium. Under a non-uniform electric field,
particles or cells are polarised and a net dipole moment is
induced on particles’ surfaces, thereby allowing them to
migrate along or against the electric field depending on the
excitation  frequency, particle size, and electrode
configuration."™® In most devices, the electrodes are
orientated to exert DEP forces perpendicular to the flow
direction for lateral particle sorting into different channel
outlets."*2°

For DEP-based cell sorting, it is often combined with flow
fractionation to take advantage of the parabolic velocity
profile and laminar flow in microchannels. The ApoStream®
system is a commercial product that separates CTCs from
peripheral blood mononuclear cells (PBMCs) using DEP-
based flow fractionation (Fig. 6A)."*" Briefly, CTCs introduced
at the channel bottom experienced stronger DEP forces
towards the bottom outlet while smaller PBMCs are repelled
vertically to the channel center (faster flow) and eluted as
waste. Similarly, Alazzam et al applied lateral DEP to
separate MDA-MB-231 cancer cells from blood cells with
100% recovery and 81% purity (Fig. 6B) using a low
conductivity sucrose-dextrose medium.'*”> To enhance CTC
sorting, Dudaie et al. integrated DEP with image-based CTC
discrimination using interferometric phase microscopy to
achieve 98% classification success and 69% sorting
accuracy."”® Besides sorting, DEP can also be applied for
leukocyte activation profiling in a sepsis murine model since
activated leukocytes are larger in size and thus experience
stronger DEP forces to deflect to different channel
positions.'**

Instead of DEP-induced particle lateral deflection under
continuous flow, smaller bacteria and exosomes can be
attracted and trapped at the electrodes by DEP forces to
facilitate detection. D'Amico et al. combined microdialysis
and dielectrophoresis to deplete permeabilized red blood
cells before trapping bacteria on electrodes to achieve ~79%
separation efficiency using spiked blood samples (10°-10°
CFU mL™) (Fig. 6C)."*® Numerous DEP studies also reported
higher bacteria separation efficiency'*® or detection limit'*’
using diluted blood or plasma. For exosome isolation, Ibsen
et al. reported a rapid EV isolation using an alternating
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current electrokinetic (ACE) microarray from 50 pL of
undiluted blood, followed by on-chip immunofluorescence
detection of EV proteins within 30 min (Fig. 6D)."*® It was
further  used to  distinguish  pancreatic = ductal
adenocarcinoma patients from healthy subjects with 99%
sensitivity and 82% specificity."> Submicron particle
separation was also demonstrated using combined DEP with
acoustophoresis to separate exosomes (<200 nm) from
microvesicles (>300 nm) in culture media with 95% purity
and 81% recovery."*® Yang et al. reported a microfluidic DEP
device for direct plasma extraction from undiluted blood
which can be automated to replace conventional
centrifugation (Fig. 6E)."*"

Overall, DEP is a tunable blood fractionation method and
can complement passive size-based sorting methods to
fractionate cells of similar sizes but different electrical
properties. However, issues including Joule heating, limited
throughput, and the need for a low conductivity buffer need
to be addressed to facilitate the translation of DEP
technologies for clinical testing.'*

Other label-free blood fractionation
methods

Aside from the aforementioned techniques, several non-
conventional methods have also been reported for blood
sorting applications. Tay et al. reported a microfluidic device
to separate WBCs from undiluted whole blood based on the
effect of biomimetic cell margination (Fig. 7A), a
microcirculatory phenomenon whereby deformable RBCs
migrate laterally toward the axial centre (Fahraeus effect) and
result in an RBC-free layer (containing WBCs) at the vessel
periphery.” In another work, Mutlu et al devised a non-
equilibrium inertial separation array (NISA) that utilizes
inertial lift forces to separate WBCs from blood. Unlike DLD,
NISA adopts longer rectangular islands that use size-
dependent inertial lift forces to push cells away from channel
walls (Fig. 7B)."** The authors reported a sample throughput
of ~3 mL min™" with 96.6% WBCs yield and 0.0059% RBC
contamination, making NISA suitable for large blood volume
processing applications such as banked blood cleansing and
rare cell enrichment.

Another interesting label-free blood separation technique
is shear-induced diffusion (SID), used for isolating CTCs**"'**
and leukocytes™®® from whole blood. The set-up involves a
sandwiched buffer solution co-flowed with two sample
streams, where target cells migrate from the side into the
cell-free central stream under the influence of shear-induced
diffusion and inertial forces. While the underlying
mechanism of SID has yet to be fully elucidated,"*® larger
cells (WBCs, CTCs) in the blood samples are observed to
migrate into the buffer stream faster than smaller cells
(RBCs) due to size-dependency of SID and inertial forces.'**
This size-based migration and focusing has also been
attributed to the downstream velocity of particles,'*> which
scales inversely with particle size. Using this strategy, Zhou
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et al. demonstrated the separation of beads (18.7 pm) and
HepG2 cancer cells from whole blood at a high throughput of
6.75 mL h™ (10°-10” cells per s) and an efficiency of 89.8%
(Fig. 7C)."** As a proof-of-concept, the authors also applied
SID for the isolation of CTCs from hepatocarcinoma subjects.
While they were able to detect one CTC from 1 mL of blood
via immunostaining, the purity of the sorted samples was
affected by large WBCs. A low shear rate at the flow interface
must be carefully maintained to minimize RBC diffusion."*®
Nevertheless, the ability of SID to process highly concentrated
samples and achieve higher throughput than typical inertial
microfluidics shows great potential as a label-free cell
isolation method. For CTC isolation, several studies have
reported the use of microvortices to trap CTCs by designing a
series of narrow channels with expanded reservoirs.'*”4°
Rapid flow in the narrow channel generates inertial forces to
trap larger cells into the vortices in the reservoirs while
smaller cells are allowed to pass through. After separation,
the trapped CTCs can be “released” from the reservoirs using
a slower flow rate and eluted into a small volume for off-chip
processing. Using this phenomenon, Che et al. developed
and clinically validated a high throughput vortex chip for
size-based CTC enrichment with a capture efficiency of 83%
at a throughput of 800 pL min™ of whole blood (Fig. 7D)."*’
In a study by Dhar et al., they integrated vortex trapping of
CTCs with single-cell encapsulation in a single platform
termed SPEC (size-based purification and encapsulation of
cells) by using the reservoirs as mini reaction chambers for
the downstream study of rare cell secretion at the single-cell
level."*®

Using a different strategy, Kim et al. reported a lab-on-a-
disc platform with an integrated fluid-assisted separation
technology (FAST) to selectively capture CTCs on the
polyethylene membrane filter (8 um pore size) based on
centrifugal effects. The novelty of this technique is the
addition of a stably-held liquid throughout the size-based
CTC isolation process, which reduced clogging and increased
the recovery rate significantly from 54.0 + 21.0% to 95.9 +
3.1% (Fig. 7E). Another interesting work based on centrifugal
force is the development of an ultra low-cost (<20 cents),
human-powered paper centrifuge inspired by a whirligig toy,
aptly termed ‘paperfuge’.’®® A high rotational speed of
125000 r.p.m. (~30000 g) was reported which can separate
plasma from whole blood in <1.5 min when blood-filled
capillary tubes are mounted on the discs. By modifying
channel surface properties, Maria et al. proposed a capillary
flow-driven, double layered PDMS device with a wettability
gradient for plasma extraction (Fig. 7F)."** As blood enters
the bottom microchannel via capillary action and moves up
the vertical well, the hydrophobic region enhances plasma
separation by exploiting the velocity differences between
plasma and cells. Combined with sedimentation effects, 2 puL
of plasma was extracted from <10 pL whole blood in 15 min
for blood glucose measurements.

Lastly, while magnetic isolation is typically affinity-based
using antibodies, an interesting label-free approach is

This journal is © The Royal Society of Chemistry 2023
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negative magnetophoresis using ferrofluids."**™'*® Ferrofluids
are stable colloid suspensions of ferromagnetic nanoparticles
such as magnetite or maghemite'®” dispersed in a non-
magnetic carrier fluid such as water or organic solvent.'*®
Cells and particles suspended in ferrofluids behave as
“magnetic voids™"*® which are deflected to distinct size-based
flow trajectories when an external magnetic field is applied
to attract magnetic nanoparticles."*>*° As most commercial
ferrofluids are not biocompatible,'** careful selection of the
ferrofluid material, pH and surfactant is crucial for cell
manipulation."*” Zhao et al.'*® developed a biocompatible
approach using a ferrofluid to isolate cancer cells at low
concentrations (~100 cells per mL) from WBCs at a
throughput of 1.2 mL h™" and an average efficiency of 82.2%
(Fig. 7G). A custom-made biocompatible ferrofluid flow is
flanked by two buffer streams, and the blood sample is
introduced through one of the buffer inlets. An external
magnetic force pushes the target cancer cells into the
opposite buffer flow, thereby minimizing the residency time
in the ferrofluid stream and increasing the cell viability (94.4

3
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+ 1.3%) when tested with 7 cancer cell lines. It should be
noted that the adoption of ferrofluids for cell separation is
limited by hindrance in optical imaging due to light
diffraction of ferrofluids.****** Hence, the nanoscopic
properties of ferrofluids have to be further optimized to
develop new bio-applications.

Label-free single cell analysis

Unlike conventional biological assays which provide average
(bulk) readout, single cell analysis of a large cell population
is a powerful method to probe cell heterogeneity. Label-free
single cell analysis enabled by microfluidics offers alluring
prospects including minimal sample preparation time, cost-
effectivity and usefulness in diseases with no known
biomarkers. These approaches mostly analyze intrinsic
cellular properties such as cell morphology, spectrochemical
properties,  dielectric =~ parameters and  mechanical
characteristics for non-invasive liquid biopsy'®* and point-of-

care diagnostics."”* Herein, we summarize recent innovations

Table 4 Microfluidic label-free single cell analysis based on different principles

Method Sample type Key results Ref.
Optical properties

Digital holographic microscopy Plasma Discriminate healthy and pathological samples; classify leukemias 159
QPI (quantitative phase Culture medium Ultra high-throughput (>10 000 leukemic cells per s); flow (2.3 m s™") 245

imaging) flow cytometry
Fluorescence lifetime imaging
microscopy (FLIM)

Diluted whole blood

Combination of single-cell trapping array separation with real-time FLIM 163
imaging of leukemia cells

Light-scattering Culture medium Distinguish and count CD4+ and CD8+ cells (~79% accuracy) 155
Stimulated Raman scattering Culture medium Discriminate non-differentiated and differentiated 3T3-L1 cells 168
Stimulated Raman scattering Whole blood cells, PBMCs, Characterization and classification of cancer cells in blood 169

Jurkat cells, HT29 cells

Optical diffraction tomography  Culture medium

(~140 cells per s)
Identification of individual lymphocytes (B, CD4+ T, CD8+ T cells) by 3D-RI 160

tomograms
Interferometric plasmonic Culture medium Imaging, sizing, tracking single exosomes 161
microscopy
Electrical properties
Impedance cytometry Diluted whole blood Accurate classification and quantification of 3 subtypes of leukocytes 190
(multi-frequency)
Impedance cytometry Whole blood Label-free discrimination of platelets, erythrocytes, monocytes, 193

(multi-frequency)
Impedance cytometry
(single-frequency)
Impedance cytometry
(multi-shell model)
Impedance spectroscopy

Whole blood (RBCs and
PBMCs)
Malaria culture

Whole blood

Impedance spectroscopy Whole blood

granulocytes and lymphocytes (~3 000 000 cells in 45 min)

Distinguish 1) normal RBCs and GA treated RBCs; and 2) lymphocytes and 194
monocytes (throughput: 20 uL. h™)

Plasmodium falciparum infection characterisation based on membrane 195
capacitance and cytoplasmic conductivity derived from impedance signal
Isolation of CTCs and WBCs from whole blood, and classification of CTCs 197
and WBCs

Distinguish sickle red blood cells and normal cells from whole blood using 199

microfluidic chip with oxygen control

Mechanical properties

Optical quantify cell circularity ~ Blood cells/differentiated ~ Plotted mechanical phenotypes for different types of blood cells 171
blood cells Showed mechanical properties sensitivity to cytoskeleton change
Optical quantify cell geometry ~ Diluted whole blood Enriched CTCs from whole blood and performed cell 174

mechano-phenotyping on the same device

Optical quantify cell HL-60 Measured cell Young's modulus and fluidity 177
geometrical change during

deformation

Electrical quantify cell geometry WBCs/HL-60 Used electrical signatures to represent cell geometry and quantified cell 178
change geometrical change in a label-free and optics-free setup

Electrical quantify cell transit CTCs Used electrical signals to represented cell transition time in constriction 182
time channel and characterized cell mechanical properties with transition time
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on microfluidic label-free blood cell analysis broadly
classified as optical imaging, biomechanical analysis, and
electrical profiling of single cells (Fig. 8 and Table 4).

Optical properties

Optical detection methods for blood analysis can be based
on imaging of cell morphology,*® or using spectrometry

(absorption, scattering),">>'%° surface plasmon
resonance,’””'*®  refraction’®®'®® and interferometric
plasmonic  microscopy'®*  to  characterize  cellular

spectrochemical properties. For whole blood analysis, single
cell imaging is typically used for blood cell counting or
resolving its size or morphology. Ugele et al reported
differential digital holographic (DH) microscopy for native
leukocyte detection.’® The in-flow imaging of a 2D
hydrodynamically focused leukocyte stream was performed
by using a fixed focal height and moderate depth of field
(2.3 um) (Fig. 9A). Based on principal component analysis
(PCA) of the morphological parameters of the reconstructed
images, the differentiation of nine leukocyte subtypes in
healthy and pathological samples was achieved. Another
interesting work is a high-throughput single leukemic cell
imaging platform by utilizing ultrafast quantitative phase
imaging (QPI), aptly termed as multiplexed asymmetric-
detection time-stretch optical microscopy (multi-ATOM).'®*
The multi-ATOM flow cytometer system allows 12-
dimensional single-cell biophysical phenotyping at an ultra-
large-scale (>1000000 cells per s) (Fig. 9B). Such a
combination of high throughput and cellular content
provides sufficient statistics to distinguish multiple types of
leukemia cells from the blood with high accuracy (~92-97%).
An integrated platform combining a cell trapping array and
phasor-fluorescence lifetime imaging microscopy (phasor-
FLIM) for leukemia cell identification was also reported for
leukemia cell screening."®® The array was designed with 1600
packed single-cell traps to filter out RBCs and capture WBC/
leukemia cells (Fig. 9C). The trapped single leukemia cells
(THP-1, Jurkat and K562 cells) were then distinguished from
WBCs in the phasor-FLIM lifetime map as they exhibited
significant shift towards shorter fluorescence lifetime. The
authors highlighted that this metabolic characterization
indicating a higher ratio of free/bound NADH of leukemia
due to their stronger glycolysis for rapid
proliferation. The identification of T-lymphocyte subclasses
(CD4+ and CD8+) by a light scattering approach was recently
proposed by Rossi et al. (Fig. 9D).'>

Raman spectroscopy (also commonly termed as Raman
flow cytometry) is another powerful optical-based technology
which directly probes characteristic intracellular molecular
vibrations by measuring the inelastic scattering of incident
photons.®* This is particularly useful to measure metabolites
or biomolecules (e.g. unsaturated fatty acids, carotenoids and
polysaccharides) in live cells which are difficult to detect
using fluorescent labelling methods. While spontaneous
Raman scattering limits the detection throughput, newer

cells was
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alternatives such as stimulated Raman scattering (SRS) and
coherent anti-Stokes Raman scattering (CARS) significantly
improve light-sample interaction for high throughput
chemical fingerprinting of flowing cells'®'*® or Raman-
activated cell sorting."®” Zhang et al. reported a multiplexed
SRS flow cytometry platform based on broadband laser
excitation and multiplex spectral detection.'®® The system
can measure the chemical contents of single particles at high
throughput (200 000 spectra per s and 11000 particles per s)
and help discriminate non-differentiated and differentiated
3T3-L1 cells by quantification of different chemical
compositions accumulated in single cells (Fig. 9E). A more
recent study reported label-free multi-colour SRS microscopy
of fast-flowing cells on a 3D acoustic focusing microfluidic
device to study cell metabolic heterogeneity in microalgae,
blood cells and cancer cells.*®® The setup was based on a fast
pulse pair-resolved wavelength-switchable Stokes laser and a
galvanometric scanner, achieving a high flow speed of 2 cm
s ' and a high image acquisition speed of 24k lines per s for
4-color SRS signal acquisition. With the help of machine
learning to analyse large cell populations (~10000 cells), the
authors demonstrated high-precision characterization and
classification of cancer cells in blood at an unprecedented
throughput of ~140 cells per s (Fig. 9F).

Four biophysical properties including cell dimension,
nucleus-to-cytosol ratio, refractive index of the nucleus and
cytosol for each cell were converted from the light-scattering
profile and combined with machine learning for automatic
counting and characterization of CD4+ versus CD8+ with 79%
accuracy. In another work, Yoon et al. used 3D refractive
index (RI) tomography to identify lymphocyte cell types based
on quantitative morphological and biochemical properties of
individual lymphocytes (Fig. 9G)."*® The novelty of this work
is the combination of RI tomography with machine learning
to enable the identification of lymphocyte cell types (B, CD4+
T and CD8+ T cells) with high test accuracy (75.93%).

Besides cell imaging, label-free imaging of single
exosomes was reported by Yang et al. using interferometric
plasmonic microscopy (iPM)."®" This was achieved by
monitoring the real-time adsorption of exosomes on a
modified Au surface and recording the iPM intensity to
determine the size distribution by image reconstruction
(Fig. 9H). In summary, label-free optical approaches offer
numerous advantages in terms of throughput, information-
rich cell images, and easier coupling to machine learning for
automated blood analysis. The challenges need to be
addressed include the precise focusing of cells, efficient
removal of bulk RBCs prior to analysis and high setup cost.

Mechanical properties

The cytoskeleton is an interconnected network of protein
filaments that provides cell shape, determines cell resistance
to deformation, and interacts with the extracellular tissue
environment. As it is a dynamic and adaptive structure that
is affected by cellular activities, accessing cell mechanics is

This journal is © The Royal Society of Chemistry 2023
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of Chemistry. (C) Quantitative deformability cytometry (q-DC) that utilized creeping energy to quantitatively measure cell intrinsic properties.
Reproduced from ref. 177 with permission from Cell Press. (D) Impedance deformability cytometry that represented cell deformation with impedance
signatures. Reproduced from ref. 178 with permission from Wiley. (E) Impedance-based deformability cytometry that quantified cell transition time in
the constriction channel with impedance signatures. Reproduced from ref. 182 with permission from the American Chemical Society.

important to study mechanobiology and pathophysiology.'”’
In this section, we highlight recent advances in microfluidics
deformability cytometers for label-free blood cell profiling.
The most direct approach to quantify cell deformability is
to image single cell geometrical changes under mechanical
stimuli such as shear force,"”" hydrodynamic force,'”> and
electric force.'” Otto et al. reported a real-time deformability
cytometry (RT-DC) platform that quantifies cell circularity
change under shear force using high-speed imaging (Fig. 10A
).*”* Cell mechanical phenotypes (cell size, deformability) and
their sensitivity to cytoskeleton changes were measured and
used as biomarkers to identify PBMCs, RBCs, granulocytes,
and platelets from whole blood directly. To analyse rare cell
events, Che et al. reported a vortex-mediated deformability
cytometry (VDC) platform that performed on-chip circulating
tumour cell (CTC) enrichment and deformability assessment
directly from whole blood (Fig. 10B)."”* Their results showed
a better CTC detection rate (93.8%) using the biophysical
phenotypes (cell size, deformability) as compared to affinity-
based immunofluorescence (71.4%). Besides cell profiling for

1242 | Lab Chip, 2023, 23,1226-1257
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drug treatment study " or point-of-care diagnostics, cell
mechanical properties such as Young's modulus and fluidity
can also be determined if calibrated with known reference
materials. For example, Nyberg et al. applied quantitative
deformability cytometry (q-DC) to optically track cell
geometrical changes to study cell creeping (Fig. 10C)."”” After
calibration with agarose gel particles, a power-law rheology
(PLR) model was used to represent cell creeping in the
constriction channel to extract quantitative information on
cell elasticity and fluidity of leukaemia cells (HL-60). To avoid
the use of expensive high-speed cameras, researchers have
developed impedance-based detection methods to profile cell
biophysical properties by quantifying the cell geometrical
change,”® or cell creeping process'’® in an optics-free and
label-free manner. A recent study was reported by Petchakup
et al. who defined a novel “electrical deformability index” for
single cell electro-mechano-phenotyping (Fig. 10D).'”® By
measuring electrical signals at different frequencies (0.3
MHz, 1.72 MHz and 12 MHz), multiple biophysical
parameters of single cells such as cell size, deformability,

This journal is © The Royal Society of Chemistry 2023
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membrane opacity and nucleus opacity are simultaneously
measured to study neutrophil dysfunction.

Besides quantifying changes in cell shape, another
approach to analyse cell deformability is by measuring cell
transit time in constriction channels using imaging,'®
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impedance readout.'® For example, impedance signals are
detected when a cell passes through electrodes at the start
and end of the channel to calculate cell transition time
(Fig. 10E)."®* Clear differences between RBCs and cancer cells
(MCF-7 and modified MCF-t (softer)) were observed by

suspended microchannel resonators (SMRs),"® and  comparing the cell impedance magnitude and cell
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deformability. However, major challenges include clogging
issues and the requirement for low working sample
concentration to avoid multiple cells entering the constricted
channel. For RBC analysis, microfluidics deformability
studies are typically performed in batch analysis to determine
an average deformability score based on batch deforming
pressure,*®* relative lateral displacement,*®* and filtration
gap size.'® In summary, label-free biophysical profiling of
WBCs and RBCs is highly promising for low-cost blood
phenotyping. Future work will focus on extending the
mechanical cellular assessment to small particles such as
platelets and EVs.

Electrical properties

The cell membrane and intracellular content exhibit distinct
dielectric and electrical properties for different cell types
which can be exploited for label-free single cell detection. A
powerful electrical biosensing modality is impedance
cytometry which takes advantage of the dielectric dispersion
effect under alternating electric field at varying frequencies
to characterize different cellular components. It is widely
applied for single cell analysis including cell classification
and counting,'®*"®” and cell status monitoring.'%%'%°

The impedance magnitude and opacity (ratio of
impedance magnitudes at different frequencies) are the most
frequently wused signatures for cell characterization.
Conventional microfluidic impedance cytometers utilize 2D
coplanar electrodes for impedance measurement,"**'®” but
the signal is affected by the vertical position of the particles
in the channel. Zhong et al. proposed a high throughput
(1000 cells per second) and position-insensitive coplanar
electrode-based cytometry platform with a double differential
electrode configuration (Fig. 11A). The additional position
information provided by this novel electrode configuration
contributes to a higher accuracy of cell detection to classify
different leukocyte subtypes.’®”'®* A complicated electrode
configuration with two pairs of parallel (top and bottom)
electrodes and three additional pairs of co-planar electrodes
is also proposed to minimise the effect of particle position
on the signal magnitude by reducing the cross current flow
into neighbouring detection electrodes.'”® This work
demonstrated successful classification and numeration of
different leukocytes from human blood after erythrocyte lysis.
Another strategy is wusing a 3D parallel electrode
configuration to differentiate platelets, erythrocytes,
monocytes, granulocytes and lymphocytes in blood by two
pairs of top and bottom parallel electrodes (Fig. 11B)."** In
addition to impedance-based cell detection, simultaneous
capture of cell size and membrane property at single low
frequency was reported by Mahesh et al. (Fig. 11C)."** They
showed the relationship between the cell membrane
capacitance and the ‘double peak’ profile in the out-of-phase
signal within low frequencies (beta dispersion regime) to
distinguish normal RBCs and glutaraldehyde-treated RBCs
based on a single frequency signal measurement.
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Besides blood profiling, impedance cytometry is also used
for blood-based disease detection. For example, malaria-
infected RBCs (Plasmodium falciparum) have higher
membrane capacitance and cytoplasmic conductivity which
would be useful for pre-enrichment of infected RBCs for
malaria diagnosis (Fig. 11D)."®> Application of impedance
cytometry for CTC detection in whole blood has also been
reported with integrated CTC trapping (Fig. 11E)"**'” or
under continuous flow."*® Liu et al. developed a microfluidic
chip allowing oxygen control for the detection of sickle red
blood cells (Fig. 11F)."*° Interestingly, significant differences
in impedance profile were revealed between normal cells and
sickle cells under normoxia, and between sickle cells under
normoxia and hypoxia.

In summary, impedance-based detection is a promising
label-free blood cell analysis technique which does not
require expensive high-speed camera imaging. Although the
signal is generally dependent on particle position in
microchannels, recent advances have achieved higher sensing
sensitivity through better electrode configurations and
channel structures, as well as developing new signal
processing strategies. Future work will focus on improving
electrode fabrication and the calibration using reference
materials for large-scale clinical testing.

Label-free cell analysis using machine
learning approaches

Machine learning (ML) is a field of computer algorithms that
can learn relations of data without explicit programming or
human intervention. With enhanced computing power and
data storage, ML has gained increasing attention for a wide
variety of biomedical applications especially in biomarker
discovery®® and  clinical  diagnostics.”®  Emerging
applications of ML to synergize microfluidics include
optimizing device design, operation and data processing/
analysis. ML can be used to construct microfluidic design
models based on experimental performance metrics (e.g.
sorting efficiency, yield) and channel features (e.g., channel
geometry, flow rate) to improve design performance or
predict the behavior of new samples. This can potentially
ease the iterative device optimization process and lower
manufacturing and testing costs.'”” Microfluidic devices
integrated with imaging/sensing modalities (e.g., camera,
electrodes, flow/pressure sensors) can incorporate ML to
analyze real-time information (e.g., particle trajectory, particle
properties, flow rate, pressure drop) “on-the-fly” and provide
feedback to pumps/actuators for automated flow
manipulation or resolving operational issues (e.g. channel
clogging). These aspects have been extensively covered in a
recent review by Mclntyre et al.>**> Lastly, ML can enhance
the data analysis pipeline in preprocessing steps such as
feature extraction or denoising, as well as in postprocessing
steps including developing a prediction model and
compressing multi-dimensional data for visualization.

This journal is © The Royal Society of Chemistry 2023
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Fig. 12 Overview of machine learning (ML) utilities in microfluidic label-free sensing.

As label-free cell characterization may lack specificity and
sensitivity compared to antibody-based detection, multi-
parametric analysis of intrinsic cell properties combined with
advanced data analysis can potentially improve the assay
accuracy. In this section, we will highlight recent work that
utilize ML for microfluidics label-free blood cell phenotyping
in two broad classifications, namely 1) supervised learning
and 2) unsupervised learning (Fig. 12 and Table 5). For more
detailed information, the readers are highly encouraged to
refer to other excellent microfluidic
applications®**2%° and neural networks/deep learning.>**>%”

reviews for

Supervised learning

Supervised learning aims to establish connections between
example inputs (e.g., image, signal, and data) and their
corresponding outputs such as labels (cell types, pathological
phenotypes) or single cell features (single cell properties,
shape) for classification or regression problems, respectively.
Traditionally, classification pipelines include preprocessing
(filtering) and feature extraction to extract single cell features
(e.g., single cell properties) followed by training a classifier to
recognize labels from extracted features.>*® The choice of
classifier can vary based on applications and data complexity.
Popular classifiers mentioned in the literature are tree-based
model (e.g., decision tree, random forest), support vector

This journal is © The Royal Society of Chemistry 2023

machine (SVM) and neural networks. With the emergence of
deep learning,"’ is greatly
simplified as deep neural networks are capable of learning
crucial representative features for classification directly from
raw inputs without the need for preprocessing or feature

the classification problem

extraction. To improve the performance of the model built
with small-size data, one can also make use of transfer
learning in which a pretrained model from one task can be
used as a building block for another model for a similar
task.?® Here we list the utilities of supervised learning based
on input types (image, signal and data) as shown in Fig. 13.
Image input. Convolutional neural network (CNN) is a
powerful technique for any computer vision tasks because of
its ability to learn elementary features (e.g., edges, corner etc.)
and more complicated features such as parts of objects/
objects in different shapes and locations in the image. This
can be readily applied to any imaging modalities (brightfield,
autofluorescence). For example, Nitta et al. developed an
intelligent  high-speed imaging flow cytometer for
classification of leukocytes, platelets, and platelet aggregates
showing a high specificity and sensitivity of 99.0% and 82.0%
(Fig. 13A).'°° Kriiter et al. also performed classification of
blood components (97.3% validation accuracy) and T-cells/B-
cells (86.2% testing accuracy) using biophysical images using
a deformability cytometry.”*® Kobayashi et al. demonstrated
an interesting application for drug susceptibility testing by
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Table 5 List of machine learning applications for blood analysis using microfluidics

Category Technique Samples Features Applications Ref.

Classification =~ SVM with WBC, MCF-7, Features extracted from brightfield Classification of spiked cancers with WBC with 246

or regression RFE HL-60 images from deformability <5% error in classification rate for differently
cytometer mixed samples

Logistic WBC, PLT and Morphological features from Classification with specificity of 96.6% 247

regression PLT aggregate brightfield image

Decision tree PBMCs, MCF-7 Cell size, maximum intensity, and  Cell classification with AUROC >0.9 for all 217
and MDA-MB231  mean intensity features

Decision tree, RBC (discocyte, Features from DIHM (12D) Comparison of classification algorithms and 248

SVM, LDC echinocyte and decision tree achieved the best accuracy

and k-NN spherocyte) (98.18%)

CNN WBC, PLT and Brightfield image Classification of PLT aggregate with specificity 166
PLT aggregate of 99% and selectivity 82%

N/A PBMC/THP-1, Features extracted from QPI (12D)  Classification with 94% accuracy. AUROC for 249
Kasumi-1 and one-versus-all classification were 0.975/0.920,

K-562 0.95 and 0.952 for PBMC, THP-1, K-562 and
Kasumi-1, respectively
CNN K562, K562/ADM  Brightfield image Quantification of drug-induced morphological 210
(autoencoder) cells and RBC changes and segmentation of RBC and cancer
cells from the images with 86% pixel-wise
accuracy

CNN Whole blood cells, Stimulated Raman scattering Classification accuracy of >93% 250
PBMCs, Jurkat images
cells, and HT29
cells

RNN RBCs and beads Impedance signal measured in Extraction of diameter velocity and positions 213

(LSTM-NN) horizontal and vertical direction of cells

NN PBMC, small cell 80 optofluidic features from Detection of spiked NSCLC (H2170) PBMC 219
lung cancer brightfield and quantitative phase  with 98% accuracy
(NSCLC) imaging

SVM WBC, SW480 and  Optical phased delay features Classification sensitivity, specificity, and 251
SW620 accuracy of 97.8%, 98.9% and 99.6%,

respectively

SVM CD4 and CD8 Features from light scattering Classification with 70.31% and 87.10% for 252

T-lymphocytes profile (size, nucleus-to-cytosol unstimulated and stimulated cells, respectively
ratio, refractive index of nucleus
and cytosol)

NN Neutrophils, RBCs Images from RT-FDC Classification of neutrophils with 95.5% 253

accuracy

CNN WBC subtypes Brightfield images from RT-DC Classification of blood cells and classification 209

of T-cells and B-cells (transfer learning from
Nitta et al.'®®)
SVM RBC Features extracted from trained Classification of different kinds of anemia 227
CNN (AlexNET) (SCD, THAL and HS)

SVM with WBC from healthy 38 biophysical markers quantified Prediction of sepsis infection with AUROC of 218

radial basis and sepsis from DLD-devices at different flow 0.97

function patients rates and designs

CNN RBC Brightfield images Classification of deformable and 254

non-deformable sickle RBC and non-sickle
RBC with accuracy of 96% + 0.3%

CNN RBC Images Classification of RBC from different outlets 255

and determine RBC rigidity score

CNN Bead, RBC and Impedance images (stacked Classification, calibration of measurement 212
ghost RBC impedance signal at 8 frequencies) using bead properties and extraction of

electrical parameters (cell size, membrane
capacitance and cytoplasm permittivity and
conductivity)

NN WBC Impedance parameters (cell size, Classification with 93.5% accuracy 216

membrane capacitance,
cytoplasmic conductivity)

NN WBC including Impedance parameters (cell size, Classification rate of 80.8% for neutrophil vs. 215
eosinophils and membrane capacitance, eosinophil, 77.7% for neutrophil vs. basophil
basophils cytoplasmic conductivity) and 59.3% for neutrophil vs. basophil

NN MCF-7, A549, Impedance peaks at four different  Extraction of electrical properties and 256
HeLa, HL60 and frequencies classification with 91.5% accuracy
GM12878

CNN WBC Brightfield images Classification with 81.4% accuracy 257
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Table 5 (continued)
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Category Technique Samples Features Applications Ref.
MASK-RCNN, HL-60 (untreated, Brightfield images Segmentation using Mask-RCNN and 211
CNN-GRU cytochalasin D classification of image sequence using CNN--
and nocodazole) GRU with accuracy of over 90%
Clustering DBSCAN WBC and bead Impedance parameters (cell size Extraction of cell cluster from heterogenous 189
and opacity) population
GMM HL-60 cells and Area and deformability from Cluster cell populations in mixtures 224
MG-63 RT-DC
Hierarchical =~ WBC from healthy 38 biophysical markers quantified Group patients into 8 groups 218
clustering and sepsis from DLD-devices at different flow
patients rates and designs
Dimensionality t-SNE PBMC/THP-1, Features extracted from QPI (12D)  Visualization of cell type distribution in 2D 249
reduction Kasumi-1 and t-SNE
K-562
PCA PBMC, small cell 80 optofluidic features from Visualization of spiked H2170 distribution in 3 219
lung cancer brightfield and quantitative phase = dimensions-PCA
(NSCLC) imaging
PCA WBC, SW480 and  Optical phased delay features Visualization cell distribution in 3 251
SW620 dimensions-PCA
PCA WBC from healthy 38 biophysical markers quantified = Visualization of healthy and sepsis patient 218
and sepsis from DLD-devices at different flow data
patients rates and designs
Pre-trained RBC Brightfield image Extraction of latent features from brightfield 227
CNN image
(AlexNET)
UMAP Neutrophils Impedance-deformability Visualization of different neutrophil 178
(untreated, parameters (10D) phenotypes in 2D UMAP
apoptosis,
necrosis and
NETosis)
first constructing a convolutional autoencoder for  (magnitudes and  phases) for 1. measurement

segmentation of leukemia cells (K562 or K562/ADM cells) and
RBCs in whole blood directly from brightfield images in
which they achieved 86% of pixel-wise accuracy (Fig. 13B).>'°
They then made use of the latent space from the bottle-neck
layer of the trained autoencoder to assess drug-induced
morphological changes of the cells using maximum mean
discrepancy (MMD) and the Hilbert-Schmidt independence
criterion (HSIC), and found that these parameters reflect the
effect of drug concentration on cell morphology. Employing
temporal models to perform classification based on dynamic
cell phenotypes from images or videos is another interesting
utilization.”’* They developed a microfluidic device with an
undulating channel (expansion and contraction regions) to
optically observe cell deformation in viscoelastic medium. To
facilitate their image analysis, they introduced Mask-RCNN to
segment cells in brightfield images and constructed CNN
with a gated recurrent unit (GRU) to perform classification of
different HL-60 phenotypes (untreated, CytoD-treated and
nocodazole-treated) from the sequence of segmented images.
The model achieved over 90% accuracy and performed better
than random forest and SVM using shape descriptors of cells
at different stages.

Signal input. The time-series signal from impedance
or optical cytometric sensors conveys single cell
information that can lead to cell type -classification.
Caselli et al proposed a comprehensive NN pipeline
to handle multi-frequency impedance signals

This journal is © The Royal Society of Chemistry 2023

calibration, 2. discrimination between beads and RBCs,
and 3. extraction (regression) of single cell electrical
parameters such as cell size, cytoplasm conductivity,
membrane capacitance (Fig. 13C).>'> Other notable
utilities are classification of multiple particles in
detection zones (e.g., singlet, doublet),>* extraction of
velocity and position®® and extraction of electrical
measurement from multiple channels.***

Feature input. Extracted features from single-cell images
or signals can be used for classification of leukocytes.**>>'®
For example, Singh et al. employed features extracted from
holographics for classification of the PBMC and tumor cell
line using decision tree.”’” Another interesting work is from
Zeming et al. in which the authors employed DLD extracted
biophysical features of patient blood for classification of
sepsis infection wusing support vector machine (SVM)
classification using radial basis function kernel (AUROC
0.97).>'® Siu et al. utilized 80 optofluidic features from QPI
and brightfield images which measure bulk and subcellular
texture information for identification of spiked NSCLC
(H2170) in PBMCs using deep neural network with 98%
accuracy which was better than using size alone or other bulk
features (Fig. 13D)." Tan et al. used neural network to
classify leukocytes based on single electrical features
(diameter, specific membrane capacitance and cytoplasmic
conductivity) derived from a constriction-based impedance
cytometer.>'®
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Many ML models are viewed as a black box model as it
can be difficult to comprehend how models reach their final
outcomes which may fail to attract trust and acceptance for
clinical uses.”*® To improve interpretability and explainability
of a model, certain approaches can be done including feature
importance  (e.g.,,  Shapley  value,”®'  permutation
importance to understand the contribution/weight of
features on a final prediction, or attention mechanism (e.g.,
class activation map (CAM)***) to visualize which part of an
image that influences a class prediction.

222)

Unsupervised learning

In contrast to supervised learning, unsupervised learning
can learn patterns/structures from unlabeled data and
be categorized as

(Fig. 14).

either clustering or
Clustering
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unlabeled data/features into several groups based on
certain similarity metrics (e.g:, Euclidean distance, cosine
similarity) or distributions. For example, density-based
spatial clustering of applications with noise (DBSCAN)
can be used to group single cell electrical features and
extract a target cell population for quantification.'®
Herbig et al. employed Gaussian mixture models (GMM)
to cluster HL-60 cells and MG-63 from cell mixtures
based on the area and deformability extracted from cell
deformability measurements.”**  Hierarchical clustering
also applied to group patients based on the
similarities of their DLD biophysical parameters and
certain cluster groups were shown to correlate with long
hospitalization stay (Fig. 13E).*'®

Dimensionality reduction simplifies high dimensional
data into low-dimensional data (usually 2, 3 dimensions)
for data visualization and analysis. In some scenario,
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Integrated microfluidic platforms for blood applications. (A) Integrated acoustic and DEP for exosome separation. Reproduced from ref.

130 with permission from the American Chemical Society. (B) Integrated inertial impedance cytometer. Reproduced from ref. 189 with permission
from the Royal Society of Chemistry. (C) DEP-impedance cytometer for differential counting of activated lymphocytes. Reproduced from ref. 233
with permission from the American Chemical Society. (D) Intelligent imaging flow cytometer. Reproduced from ref. 166 with permission from
Elsevier. (E) Impedance activated surface acoustic wave cell sorter. Reproduced from ref. 235 with permission from Wiley.
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having numerous features does not always guarantee an
increase in predictive performance and can even
deteriorate performance of certain models. This is
because adding more features makes feature space more
sparse and difficult for models to generalize (curse of
dimensionality). Introducing dimensionality reduction as
an intermediate step prior to other ML techniques can

alleviate dimensionality issues. Techniques such as
principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE) and uniform
manifold approximation and projection (UMAP) are

widely used in flow cytometry analysis and biological
studies.>*>**® Inspired by these methods, Petchakup
et al. utilized UMAP to visualize biophysical features of
different neutrophil phenotypes (Fig. 13F)."”® Another
way to harness the power of transfer learning is to
exploit pre-trained CNN for feature extractor. As pre-
trained CNNs (e.g., AlexNET) are trained from a large-
scale image dataset, it has already captured all
important features or patterns. By passing image input
(high-dimensional data) through a pre-trained network, it
can output the latent features (low-dimensional data)
which can be used in the subsequent task.**” They
used trained CNN to extract features from brightfield
images of RBCs and subsequently SVM for classification
of different RBC phenotypes such as sickle cell disease
(SCD), thalassemia syndromes (THAL) and hereditary
spherocytosis (HS).**’

Taken together, these exciting studies have shown that
ML can enhance blood analysis. It is possible to develop an
intelligent microfluidic system to provide fast, automated,
and accurate analysis without the need for clinical expertise
or mechanistic biological knowledge. It should be noted
that to produce a model with good generalization, large
data collection is sometimes required, and comes with the
cost of additional time and resources (biological samples,
donor samples). Implementing ML for analysis usually
additional computational (processors)
which may compromise the overall system setup (footprint).
As ML exponentially evolves, other novel ML utilities have
also been reported for biomedical image analysis including
“virtual staining>*® in which CNNs were designed to
understand the associations between morphological features
of label-free images (e.g., autofluorescence, brightfield) and
stained images (histological, antibody stained) for image-to-
image translation to produce stained images without the
need for laborious staining. A potential use for blood cell
analysis is to construct a virtual staining model of
subcellular components such as the nucleus and
mitochondria in single immune cells for label-free
quantification applications. It is also possible to wuse
generative models to synthesize more training data (e.g,
biomedical images) to improve predictive model
generalization.>®”® This can be readily adopted to produce
more events of rare cells especially CTCs from microfluidic
assays to improve a predictive model.

incurs resources
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Integrated label-free blood cell
sorting and analysis

A powerful aspect of microfluidics is to miniaturize and
integrate sample preparation and biological assays on a
single chip to automate medical analysis. Herein, we
highlight several integrated microfluidic approaches for
complete label-free blood analysis (Fig. 14).

Multiparametric sorting or sensing

To achieve higher separation efficiency, one can combine
multiple sorting mechanisms to enhance particle separation.
For example, Tayebi et al. combined acoustic and DEP forces
for exosome separation (Fig. 14A)."*° The ability to
interrogate various single cell features is crucial for single cell
analysis for elucidating immune cellular functions or disease
pathology using multi-colour flow cytometry.”** As intrinsic
or biophysical features obtained from single measurement
might be limited, multi-parametric single cell measurement
is important to enhance assay sensitivity or for ML
applications. A common pairing is mechanical measurement
with optical or impedance detection as changes in cell
mechanics are often reflected in cell morphology which can
be quantified using image or impedance readout. For
example, Petchakup et al. demonstrated single cell electro-
mechano-phenotyping (14 biophysical parameters of single
cells) to study different neutrophil phenotypes during
activation and apoptosis.'”®

Integrated sample processing

As conventional RBC lysis or density centrifugation steps can
be time-consuming and laborious, integrating a sample
preprocessing module will facilitate direct blood processing
and detection of target cells. An integrated spiral microfluidic
chip with an impedance cytometer was used for removal of
small blood components (e.g., lymphocytes, platelets and
RBCs) to allow electrical interrogation of monocytes,
neutrophils or activated lymphocytes from diluted blood or
PBMCs (Fig. 14B)."*>**" Raillon et al. utilized inertial vortex
induced CTC trapping prior to impedance cytometry.>*> Han
et al. applied DEP for pre-sorting of large, activated-
lymphocytes from small native-lymphocytes for subsequent
differential impedance counting (Fig. 14C).*** Another
interesting integration is to increase detection specificity by
differential counting of target cells before and after traversing
a cell capturing chamber functionalized with capture

antibodies.?**

Integrated active sorting

To elucidate associations between label-free features and
biological functions, an actuated cell sorter can be added to
select cells based on label-free features (impedance, optical,
mechanical). A great example is reported by Nitta et al. in
which they incorporated various microfluidic modalities such
as an acoustic focuser and dual membrane push-pull cell

This journal is © The Royal Society of Chemistry 2023
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sorter to complement high-speed imaging for platelet
aggregate sorting based on morphological features (Fig. 14D
).'%¢ Zhong et al. demonstrated acoustic sorting using
impedance signatures for live cell sorting from thawed PBMC
samples (Fig. 14E).>*

Conclusions and outlook

In summary, microfluidics or lab-on-a-chip technologies
provide numerous advantages including reduced preparation
time, small sample and reagent volume requirements, precise
control over the cell microenvironment and ease of
integration. As blood is routinely sampled and contains a
rich source of cellular and molecular biomarkers, this review
highlights the recent advancements in label-free microfluidic
blood cell sorting and analysis for clinical diagnostics. By
eliminating the need for expensive antibodies or chemicals,
label-free microfluidic assays not only provide valuable
insights for intrinsic single cell multi-parameter analysis, but
are also essential for identifying cell types and understanding
their biological functions. It is especially powerful for blood-
based diagnostics as it requires minimal sample preparation
and is more cost effective and scalable for clinical testing.
Label-free cell sorting often exploits biophysical differences
in different cell types to achieve separation and there is a
variety of passive or active microfluidic methods reported for
blood fractionation. Label-free cell detection approaches
include optical measurement of cell morphology and
intracellular components, impedance cytometry to detect
cellular and sub-cellular electrical properties at multiple
frequencies, as well as quantifying cellular mechanics (e.g.
cell deformability) which can be indicative of cell dysfunction
in diseases. While label-free cell detection may lack
specificity and sensitivity as compared to affinity-based (e.g.
antibodies) methods, recent studies have greatly improved
their detection accuracy and clinical utilities by enabling
multi-parametric cell analysis and high dimensional data
processing. Coupled with machine learning approaches, they
are highly promising for automated high-throughput blood
analysis and biomarker discovery in biomedical research.
Numerous technological advancements have been
demonstrated for both label-free blood cell sorting and
detection. Besides improving sample throughput and
separation performance, integrated and user-friendly
microfluidic systems will be key to automate and scale up for
high throughput clinical samples testing. Especially for label-
free separation approaches, multi-physics or multi-stage cell
sorting can potentially refine resolution separation with the
trade-off of increased device complexity. For example,
isolation of immune cells from whole blood can be initial
RBC bulk removal by cell size differences using inertial
focusing or ferrofluids, followed by 2nd step fractionation of
leukocyte subtypes (e.g., neutrophils and monocytes) based
on other biophysical properties (e.g. cell density) by
acoustophoresis. To achieve a complete label-free “sample-in-
answer-out” microfluidic platform, multiple functionalities

This journal is © The Royal Society of Chemistry 2023
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(sorting, sensing and analytics) can be integrated to enable
high-content and high throughput analysis of multiple blood
components. Nevertheless, microfluidic integration is a non-
trivial task. Besides having increased complexity in chip
design and instrumentation, researchers have to consider
flow rate disparity between sorting and detection modules
governed by different working principles. Several studies have
shown that it is useful to include an additional flow focuser
to align cells and siphon excess particle-free medium to
reduce the flow rate. Secondly, incorporation of active sorting
elements (DEP, acoustic) requires additional equipment and
it is important to consider their miniaturisation for point-of-
care testing. Lastly, certain techniques such as DEP and
viscoelastic flow use specific medium conditions (e.g,
conductivity, viscosity) by adding chemicals to blood
samples. Combining upstream buffer exchange or particle
sorting can help alleviate this issue. We envision that ML-
powered microfluidics will improve device operation and
robustness and significantly leverage label-free biophysical/
chemical features of circulating cellular targets as novel
blood-based biomarkers.

Taken together, label-free microfluidics technologies
enable new assay development to identify novel biomarkers
and non-traditional risk factors in disease diagnostics. By
offering a complete label-free blood sample preparation and
analysis workflow (cell sorting, cell detection, machine
learning methods), we are optimistic that this will reduce
barriers to adoption and better guide the readers to develop
new clinical applications in liquid biopsy.
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